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ABSTRACT The population of Han Chinese is �1.226 billion people. Genetic heterogeneity between north-
ern Han Chinese (N-Han) and southern Han Chinese (S-Han) has been demonstrated by recent genome-wide
studies. As an initial step toward health disparities and personalized medicine in Chinese population, this
study developed a set of ancestry informative markers (AIM) for Han Chinese population.
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Han Chinese compose the largest ethnic group in the world, which
accounts for 91.51% of the Chinese population, or �1.226 billion
people, according to China’s 2010 census (http://www.chinadaily.
com.cn/china/2011-04/28/content_12415449.htm). Chronic diseases
including cancer, vascular disease, and infectious diseases, are the lead-
ing causes of death in this population (He et al. 2005). Genetic asso-
ciation study (GAS), a critical approach to understanding molecular
mechanisms and population-specific genetic risk of these diseases, can
lead to the development of effective interventions at an individual or

population level. Currently, a major issue of GAS is the confounding
effect of population stratification, which is a common source of false-
positive or false-negative results in genetic association studies with
case-control study design (Ziv and Burchard 2003). Our recent study
identified obvious genetic heterogeneity between northern Han Chi-
nese (N-Han) and southern Han Chinese (S-Han), historically divided
by the natural barrier, the Yangtze River (Xu et al. 2009). This study
highlighted the importance of the correction for population stratifica-
tion in GAS of the Han Chinese population.

Population stratification is due to the presence of genetic
subgroups with different allele frequencies within a population. When
different population subgroups have different disease prevalence, the
differences detected in allele frequencies between cases and controls
might in fact be independent of disease etiology but actually related to
different prevalence. They could result from the underlying sampling
bias inherent in the unknown distribution of different genetic
populations in the overall sample. This is a common reason for
erroneous conclusions of disease associations (Cardon and Bell 2001).
By correction for population stratification, a GAS will be able to
eliminate spurious genetic associations and thus avoid further fruitless
downstream efforts. In addition, a GAS may gain additional statistical
power by correcting for population stratification, as shown by our
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previous study that showed that estimation of the genetic effect for
candidate loci could be biased by population divergence (He et al.
2008). To correct for population stratification, structured association
identifies subpopulations within the larger population and tests ge-
netic associations conditioned by the inferred ancestral information
(Pritchard and Donnelly 2001). This structured association approach
represented by the Eigenstrat algorithm (Price et al. 2006) has been
extensively demonstrated to be an effective approach for the correc-
tion of population stratification. To infer subpopulations, a number of
DNA polymorphism markers are required with substantially different
allele frequencies among the subpopulations, i.e. ancestry informative
markers (AIM). The genotypes of a set of AIMs will enable the clas-
sification of subpopulations. To date, there is still no consensus stan-
dard to define the number of AIMs for correction of population
stratification in each specific population. Genotyping cost is a major
factor that determines the number of AIMs used in a study (Londin
et al. 2010). We therefore developed a set of AIMs for genetic studies
of Han Chinese populations. To minimize the genotyping cost of
structured association studies, the classification performance of differ-
ent number of AIMs were assessed.

MATERIALS AND METHODS
This study analyzed a sample of 308 Han Chinese individuals from
different geographic regions in China. In this sample, 150,916
autosome SNPs were genotyped with call rate .95% (Xu et al.
2009). Principal component analysis (PCA) implemented in the Eigen-
strat software (Patterson et al. 2006; Price et al. 2006) was used to
identify ethnic outliers and genetically admixed individuals. For the
PCA analysis, 18,000 tag SNPs without obvious linkage disequilib-
rium (LD; r2 , 0.2) were selected genome-wide. Two-hundred
thirty-six individuals were unambiguously distinguishable as N-Han

or S-Han, and thus were selected for defining the AIMs in Han
Chinese. Geographic distribution of these 236 individuals is de-
scribed in Table 1. In these 236 individuals, ancestry information
content Ia of each autosome SNP was calculated using the infocalc
program based on information-theoretic principles (Rosenberg et al.
2003). Across 22 autosomes, an initial set of AIMs including 5000
SNPs was selected by choosing one SNP marker with the largest Ia in
each 500 kb window. Each SNP marker has frequency.0.05 in both
N-Han and S-Han, and has low LD (r2, 0.2) with distance of.100 kb
from the preceding AIM.

RESULTS AND DISCUSSION
To enable the application of AIMs in genetic studies of Han Chinese,
these 5000 AIMs are listed in supporting information, Table S1,
ranked by Ia. Shown by the PCA using these 5000 AIMs, N-Han

n Table 1 Geographic distribution of the 236 Han Chinese
individuals

Geographic Location
Number of
Individuals Historic Classification

Beijing 22 Northern Han
Gansu 13 Northern Han
Non-specific northern Han 9 Northern Han
Hebei 39 Northern Han
Heilongjiang 7 Northern Han
Henan 10 Northern Han
Jilin 3 Northern Han
Liaoning 4 Northern Han
Neimeng 7 Northern Han
Ningxia 2 Northern Han
Shandong 26 Northern Han
Shannxi 3 Northern Han
Shanxi 10 Northern Han
Tianjin 1 Northern Han
Xinjiang 6 Northern Han
Anhui 1 Southern Han
Guangdong 24 Southern Han
Guangxi 1 Southern Han
Hubei 2 Southern Han
Hunan 1 Southern Han
Jiangsu 11 Southern Han
Jiangxi 2 Southern Han
Shanghai 14 Southern Han
Sichuan 3 Southern Han
Yunnan 2 Southern Han
Zhejiang 13 Southern Han

Figure 1 Maximum Matthews correlation coefficient (MCC) of principal
component analysis (PCA) clustering using different number of ancestry
informative markers (AIM). The clustering performance is compromised
obviously when the number of AIMs decreases to 30. Horizontal axis:
the number of SNPs with robust Ia. Vertical axis: maximum MCC of each
set of AIMs.

n Table 2 Classification performance of different number of AIMs

Number of AIMs PC1 Cutoff MCC Specificity Sensitivity

15 20.04 0.810 0.966 0.901
20 20.03 0.871 0.930 0.952
25 20.03 0.901 0.971 0.952
30 20.02 0.902 0.932 0.969
35 20.03 0.951 0.986 0.976
40 20.03 0.961 0.986 0.982
45 20.04 0.951 1.000 0.970
50 20.03 0.961 1.000 0.976
60 20.03 0.971 1.000 0.982
70 20.03 0.990 1.000 0.994
80 20.03 0.990 1.000 0.994
90 20.02 0.990 0.987 1.000
100 20.03 1.000 1.000 1.000
110 20.04 0.990 1.000 0.994
120 20.04 0.990 1.000 0.994
130 20.03 1.000 1.000 1.000
140 20.04 1.000 1.000 1.000
150 20.03 1.000 1.000 1.000

AIM, ancestry informative marker; MCC, Matthews correlation coefficient; PC1,
first principal component.
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and S-Han individuals formed two obviously distinct clusters by the
first principal component (PC1). This finding is concordant with
a recent genome-wide SNP genotyping study that revealed a one-
dimensional “north-south” population structure in Han Chinese
population (Chen et al. 2009). For this initial set of AIMs of 5000
SNPs, Ia of each SNP is highly correlated with its eigenvector weight
of PC1 (r = 0.936; Figure S1). This evidence is further support that
the information content Ia is mainly determined by one-dimensional
“north-south” population structure.

By a stepwise procedure, we decreased the number of AIMs and
investigated the change of PCA clustering. In each step, we
decreased the number of AIMs by removing AIMs with the
smallest Ia. The classification effect of PCAs was assessed by the
maximum Matthews correlation coefficient (MCC) of each set of
AIMs (Matthews 1975). We observed that the clustering effect was
compromised significantly when less than 30 AIMs were used
(Figure 1; Figure S2). On the basis of this analysis, we recommend
at least the top 30 SNPs in the AIM list in Table S1 should be used
in any structured association study on the Han-Chinese popula-
tion. More robust correction for population stratification is
expected when the top 140 AIMs in Table S1 are used, which
differentiated N-Han and S-Han unambiguously in our study
(Table 2). We further validated the performance of sets of AIMs
by k-fold cross-validation. A threefold cross-validation achieved
highly similar MCCs as the original model.

Difference in some common phenotypic traits, e.g. body height,
facial features, and daily food compositions, are obvious between
N-Han and S-Han Chinese. The population structure by genome-
wide studies (Xu et al. 2009; Chen et al. 2009) highlighted the
importance of correction for population stratification in genetic
association study of Han Chinese. A large number of genetic stud-
ies are being performed in Han Chinese population, the majority
being case-control studies. By providing a set of AIMs, our study
aims to help to address the potential population stratification in
genetic association studies. However, it is worth emphasizing that
correction for population stratification may not always be
addressed sufficiently using AIMs (Seldin and Price 2008). Repli-
cation of genetic association in an independent study is always
important. Besides correction for population stratification, ances-
try information inferred using the AIMs in Han Chinese may be
used to assess genetic components underlying common traits, as
differences in risk for some diseases have been observed between
N-Han and S-Han Chinese (Rao et al. 2000; Zhao et al. 2004).
Understanding subpopulation-specific risk factors for common
diseases using the AIMs can be an initial step toward personalized
medicine in the era of post-human genome projects (Barnes 2010).
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