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Abstract: Insulin is used for the treatment of diabetes mellitus, which is characterized by hyper-
glycemia. Subcutaneous injections are the standard mode of delivery for insulin therapy; however,
this procedure is very often invasive, which hinders patient compliance, particularly for individuals
requiring insulin doses four times a day. Furthermore, cases have been reported of sudden hypo-
glycemia occurrences following multidose insulin injections. Such an invasive and intensive approach
motivates the quest for alternative, more user-friendly insulin administration approaches. For exam-
ple, transdermal delivery has numerous advantages, such as prolonged drug release, low variability
in the drug plasma level, and improved patient compliance. In this paper, the authors summarize dif-
ferent approaches used in transdermal insulin delivery, including microneedles, chemical permeation
enhancers, sonophoresis, patches, electroporation, iontophoresis, vesicular formulations, microemul-
sions, nanoparticles, and microdermabrasion. Transdermal systems for insulin delivery are still being
widely researched. The conclusions presented in this paper are extracted from the literature, notably,
that the transdermal route could effectively and reliably deliver insulin into the circulatory system.
Consistent progress in this area will ensure that some of the aforementioned transdermal insulin
delivery systems will be introduced in clinical practice and commercially available in the near future.
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1. Introduction

In the last few decades, diabetes mellitus has emerged universally as an epidemic,
and has become the fifth most prominent cause of mortality [1].

More than 422 million individuals worldwide have diabetes, according to a WHO
report (see: https://www.who.int/health-topics/diabetes#tab=tab_1). This number could
increase to 693 million by 2045 if proper actions are not taken [2,3]. In general, there are two
classes of diabetes mellitus, i.e., type 1 and type 2. Type 1 is mostly due to a total insulin
deficiency, but the causes of type 2 are varying degrees of insulin resistance, impaired
insulin secretion, and elevated glucose production. Type 1 may be further subcategorized
into type 1A diabetes mellitus, i.e., the autoimmune degradation of β-cells, and type 1B, i.e.,
idiopathic insulin deficiency [4]. The incidence of diabetes is growing owing to an aging
population and improved diagnosis [5,6].

The development of insulin has been identified as one of the most significant events
in the treatment of diabetes. The production of human insulin analogs using recombinant
technology was seen as a huge step forward [7]. Insulin therapy has a significant role in
treating type 1 diabetes. The subcutaneous route has been the most widely used, as it
precludes enzymatic insulin degradation in the digestive tract. Healthy glycemic controls
need to be preserved in type 1 diabetes, requiring at least three or maybe more daily
insulin shots. Nevertheless, this route comes with the risk of infection and inflammation
induced by the use of subcutaneous needles. Later, alternative routes—for instance, pul-
monary, nasal, and oral routes—were investigated [8,9]. Pens, jet injectors, sharp needles,
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supersonic injectors, and infusion pumps have been introduced to minimize pain and
enhance adherence to insulin regimens [10–13]. Still, compared to subcutaneous injections,
the insulin absorption from the aforementioned techniques into the blood is quite low, and,
consequently, other systems for insulin therapy are required [14,15]. Some noninvasive
methods are being explored for insulin delivery [14]. Recently, there has been significant
interest in the delivery of drugs via the transdermal route [16]. The transdermal route is
an interesting choice for insulin delivery, as this approach would mitigate the pain and
infection risk related to subcutaneous injections [17]. Furthermore, the transdermal route
ensure patient compliance as well as delivery-controlled insulin release over time [18,19].
Still, the transdermal delivery of drugs is restricted, owing to the low permeability of the
stratum corneum [20–24]. In recent years, a number of experimental techniques seeking
to improve transdermal insulin delivery have been proposed [18,25–30]. In this review,
different transdermal insulin delivery techniques and their improvements for diabetes care
are highlighted. A schematic illustration of various strategies for insulin delivery via the
transdermal route is presented in Figure 1.
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Figure 1. A schematic illustration of various strategies for insulin delivery via the transdermal route.

2. Microneedle

Microneedle technology offers an appealing technique for generating reversible skin
microchannels that improves the skin permeability and allows the delivery of a wide
variety of biotherapeutics, including insulin [31]. The delivery of microneedles at the site of
application causes substantially less anxiety, pain, and tissue harm, owing to their minute
size, as opposed to that of the 26-G hypodermic needle [32]. Micrometer-sized needles
are sufficiently long to reach the corneum [33–36]. They are adequately narrow and sharp
to cause minimal trauma and decrease the probability of infection [32,37]. This method
offers a similar efficiency to standard injections. Besides this, the microneedle approach
reduces the inherent problems associated with other invasive techniques [38]. Various
microneedles employed for the transdermal delivery of insulin are presented in Figure 2.
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Wu et al. prepared an intradermal microdelivery device consisting of a wafer with
microneedles (150 µm length) for controlled insulin release. In vitro experiments showed
that the level of fluorescein isothiocyanate-labeled insulin penetration after microneedle
pretreatment was substantially enhanced and provided numerous upsurges after the donor
phase separation. Animal studies established that the antidiabetic pattern of percuta-
neously administered insulin in rats was similar to that of biphasic insulin injected by the
subcutaneous route [39].

The transdermal application of insulin using microneedles made of biodegradable or
dissolving polymers has attracted considerable interest [40,41]. The benefit of microneedles
made of polymers is that if they break down in the skin, they do not present a safety
problem; rather, they simply dissolve or degrade entirely and safely. Furthermore, they are
reasonably priced (compared to silicon ones). Other advantages are that drugs can be
enclosed inside a microneedle polymer matrix, thereby increasing the drug loading capac-
ity [42].

In a recent study, microneedle (dissolving polymeric) patches were developed using
sodium carboxymethyl cellulose and gelatin to deliver insulin. The study results indi-
cated that the dissolving microneedles released FITC-insulin rapidly, and then steadily
disseminated the insulin into the layers of the skin. This research confirmed that insulin
microneedle patches provide adequate relative bioavailability, i.e., similar to that of hypo-
dermic injection [31].

Previously, Chen et al. prepared completely insertable microneedles, made from
polyvinyl alcohol and poly-c-glutamic acid/polyvinyl pyrrolidone. The authors showed
that poly-c-glutamic acid microneedles developed using a guiding structure design permit-
ted the microneedles to be completely inserted and then distributed the insulin efficiently
into the tissue. It was observed that innovations in the design of the microneedles yielded
a fast, comfortable self-administration strategy for use with insulin or other therapeutic
proteins [43].

In another study, Ling and Chen produced a patch containing dissolving microneedle
made of gelatin and starch that liquefy within five minutes of application, rapidly releasing
insulin. The authors reported that the microneedles had adequate mechanical strength to
be introduced to a distance of 0.2 mm (in vitro) and 0.2–0.25 mm (in vivo) in porcine and
rat skin without causing significant irritation or the sensation of pain. These insulin-loaded,
quick-dissolving microneedles were applied to the rats with diabetes for in vivo analyses.
Analogous antidiabetic and pharmacokinetic findings were reported in rats treated with
these microneedles and a control preparation (insulin s.c. injection). The study concluded
that the prepared microneedles had immense promise for the transdermal delivery of
insulin [42].
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In a previous study, Ito et al. also produced a dissolving microneedle in which
225–300 microneedles laden with insulin were assembled on a chip. Insulin-dissolving
microneedles were introduced into the skin by pushing with the hand. The study noted
that the depth of penetration of the microneedles was improved from 21 to 63 µm at
0.8 to 2.2 m/s in proportion to the speed of application to the isolated rat skin. Human
skin showed comparable findings in terms of the depth of penetration. The developed
two-layered dissolving microneedle application framework proved to be helpful for the
delivery of transdermal insulin [44].

In 2012, insulin-loaded microneedle arrays made of hyaluronic acid (length: 800 µm;
base and tip diameters: 160 and 40 µm, respectively) were prepared and investigated.
An animal study using diabetic animals reported a dose-dependent antidiabetic outcome
and only minor skin damage caused by the microneedles. The findings showed that the
newly designed microneedles could become a popular option for insulin delivery without
causing substantial skin injury [45].

Zhou et al. investigated the effectiveness of commercially available microneedle rollers
having microneedle lengths of 0.25, 0.5 and 1.0 mm for transdermal insulin delivery to
diabetic animals. The authors showed that microneedle rollers of 250 and 500 µm were
safer and very efficient devices for administering insulin transdermally in rats [46].

Still, there are lots of issues associated with microneedles from the perspective of
clinical application, and this technique could attain high-efficiency, controllable, and sus-
tained insulin delivery after overcoming such issues. First of all, the safety of the materials
should be intensively tested. Second, skin allergies, redness, and irritation are the main
issues attributed with the application of microneedle technology. Another drawback as-
sociated with this technology is that the microneedle can only be loaded with a small
dose of medicine. In addition, if the pores on the skin created by the use of a microneedle
do not close after application, there is a risk of infection. Some micromolecules might
remain in the microneedles after polymerization, which could compromise the skin tissue
or trigger severe reactions. Furthermore, insulin delivery strategies using microneedles
should be more deeply examined to achieve the accurate and consistent delivery of insulin,
since hypoglycemia could result from an overdose. Also, to begin large-scale production of
microneedles and minimize costs, the fabricated approach should be streamlined. Finally,
in order to verify that microneedles can effectively function in a physiological setting,
additional clinical trials must be considered [47–51].

The various approaches used in the systemic delivery of insulin via the skin are
addressed in the article and a summary is tabulated in Table 1.

Table 1. Various approaches used in the systemic delivery of insulin via the skin.

Technique Advantages/Disadvantages Transdermal Research Reference

Microneedle

Advantages: Possible to deliver large
molecules, noninvasive delivery, more
efficiently regulates the range of drug

delivery, and rapid recovery at the
application site compared to a

hypodermic needle injection [52–55].

Wu et al. prepared an intradermal
microdelivery device consist of a wafer with

microneedles.
[39]

Dissolving polymeric microneedle patches
were developed using sodium

carboxymethyl cellulose and gelatin.
[31]

Chen et al. introduced completely insertable
microneedle. [43]

Patch contained dissolving microneedle,
comprising of gelatin and starch that could

liquefy quickly in five minutes.
[42]

Disadvantages: Lower dose precision
than hypodermic needles, frequent

application might trigger tissue injury,
tip of the microneedle may split and

stay inside the layer, and less than 1 mg
of medicine may be administered by

bolus [55].

Insulin dissolving microneedles (assembled
on a chip) were introduced into the skin by

pushing with the hand.
[44]

Insulin-loaded microneedle arrays made of
hyaluronic acid was prepared. [45]

Zhou et al. indicated that microneedle
rollers of 250 and 500 µm are safer and more

efficient devices for administering insulin
through the transdermal route in rats.

[46]
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Table 1. Cont.

Technique Advantages/Disadvantages Transdermal Research Reference

Chemical
Permeation
Enhancer

Advantages: Design flexibility,
easy implementation,

and inexpensive [56–58].

Disadvantages: Lower potency, and not
all are adequate for the delivery of

macromolecules and could irritate the
skin [59–61].

Linolenic acid and oleic acid (enhancers)
and the microwave technique were

investigated to improve transdermal insulin
permeation.

[62]

Enhancers such as, menthone, decanol, oleic
acid, cycloundecanone, cis-4-hexen-1-ol, 2,

4, 6-collidine, octaldehyde, 4-octanone, were
found highly enhancing and nontoxic.

[63]

The mixtures of 1,8 cineole, oleic acid, and
sodium deoxycholate in propylene glycol:

ethanol (7:3) lead to in a 45% improvement
in insulin permeation in the presence of

iontophoresis.

[64]

Enhancers for instance, limonene, oleic,
linolenic, palmitic, palmitoleic, linoleic,

stearic, and iontophoresis were
investigated.

[65]

Consequence of trypsin as biochemical
enhancer was investigated for the
transdermal delivery of insulin.

[66,67]

Permeation enhancers such as
n-methyl-2-pyrrolidone or dimethyl
sulfoxide, azone into the propylene

glycol-drug formulations enhanced the
in vitro permeation of insulin.

[68]

Studied terpenes such as cineole, pulegone,
menthone, and menthol, in ethanol without

and with iontophoresis.
[69]

Both enhancers such as linoleic acid and
menthone demonstrated a synergistic

increase in insulin penetration in
conjunction with iontophoresis.

[70]

Patches

Advantages: Convenient to use, patient
satisfaction, reduced amounts of
medicine may be needed, lower

incidences of medication error, and
easy withdrawal of the patch in case of

any side effects [71–73].

Disadvantages: Slow time to peak
plasma levels, skin irritation; in order

to be successful, patches need effective
adhesion to the skin; factors such as

hairs, oil and sweat on the skin hamper
the adhesion of the patch and that

could lead to changes in the insulin
absorption [73,74].

Incorporation of nano-heaters into insulin
transdermal patches allows efficient

insulin release.
[75]

Transdermal lipid-based system
(Biphasix-insulin) was produced by King

et al; persistent fall in blood glucose level in
rats with diabetes was noted.

[29]

King et al introduced insulin in biphasic
vesicles-containing transdermal patches. [76]

Mbaye et al. developed a transdermal
system of insulin using ethyl cellulose,

Eudragit RS 100, and butylphtalate.
[77]

Bohannon et al. compared the effectiveness,
safety, device satisfaction, and quality of life

of people with diabetes with an insulin
bolus patch.

[78]

Lyophilized hydrogel patch device for
microneedle-mediated insulin

delivery formulated.
[79]

Microfabrication technique was employed
for loaded insulin on a patch that had 100

dissolving chondroitin sulfate microneedles.
[80]

Hadebe et al. studied pectin insulin
containing dermal insulin patches and

tested in diabetic rats.
[19]

Pectin-insulin matrix patch ameliorated the
diabetes indications in diabetic rats. [81]

Sonophoresis

Advantages: Permits the regulation of
permeation rates, enables an

immediate end of the drug delivery,
less irritant, low infection risk, and less

painful than an injection [82–84].

Disadvantages: Complicated, slight
tingly and burning sensation, and

discomfort [85].

Jabbari et al. prepared an air ultrasonic
ceramic transducer for transdermal

insulin delivery.
[86]

The involvement of cavitation in the
delivery of transdermal insulin

was explored.
[87]

Park et al. reported that the fall in the blood
glucose levels was considerably higher in
the group treated with ultrasound than

treated with subcutaneous injection.

[88]
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Table 1. Cont.

Technique Advantages/Disadvantages Transdermal Research Reference

Electroporation

Advantages: Permits control of the
permeation rates, delivery can be

ceased immediately, less irritants, and
less painful [89].

Disadvantages: Cell damage,
time-consuming, nonspecific [89].

Investigators demonstrated that the
electroporative pulses could be used in

diabetic rabbits to regulate the blood sugar
by improving insulin transportation

through the skin of the rabbit.

[90]

Demonstrated the beneficial consequences
of electroporation and iontophoresis on

human insulin permeation in rats.
[91]

The in vivo potency of the electroporation
of insulin as a solution, insulin solution

(s.c.), nanoparticle (i.v.) and nanoparticles
(electroporation) was investigated.

[92]

Iontophoresis

Advantages: used for unionized and
ionized and high molecular weight
molecules, delivery can be ceased

immediately, and improved control
over drug delivery [93–95].

Disadvantages: time-consuming and,
might be harmful for budding

hair [93–95].

Indicated that the insulin delivery by skin
route could be achieved by the combining

of iontophoresis and some enhancers.
[96]

Transdermal insulin delivery through the
porcine epidermis was demonstrated by
combining iontophoresis with different

chemical enhancers.

[64,65]

Simultaneous technique, such as
iontophoresis + electroporation, were

investigated for increasing insulin
permeation through human cadaver skin.

[97]

Demonstrated that pretreatment (wiping) of
skin with ethanol before iontophoresis

produced an impressive increment in the
transdermal transport of

monomeric insulins.

[98]

Kajimoto et al. used charged liposomes and
optimized iontophoretic parameters for

transdermal insulin delivery.
[99]

Iontophoresis-driven insulin from
nanovesicles via a microchannel induced by

microneedles in the skin, boosts the
transdermal delivery of insulin.

[100]

Vesicular
forMulations

Advantages: versatile system could
entrap the miscellanea of medicine,
biocompatible, biodegradable, and

provide sustained drug
release [21,101,102].

Disadvantages: leakage, lower stables,
the purity of natural phospholipids is

also another obstacle, and
expensiveness [21,101,102].

Liposomal insulin combined with
D-limonene and taurocholate showed the

maximum hypoglycemic effect.
[103]

Demonstrated the use of ultra-deformable
carriers for transdermal insulin delivery. [104]

Investigator demonstrated that
transferosomes could be used as potential

carrier for insulin.
[105]

Factorial design-based-optimized
insulin-transferosomes gel has shown 13.50
± 0.22 µg/cm2/h transdermal flux across

porcine ear skin.

[106]

Microemulsion

Advantages: thermodynamic stability,
the increased solubility and stability of
drugs, versatile carrier, and economical

scale-up [107–109].

Disadvantages: leakage, phase inversion,
and needs the development of complex
systems that could be time consuming.

Insulin emulgel was prepared using
emu oil. [110]

Insulin-loaded microemulsion composed of
oleic acid (10%), aqueous phase (38%), and

surfactant phase (50%) with dimethyl
sulfoxide (2%) was prepared and evaluated.

[111]

Nanoparticles

Advantages: sustained drug release, due
to their nano-size particles permeate

efficiently across the skin, and
low-irritancy [112–114].

Disadvantages: expensive and the
formulation requires special and
expensive techniques [112–114].

Prepared transdermal insulin nanoparticles
by means of a supercritical anti-solvent

micronization procedure.
[115]

Microdermabrasion

Advantage: efficiently increases the
permeability of the drug.

Disadvantages: expensive and,
skin irritation.

Andrews et al investigated the
microdermabrasion technique to improve

the skin insulin permeability.
[116]
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3. Chemical Permeation Enhancer

The term “chemical permeation enhancer” applies to a substance or mixture of sub-
stances that enhances the permeability of the skin. Several groups of permeation enhancers
have been tested for the delivery of various lipophilic and hydrophilic drugs(s) using both
human and animal skins [56,117].

Transdermal enhancers (linolenic acid and oleic acid) and microwave techniques have
recently been investigated to improve transdermal insulin permeation. The transdermal
enhancer, linoleic acid, was the least active in terms of increasing the delivery of transdermal
insulin, while the permeability enhancer, oleic acid, was found to be stronger than linolenic
acid but failed to provide significant insulin permeation. The best result was found with
microwave technology that facilitates insulin absorption and decreases the blood glucose
levels in animals [62].

Previously, different chemical permeation enhancers were examined by Yerramsetty
et al. to ameliorate skin permeability for the delivery of insulin. Amongst the investigated
permeation enhancers, a total of eight, i.e., decanol, menthone, oleic acid, cycloundecanone,
cis-4-hexen-1-ol, 2,4,6-collidine, octaldehyde, and 4-octanone, were found to be highly en-
hancing and nontoxic, five (cis-4-hexen-1-ol, 2,4,6-collidine, cycloundecanone, 4-octanone,
and octaldehyde) of which were new discoveries [63].

Rastogi et al. assessed various transdermal enhancers in conjunction with iontophore-
sis; the findings indicated that the mixtures of oleic acid, 1,8 cineole and sodium deoxy-
cholate in 3:7 ratio of ethanol:propylene glycol contributed to a 45% improvement in
insulin permeation in the presence of iontophoresis, as compared to iontophoresis alone.
The combinatorial use of iontophoresis with a chemical enhancer contributed to a substan-
tial reduction in the level of glucose in blood for 8 h in rats with diabetes [64]. Rastogi
and Singh examined the influence of limonene, linoleic, oleic, palmitic, stearic, palmitoleic,
linolenic and iontophoresis on the transdermal insulin delivery via the epidermis of porcine.
The authors noted that linolenic acid contributed to better iontophoretic and passive insulin
permeability. The research effectively indicated the potential to deliver therapeutic insulin
levels through iontophoresis in conjunction with chemical permeation enhancers [65].

In 2008 and 2009, Li et al. highlighted the influence of trypsin on the permeation of
insulin via skin in rat, without and with trypsin pretreatment. The authors noted that
pretreatment with 0.25% trypsin led to a 5.2-fold increase in penetrability [66]. In addi-
tion, the FITC-insulin permeation flux was enhanced by 10-fold after pretreatment with
trypsin [67]. In a separate study, the addition of permeation enhancers such as dimethyl
sulfoxide, azone, or n-methyl-2-pyrrolidone into propylene glycol-drug formulations en-
hanced insulin penetration in an in vitro experiment. At 0.1% and 12.0% concentrations,
azone and n-methyl-2-pyrrolidone demonstrated optimum efficacy. Dimethyl sulfoxide
was reported to have less influence on enhancing transdermal insulin delivery than the
other two investigated enhancers [68].

In another study, the influence on the transdermal delivery of insulin to rats of ter-
penes, such as pulegone, menthone, menthol, and cineole in ethanol, without and with
iontophoresis, was investigated. With terpene in ethanol, a synergistic enhancement in
the insulin flux was noted, while menthone in ethanol showed the highest improvement
in flux of insulin among the terpene/ethanol combinations. Meanwhile, neat menthone
presented greater insulin enhancement than menthone in ethanol. In contrast to other
chemical enhancer pretreatments, iontophoresis had a lower influence on the skin obstacle
properties. Terpene in ethanol mediated a synergistic improvement of insulin permeation
when combined with iontophoresis [69]. Later, a gel preparation of insulin using polox-
amer 407 was prepared by Pillai and Panchagnula. In ex vivo tests, both linoleic acid
and menthone demonstrated a synergistic increase in insulin penetration in conjunction
with iontophoresis. A decrease in the plasma glucose level of 36–40% was achieved by
iontophoresis alone or in conjunction with linoleic acid. The authors noted that more skin
discomfort was caused by the chemical enhancers when combined iontophoresis than
when each was used alone [70].
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4. Patches

In particular, transdermal patches are an appealing dosage method for the predictable
and consistent delivery of insulin into the bloodstream. Insulin patches contribute to
patient-friendly, noninvasive and painless delivery of insulin. Even, in the case of hyperin-
sulinemia, patients can easily remove the patches. Recently, nanoheaters incorporated into
insulin patches were shown to effectively release insulin, and demonstrated comparable
in vivo activity in mice with respect to s.c. injection of insulin [75].

In 2002, an innovative transdermal lipid-based system (Biphasix-insulin) was pro-
duced by King et al. and tested for blood glucose-reducing efficacy in a diabetic rat model
induced by streptozotocin. Biphasix-insulin-containing transdermal patches (recombinant
human insulin dose 10 mg) were administered to abdominal skin of rats with diabetes for
48 h. A blood glucose level decrease of 43.7%, compared to initial values, was observed.
Further, the insulin bioavailability was improved by 21.5%, based on the serum insulin
noted from the transdermal Biphasix-insulin patches. It was concluded that the Biphasix
device successfully administered insulin via the skin route. These findings support the use
of patches containing insulin for human use [29]. In 2003, King et al. reported that insulin
in biphasic vesicle-containing transdermal patches had been administered to the abdom-
inal skin of diabetic rats for 73 h, and the levels of blood glucose tested using a glucose
meter every 2–10 h. ELISA was used to measure the inguinal lymph node insulin samples.
The findings showed that insulin increased in the lymph nodes in a manner that depended
on the dose and time. The maximum transdermal lymph node insulin concentrations were
reported at 73 h with both 140 IU and 280 IU doses of recombinant insulin. The authors
concluded that lymph transport is involved after transdermal insulin delivery of biphasic
vesicles [76].

In another study, Mbaye et al. utilized Eudragit RS 100, butylphtalate, and ethyl
cellulose to formulate a transdermal insulin system, and found that the continuous release
profiles strongly depended on Ethylcellulose/Eudragit [77]. In 2011, Bohannon et al.
noted that bolus insulin is easier to obtain, and that it increases quality of life of diabetic
subjects [78]. Another study by Qiu et al. described a lyophilized hydrogel patch device for
microneedle-mediated insulin delivery. The authors noted that blood glucose was reduced
in rats, and action was maintained for longer, compared to subcutaneous injection [79].

In another report, a microfabrication technique was employed to load insulin onta
a patch that had 100 dissolving chondroitin sulfate microneedles. By using two or four
patches on the (abdominal) skin of dogs, the antidiabetic effects were evaluated, and sam-
ples of blood taken, for 6 h. The insulin content per established patch was 1.67 IU. For two
patches, a minimum level of glucose plasma was observed at 0.83 h, while for four patch
trials, this occurred at 1.37 h. The findings showed that the bioavailability of microneedle
insulin was found to be 72.1% for two patches and 72.4% for four patches. Furthermore, re-
searchers noted that insulin was stable at 4 ◦C for one month in the dissolved microneedles,
after which the recovered percentage was found to be 99.2 ± 13.9% [80].

Hadebe et al. studied pectin insulin-containing dermal insulin patches and tested
them on diabetic rats. The authors found that the oral glucose test responses of treated
rats with transdermal pectin insulin patches displayed reduced blood glucose levels after
five weeks, while short-run therapies restored the glycogen levels of both liver and muscle.
The produced pectin insulin matrix patch provided regulated insulin release and relieved
a variety of diabetic symptoms [19]. In another report, the use of the matrix patch of
pectin-insulin was shown to offer protection against the devastating cardiovascular effects
associated with the conventional treatment of diabetes [81].

5. Sonophoresis

The use of ultrasound to enhance transdermal drug transport is referred to as
phonophoresis or sonophoresis (Figure 3) [118]. It was observed that the increase in
insulin delivery by the skin route that resulted from the use of ultrasound waves (low-
frequency 20–100 kHz) could be due to the disruption of stratum corneum layers [119,120].
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While sonophoresis has received considerable attention from researchers, its mechanisms
are not fully understood, although several probable mechanisms have been suggested,
the most plausible of which is cavitation [121,122].
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The air ultrasonic ceramic transducer for insulin transdermal delivery was developed
by Jabbari et al. In their study, rats were divided into four groups: Group 1 was a control
group; Group 2 received a subcutaneous injection of insulin (0.25 U/Kg); Topical and
ultrasonic transdermal insulin were administered to groups 3 and 4 respectively. The inves-
tigators indicated that the application of ultrasound technique ameliorated insulin delivery,
and that the diabetic glucose level of rats was reduced to normal values [86]. In another
study, the involvement of cavitation in the delivery of transdermal insulin was explored,
and substantial improvement in insulin penetration (40%) was reported [87]. In past re-
search, the physiological reaction to transdermal insulin delivery mediated by ultrasound
was shown to correlate with that of insulin administered subcutaneously. In this study,
blood glucose levels declined by 190 ± 96 mg/dL 1.5 h after insulin administration (subcu-
taneous injection 0.25 U/kg dose), whereas blood glucose decreased by 263 ± 40 mg/dL at
1.5 h with insulin delivered with ultrasound [88].

6. Electroporation

In this process, short, high-voltage electric field signals generate transient aqueous
paths in the stratum corneum [123–126]. Researchers showed that electroporative pulses
could be used in diabetic rabbits to regulate blood sugar by improving insulin trans-
portation through the skin. It was highlighted that the increment in insulin dose and
electroporative pulses, and decrease in the field strength of electroporation, contributed
to a dramatic reduction in the blood sugar levels [90]. In the original report, investigators
used a combination of electroporation and iontophoresis to study insulin permeation in
rats. The investigators found that the combination of these techniques led to an increase
in insulin plasma levels in comparison to those reported following electroporation [91].
In another study, an in vivo potency of the electroporation of insulin as a solution, in-
sulin solution (s.c.), nanoparticle (i.v.) and nanoparticles (electroporation) was discussed.
These findings indicated that polymeric nanosystem electroporation was an attractive
substitute to injectable administration [127]. Other research indicated that, compared to
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electroporation alone, electroosmosis combined with electroporation in the presence of
1,2-dimyristoylphophatidylserine (a saturated anionic lipid) contributed a substantially
higher transport rate of insulin [92].

7. Iontophoresis

One possible method for the improvement of drug delivery is transdermal iontophore-
sis [128,129]. Hao et al. stated that transdermal insulin delivery could potentially be
achieved by combining iontophoresis and some enhancers [96]. Elsewhere, transdermal
insulin delivery through porcine epidermis was observed by combining the use of ion-
tophoresis with different chemical enhancers [64,65]. In 2002, researchers demonstrated
the application of simultaneous techniques, such as iontophoresis + electroporation, for in-
sulin permeation augmentation through human cadaver skin ex vivo [97]. Transdermal
insulin delivery using the technique of iontophoresis was demonstrated in [26,69,130–133].
In a prior study, pretreatment (wiping) of skin using alcohol before iontophoresis was said
to produce an impressive increment in insulin transdermal transport [98].

Kajimoto et al. indicated that a progressive drop in the levels of blood glucose in rats
with diabetes occurred when employing insulin- liposome and iontophoresis combina-
tions [99]. In other research, the authors verified that the permeation of insulin-loaded,
positively-charged nanovesicles—applied via iontophoresis to skin with microchannels
created by a microneedle—was 713.3 times greater, compared to the use of nanovesicles.
Animal experiments showed that the level of blood glucose in rats with diabetes dropped
considerably (comparable to an s.c. injection of insulin) at 4 h and 6 h following the com-
bined application of positive nanovesicles driven by iontophoresis and microneedles [100].

8. Vesicular Formulations

Liposomes are widely-studied nano-sized lipid vesicles that could be beneficial in
the delivery of drugs via the dermal or transdermal routes. Liposomes, as drug carriers,
offer many advantages that are reported elsewhere [134–136].

Techniques such as using combinations of two or more enhancers or the liposomal
formula of insulin were investigated by Ogiso et al. The highest blood sugar lowering action
that continued up to 10 h was exhibited by a transdermal system comprising liposomes
insulin, D-limonene, and taurocholate. A high hypoglycemia effect was also achieved
with a blend of n-octyl-beta-D-thioglucoside, cineol, and deoxycholate, or D-limonene and
n-octyl-beta-D-thioglucoside. The authors clearly showed that the absorption of insulin in
the stratum corneum of rat skin could be achieved under certain circumstances [103].

Transferosomes are highly elastic vesicles that are comprised of phospholipids and
edge activators [137,138]. They can permeate the skin and are an efficient means by which
to deliver entrapped drugs when applied in nonoccluded circumstances [139]. The highly
flexible vesicles, named “transferosomes”, were shown to be good drug carriers if loaded
with insulin and applied in acceptable quantities [28,104].

The rotary evaporation sonication technique was used to prepare a transdermal trans-
ferosome insulin gel. The results showed that the optimized formulation entrapment
efficiency of insulin was 78%, and a cumulative release of insulin of 83.11% was observed.
In vivo tests clearly showed that a better effect on glucose reduction was achieved by
insulin transferosome gels compared to a control gel. The authors concluded that their
study showed that the prepared transferosomal formulation could be used as a poten-
tial carrier for insulin and other protein deliveries [105]. In an earlier study, optimized
insulin-containing transferosome gels were also produced on the basis of a factorial design
that showed good permeation flux, i.e., 13.50 ± 0.22 µg/cm2/h, across ear skin of porcine.
An increased in permeation flux of 17.60 ± 0.03 µg/cm2/h was obtained by further apply-
ing the technique of insulin transferosomes with iontophoresis. The animal study revealed
that the best transferosome gels exhibited sustained hypoglycemic effects over 24 h in
diabetic rats [106].
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9. Microemulsion

Microemulsions typically droplets of less than 100 nm in size, and are thermodynam-
ically stable clear liquids [140–142]. Microemulsions have been extensively studied and
have gained considerable interest as vehicles of transdermal administration [143–148].

In 2013, insulin emulgel was prepared using emu oil (composed of fatty acids obtained
from emu, a bird, Dromaius Novae-Hollandiae, native to Australia) as a permeation enhancer.
The biological activity of emulgel alone and in combination with iontophoresis was tested
using albino rabbits. The authors claimed that the optimized formulation [F4: emu oil
(7.5% w/w) and polysorbate 80 (5.0% w/w)] showed a maximum insulin permeation flux
of 4.88 µg/cm2/h through rat skin. A pharmacodynamic study indicated that the blood
glucose level decreased from an initial value of 250 mg/dL to 185 mg/dL and the initial
value to 125 mg/dL in 2 h in the group treated with insulin emulgel alone and insulin
emulgel + iontophoresis respectively [110].

Transdermal microemulsions containing insulin were formulated with 10% oleic
acid, 50% surfactant phase, and 2% DMSO, providing a maximum flux of 4.93 µg/cm2/h
across goat skin. The authors concluded that there was considerable potential to use
microemulsions for insulin delivery via the skin route [111].

10. Nanoparticles

Earlier, the feasibility of the use of transdermal insulin nanoparticles by means of
a supercritical antisolvent micronisation procedure was investigated. The authors indicated
that the supercritical antisolvent procedure provided uniform spherical insulin nanoparti-
cles of particle sizes 68.2 ± 10.8 nm. The research indicated that the supercritical antisolvent
process did not cause insulin degradation. An in vitro evaluation revealed that the insulin
nanoparticles followed Fick’s first diffusion law, and displayed a good permeation rate.
The authors found that the prepared nanoparticles containing insulin may have promising
possibilities for the transdermal delivery of diabetes chemotherapy [115].

11. Microdermabrasion

Microdermabrasion has been previously used to minimize the presence of wrinkles,
scars, and fine lines [149–151]. Previously, this approach was adopted as a tool to mitigate
the hindering nature of the stratum corneum [152–155].

The application of microdermabrasion to improve skin insulin permeability was
investigated by Andrews et al., who highlighted that microdermabrasion could improve
the permeability of the skin to insulin at levels that are adequate to stabilize the range of
blood glucose in rats with diabetes [116].

12. Conclusions

Chronic diseases such as diabetes are among the most prominent causes of mortality,
morbidity, and high health-care costs. For individuals with diabetes, regular shots of insulin
are required to maintain normal blood glucose levels. Other techniques for insulin delivery
possess some disadvantages. Hence, there is a vital need to find new approaches for insulin
delivery. Transdermal drug delivery presents exciting possibilities, as it eliminates the
pain and risk of infection associated with subcutaneous insulin injections, ensures patient
compliance, and provides a controlled release of insulin. It was observed from the literature
that the different transdermal techniques reported in this article have been widely and
successfully used for the delivery of insulin. Encouraging developments are occurring
which will lead to the more successful and safe delivery of insulin via the transdermal route.
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