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Abstract. The cytoskeletons of Y-1 mouse adrenal 
tumor cells contain a calcium and phospholipid- 
dependent protein kinase (protein kinase C) that is 
bound sufficiently tight to resist extraction by 0.5% 
Triton but not by 1.0% Triton. The enzyme has been 
purified to near homogeneity from cytoskeleton and 
cytosol. It shows features typical of this type of ki- 
nase, namely a requirement for Ca 2. and phospholipid, 
stimulation by tumor promoters but not by nontumor- 
promoting phorbol esters, and inhibition by trifluoper- 
azine. The enzyme shows specificity for four sub- 
strates found in the cytoskeleton, namely 80, 33, 20, 
and 18 kD. The first three substrates are phos- 
phorylated by the enzyme; the fourth is dephosphory- 
lated and is therefore affected by the kinase indirectly. 
The 80-kD protein is the kinase enzyme itself which 
is autophosphorylated in vitro and in the cytoskeleton. 
The 20-kD protein is myosin light chain. The 33- and 

18-kD proteins are unidentified. The same substrates 
were phosphorylated when Y-1 cells were permeabi- 
lized with digitonin and incubated with [3,-32P]ATP and 
phorbol-12-myristate-13-acetate. Partly purified protein 
kinase C changes the extent of phosphorylation of the 
same substrates when added to cytoskeletons previ- 
ously extracted to remove endogenous protein kinase 
C. Addition of Ca 2÷, phosphatidylserine, and phorbol- 
12-myristate-13-acetate to cytoskeletons, and addition 
of these three agents plus protein kinase C to extracted 
cytoskeletons, causes these structures to undergo a 
rapid and extensive rounding. A similar change is in- 
duced in intact cells by addition of phorbol ester. It is 
concluded that protein kinase C is capable of changing 
the shape of adrenal cells by an action that involves 
autophosphorylation and phosphorylation of myosin 
light chain. This response may in turn be related to 
the steroidogenic responses to ACTH and cyclic AMP. 

p ROTEIN kinase C is known to occur in at least three 
types of adrenocortical cells (35, 36). Attempts to de- 
termine whether or not this enzyme is involved in the 

regulation of steroid synthesis in these cells have given equiv- 
ocal results (36). Since the cytoskeleton of adrenal cells is 
involved in the steroidogenic responses to ACTH and cyclic 
AMP (8, 22, 27), it was decided to determine whether pro- 
tein kinase C is present in the cytoskeletons of adrenocortical 
cells. For this purpose we have used Y-1 mouse adrenal tu- 
mor cells which serve as a useful system for studies of the 
regulation of adrenal steroidogenesis (16). We show here that 
protein kinase C is present in the cytoskeletons of these cells. 

Materials and Methods 

Preparation and Culture of Cells 
Methods for the culture of Y-1 cells in Ham's F12/DMEM (l:l [vol/vol]) sup- 
plemented with 10% FCS have been given previously (21, 22). 1 d before 
each experiment, the medium was replaced by serum-free medium. Ste- 
roidogenic responses of the cells to ACTH were determined by measuring 
the production of 20~-dihydrooprogesterone (21, 22). 

Preparation of Cytoskeleton 
Cells were scraped from the dishes into buffer A: NaCI (100 mM), sucrose 
(300 mM), MgCI2 (3 mM), Pipes (10 raM, pH 6.8), Triton X-100 (0.5%), 

PMSF (1.2 mM), and aprotinin (Trasylol; 100 U/ml). Pancreatic deoxyribo- 
nuclease I (400/~g/ml) and pancreatic ribonuclease A (400 #g/ml) were then 
added for 15 min at room temperature. (NH4)2SO4 was added to a final 
concentration of 0.1 M and incubation continued for 5 rain at room tempera- 
ture. The "soluble" and "chromatin" fractions were then removed as a super- 
natant after 10 min centrifugation at 10,000 g leaving the cytoskeletons as 
a pellet. In some experiments the cytoskeletons were extracted with buffer 
A containing 1% Triton X-100 (vol/vol) or 0.5 M KOH after preparation by 
the above method. In some cases cytoskeletons were washed twice with 
buffer A. In other experiments the detergent Triton X-100 was replaced by 
n-octyl-B-D-glucopyranoside (octylglycoside) in the preparation of the 
cytoskeleton. 

The above extraction procedures consisted of stirring the sample for 5 
rain on ice. To examine the shapes of cytoskeletons, these structures must 
be prepared from cells in situ; i.e., on culture dishes. Such preparations are 
not biochemically comparable with the structures prepared as described 
above, for example nuclei remain. The method used to prepare such cyto- 
skeletons in situ is given elsewhere (28). The more stringent procedure used 
in most of the present studies requires that the cells be removed from culture 
dishes and that nuclear material is digested (see above). 

Measurement of Protein Kinase C 

Protein kinase C was measured by determining the incorporation of [32p] 
from [7-32p]ATP into exogenous histone H-1 (33). Before use in these ex- 
periments, the cytoskeleton was washed twice for 5 min on ice with buffer 
B: Pipes (50 mM), MgCI2 (10 raM), EDTA (2 mM), EGTA (2 mM), 
PMSF (1.2 mM), and aprotinin (100 U/ml) final pH 7.0. These washes re- 
moved calmodulin to undetectable levels, which was desirable to avoid acti- 
vation of Ca2+-calmodulin-dependent protein kinase (37). The cytoskele- 
tons were homogenized with five passes of a tight-fitting glass-glass Dounce 
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homogenizer and incubated in a total volume of 100 #L using a protein con- 
centration of 1.0 rag/m1 with various additions (including 20 ~g of histone 
H-l) where indicated. The reaction was started by addition of ['y-a2P]ATP 
(10 nmols, 106 cpm per tube). 

This concentration of ATP was found to produce maximal incorporation 
of 32p into cytoskeletal substrates since greater concentrations of the same 
specific activity did not influence the degree of phosphorylation of the vari- 
ous substrates (not shown). If the [3,-3~P]ATP was diluted with further ad- 
dition of ATE 32p incorporation into substrates was decreased. The reac- 
tion was continued for 1 min at 37°C followed by 3 min at room temperature 
and stopped by addition of ice-cold TCA (1 ml of 12.5 % [wt/vol]). The mix- 
ture was stood on ice for 3 h and the precipitate was washed three times with 
TCA (12.5 %) and once with ethyl ether. The precipitate was solubilised in 
aquasol-2 (1 ml). Triton-toluene scintillation fluid (5 ml) was added and the 
samples were examined by liquid scintillation spectrometry to measure 32p. 
Values for unincubated (zero time) samples were found to be in the range 
of 300 to 500 cpm/tube. These values were subtracted from the experimental 
values. 

For the phosphorylation of endogenous proteins, the method described 
above was followed except that exogenous histone was omitted and the reac- 
tion was stopped by addition of hot sample buffer in preparation for one- 
dimensional gel electrophoresis by the method of Laemmli (17) or two- 
dimensional gels (focusing ~ electrophoresis) by the method of O'Farrell 
(26). Cytoskeletons were solubilized for one-dimensional gels by repeated 
pipetting in sample buffer followed by boiling for 5 min. 

Samples (50 #g) were applied to a 5-15% linear gradient of polyacryl- 
amide with a 4% stacking gel. For the method of O'Farrell (26), 100 #g 
protein was applied in the first dimension and the acrylamide gradient in 
the second dimension was as described above. Autoradiography was per- 
formed for 12-24 h at -70°C on X-OMAT AR film (Eastman Kodak Co., 
Rochester, NY) in the presence of Cronex Lighting-Plus (DuPont Co., Wil- 
mington, DE) intensifying screens. Bands were cut from the gels and in- 
cubated with 0.5 ml of H202 (30% |vol/vol]) for 12 h at 60°C. 32p was 
measured by liquid scintillation spectrometry as described above. 

Purification of Protein Kinase C 

Cytoskeleton. Cytoskeletons were prepared from 45 x 10 s Y-1 cells. 
Cytoskeletons were washed with buffer I: Tris-HC1 (20 raM), EDTA (2 
mM), EGTA (5 raM), PMSF (50/~g), and aprotinin (100 U/ml), final pH 
7.4, and containing 1.0% Triton X-100 (vol/vol) and homogenized in the 
same buffer. The homogenate was centrifuged at 20000 g for 10 rain at 4°C. 
The supernate was diluted 10 times with buffer I and applied to a column 
(1 x 5 cm) of DEAE-Sephacel equilibrated with buffer II: Triton X-100 
(0.1% [vol/vol]), Tris-HCI (20 mM), EDTA (2 raM), EGTA (2 mM, final 
pH 7.4). The column was washed with 40 ml of buffer II followed by 40 
ml of a linear gradient 0-400 mM NaCl in Buffer II. Fractions containing 
protein kinase C were pooled and dialyzed against the following buffer: 
MES (10 mM), CaCI2 (2 raM), leupeptin (4 #g/ml), final pH 6.5. The sam- 
ple was applied to a column (1 x 10 cm) composed of phosphatidylserine 
immobilized in polyacrylamide (33, 34) equilibrated in buffer III: MES (10 
raM), NaCI (200 raM), 2-mercaptoethanol (0.1% [wt/vol]), and leupeptin 
(4 t~g/ml) containing CaC12 (5 mM), final pH 6.5. The column was washed 
with 20 ml of buffer III containing 0.1 mM CaC12 followed by buffer III 
containing 2 mM EGTA. Fractions (1 ml) containing protein kinase C were 
pooled and concentrated-dialyzed with an Amicon micropartition system 
(MPS-I) against buffer III containing 100 mM NaC1 and 10% (wt/vol), 
glycerol. The highly purified protein kinase C was stored at -20°C. 

Cytosol. The procedure used for purification of the cytosolic enzyme was 
similar to that just described except as follows. Cells from 10 150-mm plates 
(2 x l0 s cells) were washed three times with ice-cold Tris-HCI (20 raM, 
pH 7.4) and homogenized in buffer I containing sucrose (0.25 M) using a 
glass/glass tight-fitting homogenizer (Dounce, Vineland, N J). The homoge- 
nate was centrifuged (105,000 g/60 rain per 4°C) and the supernate was 
directly applied to the DEAE-Sephacel column. The column was washed 
with buffer II without Triton X-100 and fractions containing the protein ki- 
nase were pooled and desalted on a column of PD10 Sephadex G25. The 
sample was divided into two parts one of which was used as partly purified 
(crude) protein kinase C in studies with the cytoskeleton and the remainder 
was purified as described above. For the latter purpose the sample was taken 
to MES (10 mM), CaCI2 (2 raM), and leupeptin (4 gg/ml), final pH 6.5, 
and applied to the affinity column described above. 

Fractions collected during purification were subjected to an assay for pro- 
tein kinase C as follows. Fractions were incubated at 37°C with 200 t~g,/ml 
histone H-l, 10 U/ml protein kinase inhibitor, [3,-32p]ATP (10 nmols; 106 
cpm) with and without 2 mM CaCI2, 10 gg/ml phosphatidylserine, and 

100 nM PMA. Incubation was started by addition of ATP and continued as 
described above. Incorporation of 32p into protein was measured as de- 
scribed above. Activity of protein kinase C was expressed as pmols of 32p 
incorporated/rain per mg protein calculated by subtracting zero time values 
from those obtained with incubated samples. 

Reconstitution of Cytoskeleton plus Protein Kinase C 

Cytoskeletons were extracted with buffer A containing Triton X-100 (1% 
[vol/vol]). To the extracted cytoskeletons (50 gg protein) partly purified pro- 
tein kinase C (50 gg/ml) and [,y-32p]ATP (10 nmol, 106 cpm per tube) in 
buffer B were added. The reaction was stopped by addition of 0.5 ml of the 
following solution: 0.1 mM NaE 20 mM EDTA, 2 mM EGTA, 2 mM sodi- 
um pyrophosphate, pH 7.4, at 4°C. The mixture was centrifuged at 12,000 g 
for 15 rain at 4°C to remove any soluble phosphoprotein in the partly puri- 
fied protein kinase C. The resulting pellet was resuspended in Laemmli buf- 
fer and subjected to one-dimensional gel electrophoresis followed by autora- 
diography. 

Partial Proteolytic Mapping 
Cytoskeletal protein (100 ~g)n and highly purified protein kinase C from 
cytoskeleton and cytosol (2 gg each), were incubated with [y-32p]ATP and 
cofactors as described above. The samples were subjected to electrophoresis 
on polyacrylamide gels (15%) with sodium dodecyl SO4. Bands corre- 
sponding to molecular mass 80 kD were excised and incubated separately 
with Staphylococcus aureus Vs protease as described elsewhere (5). Sam- 
pies were then subjected to one-dimensional gel electrophoresis a second 
time followed by autoradiography. 

Permeabilization of Cells with Digitonin 
Intracellular phosphorylation in adrenal cells was measured by permeabili- 
zation of cells with digitonin as described by Lee and Holz (18). Cells were 
treated for 30 min with or without phorbolq2-myristate-13-acetate (100 nM) 
followed by incubation with 20 #M digitonin and [y-32p]ATP (50 t~Ci/ 
dish) for 10 min in the presence and absence of phorbol-12-myristate-13- 
acetate (100 nM). The experiment was terminated by preparation of the 
cytoskeleton as described above. In some experiments, cells were first per- 
meabilized by incubation with 20 gM digitonin and then subsequently in- 
cubated with [y-32p]ATP in presence or absence of the phorbol ester 

Miscellaneous 
Protein was measured by the method of Bradford (3) with BSA as standard. 
ATP Was measured on cytoskeletons by precipitating protein with 10% TCA 
(wt/vol) followed by extraction with ether and column chromatography as 
described by Dzandu and Johnson (7). ATP was measured on cells by 
freeze-thawing followed by sonication for 20 s at 0°C. Protein was precipi- 
tated and assays were performed as described for cytoskeletons. One-dimen- 
sional electrophoresis on polyacrylamide gels with sodium dodecyl SO4 
was performed as described by Laemmli (17) and try-dimensional gels 
(isoeleetric focusing --" electrophoresis) by the method of O'Farrell (26). 
Gels were stained either with Coornassie Blue or with silver nitrate according 
to Morrissey (20). Cells and cytoskeletons were examined under phase con- 
trast using an inverted Nicon Photomicroscope. The following standard pro- 
teins were used for gel electrophoresis: myosin (200 kD), ~galactosidase 
(116 and 25 kD), phosphorylase B (92.5 kD), BSA (66.2 kD), ovalbumin 
(45 kD), carbonic anhydrase (31 kD), soyabean trypsin inhibitor (21.5 kD), 
lysozyme (14.4 kD), and bovine insulin monocomponent (6 kD). The iso- 
electric focusing standards used were: phycocyanin (Pi, 4.65), ~lactaglob- 
ulin (Pi, 5.10), bovine carbonic anhydrase (Pi, 6.00), human carbonic anhy- 
drase (Pi, 6.50), equine myoglobin (Pi, ZOO), whale myoglobin (Pi, 8.05), 
a chymotrypsin (Pi, 8.80), and cytochrome C (Pi, 9.60). 

Materials 

The following substances were purchased from Sigma Chemical Company 
(St. Louis, MO): octyglycoside, PMSF, deoxyribonuclease I, ribonuclease 
A, protein kinase inhibitor, Staphylococcus aureus V8 protease, phospha- 
tidylserine, phorbol 12-myristate-13-acetate, 4~-phorbol-12,13-didecanoate, 
mezerein, porcine ACTH (71 U/rag), lysine-rich histone (type VS corre- 
sponding to histone H-I), trifluoperazine hydrochloride, myosin light chain 
from bovine muscle, and reagents for silver staining of gels. The following 
materials were purchased from various companies: culture media (Filtron), 
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FCS (Flow Laboratories, Inc., McLean, VA), Triton X-100 and electropho- 
resis reagents (Bio Rad Laboratories, Richmond, CA), acrylamide, bis- 
acrylamide (LKB Instruments, Gaithersburg, MD), [3,-32p]ATP (3,000 
Ci/mmol, lot No. 8732, 8803, and 8809 from Amersham Corp. [Arlington 
Heights, IL], lot No. 2526-294 from New England Nuclear, Boston, MA), 
DEAE-Sephacel and PDl0-Sephadex G25M (Pharmacia Fine Chemicals, 
Piscataway, NJ). Water was filtered with milli Q (Milipore Continental Wa- 
ter Systems, Bedford, MA). All buffers were filtered through filters (model 
No. 1; Whatman Inc., Clifton, NJ). 

Results 

Properties of  Y-1 Cell Protein Kinase C 

Assay for protein kinase C performed on Y-1 cell cytoskele- 
ton showed the presence of  a typical Ca2÷-phospholipid-de - 
pendent kinase in these structures (Table I). The cofactor re- 
quirements for the cytoskeletal enzyme are those of  a typical 
protein kinase C in that it requires Ca 2÷ and phospholipid 
and is stimulated by phorbol-12-myristate-13-acetate. One 
phorbol ester that does not promote tumors (4et-phorbol- 
12,13-didecanoate) does not increase protein kinase C activ- 
ity and trifluoperazine inhibits the response of the enzyme 
to phorbol ester. The nonphorboi tumor promoter mezerein 
stimulates the kinase. It should be added that treatment of 
cells with ACTH before preparing cytoskeletons was without 
effect on the activity of this cytoskeletal enzyme (data not 
shown). It can be seen from Table II that protein kinase C 
is readily removed from the cytoskeleton by washing twice 
with buffer A (which contains 0.5% [vol/vol] Triton X-100) 
or by Triton X-100 (1% [vol/vol]) or by high salt. It is impor- 
tant to notice that the milder detergent octylglycoside does 
not remove the kinase from the cytoskeleton (Table II). None 
of the extracting agents shown in Table II inhibits protein ki- 
nase C when added in the concentrations shown to either cell 
homogenate or cytoskeleton (not shown). Experiments iden- 
tical to those shown in Tables I and II were repeated and the 
values closely resembled those shown in the tables. In 
numerous experiments we have seen no change in the total 
amount of the enzyme on treating adrenal cells with phorbol 
ester. 

Measurement of  ATP in Cytoskeletons of Y-1 Cells 

When cytoskeletons were prepared by the modification that 
permits light microscopy of these structures on the culture 

Table II. Extraction of Protein Kinase C from 
Cytoskeletons of Y-1 Cells 

Extraction medium [riP]Incorporated 

None (no cofactors) 
None 
Octylglycoside (0.5% [wt/vol]) 
Octylglycoside (1%) 
Extraction buffer (2 x) 
Triton X-100 (1% [vol/vol]) 
KCI (0.5 mM) 

pmol/min per mg protein 

8.0 + 1.0 
21.0 ± 3.0 
22.0 ± 2.5 
18.0 ± 1.5 
11.5 5:0.5 
6.5 ± 0.5 
6.5 ± 1.5 

The experiment was performed as described in Table I. All tubes (except no 
cofactors) contained CaCI2 (2 mM), phosphatidylserine (10 #g/ml), and phor- 
bol-12-myristate-13-acetate (100 riM). Where indicated, cytoskeletons were 
treated with the extraction buffers shown. 2 x  refers to two successive extrac- 
tions (5 min on ice) before centrifugation and measurement of protein kinase 
C. The detergents were added in buffer A (Materials and Methods). 

Table 1. Properties of Protein Kinase C from 
Y-1 Cell Cytoskeletons 

Addition Enzyme activity 

pmol/min per mg protein 

None 5.5 + 0.5 
Ca 2÷ 8.5 + 0.5 
Ca 2÷, PS 14.0 + 1.0 
Ca 2÷, PS, PMA 22.0 + 2.0 
Ca 2÷, PS, PDA 11.5 + 0.7 
Ca 2÷, PS, PMA, TFP 12.5 + 1.3 
Ca 2÷, PS, MEZ 20.0 + 1.8 

Samples of cytoskeleton from Y-I cells were subjected to an assay for protein 
kinase C based on phosphorylation of histone (Materials and Methods). Ca '+, 
CaCI2 (2 mM); IS ,  phosphatidylserine (10 #g/ml); PMA, phorbol-12-myris- 
rate- 13-acetate (100 nM); PDA, 4 a-phorbol-12,13-didecanoate (100 nM); and 
MEZ, Mezerein (100 riM). 

Figure 1. Autoradiograms of one-dimensional gel electrophoresis 
of phosphorylated cytoskeletons from Y-1 cells. Cytoskeletons of 
Y-I cells were prepared with octylglycoside (0.5% [wt/vol]; lanes 
1-3) or Triton X-100 (0.5% [vol/vol]; lanes 4-7; Materials and 
Methods). The washed cytoskeletons were subjected to conditions 
used to determine-phosphorylation of endogenous substrates for 
PKC (Materials and Methods). After incubation proteins were 
separated by gel electrophoresis followed by autoradiography. 
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Figure 2. Autoradiograms of two-dimensional gel elelctrophoresis of phosphorylated cytoskeletons from Y-1 cells. Cytoskeletons of Y-1 
cells were prepared with Triton X-100 (0.5 % [vol/vol]; Materials and Methods). The washed cytoskeletons were subjected to conditions 
used to determine phosphorylation of endogenous substrates for PKC (Materials and Methods) without (A) and with (B) cofactors. 

dishes, ATP is found when measured as described in Ma- 
terials and Methods. These cytoskeletons contain 50 pmol of 
ATP per 1@ cytoskeletons compared with 440 pmoles per 
106 whole cells. Cytoskeletons prepared by the routine pro- 
cedure contain <I pmole in cytoskeletal material from 10 ~ 
cells. 

Distribution of  Protein Kinase C in Y-1 Cells 

When the amount of protein kinase C activity was deter- 
mined by enzyme assay with histone H-1 in the cytoskeletons 
and whole cell extracts of Y-1 cells, it was found that cyto- 
skeletons contained 0.4 + 0.09 U of activity (pmoles of 32p 
incorporated into histone H-l/rain per 10 ~ cells) and whole 
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cell extract contained 5.8 :i: 1.1 U (means and ranges of three 
determinations); i.e., the cytoskeleton contains at least 10% 
of total cell protein kinase C. To obtain these values, extracts 
were purified by DEAE-Sephacel to remove inhibitors be- 
fore assay. 

Phosphorylation of Cytoskeletal Proteins by 
Endogenous Protein Kinase C 
Fig. 1 shows an autoradiogram of Y-1 cytoskeletal proteins 
after incubation with [3,-32P]ATP followed by gel electro- 
phoresis in one dimension. Lanes 1-3 show the phosphoryla- 
tion of proteins when the cytoskeleton is first prepared with 

octylglycoside. Three proteins are more phosphorylated 
with all three cofactors than in the control (no cofactors), 
namely 80, 33, and 20 kD. One protein (18 kD) is less phos- 
phorylated with the cofactors present. Phosphorylation of 
the three proteins and dephosphorylation of 18 kD are seen 
but less clearly with Ca 2÷ and phosphatidylserine but with- 
out phorbol ester than with all three agents. When the cyto- 
skeleton is prepared with Triton X-100 (0.5%, [vol/vol]; 
Lanes 4-7), changes in phosphorylation of the four proteins 
just described were somewhat reduced (Fig. 1). When an 
identical study was performed with cytoskeletons prepared 
from ceils treated with ACTH, the results were indistin- 
guishable from those shown in Fig. 1 (not shown). 
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To examine the phosphorylation of these proteins in great- 
er detail, we have used two-dimensional gels of cytoskeletons 
from cells incubated with and without phorbol ester (Fig. 2). 
It will be seen that the following proteins are more phos- 
phorylated with phorbol ester than without, namely 80 (Pi, 
5.9), 35 (Pi, 4.9), and three proteins of 20 kD (Pi's, 5.9, 4.9, 
and 4.4). Two of the 20-kD proteins were not phos- 
phorylated without phorbol ester (A in Fig. 2 B). 

l~rification of Protein Kinase C from Y-1 Cell 
Cytoskeletons 
Protein kinase C was purified from cytoskeletons of Y-1 cells 
(Table III). It will be seen that purification of 2,400-fold was 
achieved if values for the assay used (Materials and Meth- 
ods) are taken at face value. It is, however, well-known that 
inhibitors of protein kinase C are found in various cells (23, 
31). Insufficient material was available to purify the enzyme 
(e.g., by gel chromatography) before assay at each step. 
However, specific activity increased throughout purification 
while yield decreased. Moreover, assay conditions provided 
saturating levels of Ca 2÷, phopholipid, and phorbol ester at 
all steps. In the first step of the purification procedure, pro- 
tein kinase C was eluted from DEAE-Sephacel (Fig. 3, le3~; 
Materials and Methods). Fig. 3, right shows purification of 
this enzyme by the second step (affinity chromatography). 
The highly purified enzyme was eluted from the phospho- 
lipid affinity column as a single peak after addition of EGTA. 
The purity of the enzyme is shown by gel electrophoresis 
using a highly sensitive silver stain (Fig. 4). Fig. 4 A shows 
a minor contaminant (77 kD) with trace contaminants at 
60-62 kD and at 33-35 kD. The 77 kD protein could be 
an isoform of the protein kinase C (39). Moreover, the highly 
purified protein is phosphorylated by [3~-32P]ATP as shown 
in the accompanying autoradiogram (Fig. 4 B, lane ÷). 
Some phosphorylation is seen without added cofactors (Fig. 
4 B, lane - ) .  Presumably some tightly bound divalent metal 
ion may be responsible for this activity or a small degree of 
activity may be possible without cofactors. Such a phenome- 
non has been previously reported with protein kinase C 
eluted from this type of affinity column (34). Faint phos- 
phorylation was also seen at 60-62 kD consistent with the 
presence of a band of this molecular mass on silver staining 
of polyacrylamide gels (see above). The amount of purified 
protein was too small for further purification to remove the 
trace contaminants that may be proteolytic fragments of the 

Table IlL Purification of Protein Kinase C from 
Y-1 Cell Cytoskeletons 

Yield purification 
Total Specific 

Step Protein activity activity (in percent) (fold) 

nmol/min per 
mg nmol/min mg protein 

Cytoskeleton 180.0 3.78 0.02 100 1 
Triton extract 9.3 2.25 0.24 99 11 
DEAE-Sephacel  2.06 1.82 0.88 48 42 
Affinity column 0.023 1.16 50.4 30 2,400 

Protein kinase C was measured by an assay based upon phosphorylation of his- 
tone with and without cofactors (Materials and Methods). 

80-kD kinase (19) or possibly small amounts of phosphati- 
dylserine-binding proteins removed by the affinity column 
(34). Fig. 4, C and D shows autoradiograms of two- 
dimensional gel electrophoresis of the pure cytoskeletal en- 
zyme incubated with [%,-32p]ATP. As with one-dimensional 
gels (Fig. 4 B), some phosphorylation is seen without added 
cofactors. With cofactors (Fig. 4 D) more intense phosphory- 
lation is seen showing two spots of the same molecular mass 
(80 kD) '~pH 6.0. In some of our two-dimensional gels trace 
phosphoprotein was seen at 80 kD and pH 4.2 (Fig. 4 D). 
This may represent small amounts of an 80K substrate of 
PKC (2) or more acidic form of PKC (38). Similar obser- 
vations were made with the corresponding enzyme from 
cytosol which showed the same mobility in two-dimensional 
gels as the cytoskeletal form of the enzyme as judged by su- 
perimposing the stained gels (not shown). 

Protein Kinase C from Cytosol of Y-1 Cells 
To provide sufficient protein kinase C from Y-1 cells to use 
in studies requiring addition of the exogenous enzyme to 
cytoskeletons, the cytosolic protein kinase C, which is pres- 
ent in relatively large amounts, was purified as described un- 
der Materials and Methods (Table IV). The cytosolic protein 
kinase C behaves in essentially the same way as the cytoskel- 
etal enzyme. One interesting feature of the 63"tosolic enzyme 
was the elution from DEAE-Sephacel of small amounts of 
a kinase that was active without cofactors (not shown). This 
may be a proteolytically activated kinase C (so-called protein 
kinase M) (12, 14, 32). Table IV shows an increase in yield 
of enzyme at the last step, no doubt as the result of removal 
of one or more inhibitors. Assays of protein kinase C were 
performed with all combinations of Ca 2÷, phosphatidylser- 
ine, and PMA (not shown). 

Phosphorylation of Cytoskeletal Proteins by 
Exogenous Protein Kinase C 
Fig. 5 shows an autoradiogram of cytoskeletal proteins after 
incubation with ['y-32p]ATP without and with various addi- 
tions. Once again it can be seen that with two cofactors 
(Ca 2÷ and phosphatidylserine) and PMA, phosphorylation 
of three proteins (80, 33, and 20 kD) and dephosphorylation 
of a fourth (18 kD) are increased. Mezerein also produces 
similar increases but the effect on 80 kD is not obvious in 
this autoradiogram. Moreover, extraction of protein kinase 
C by means of Triton X-100 (1.0% [vol/vol]), completely 
abolishes all these changes (Fig. 5, lane 4). When exogenous 
crude protein kinase C prepared from Y-1 cells is added to 
the extracted cytoskeleton, these changes in phosphorylation 
of 33, 20, and 18 kD are all restored provided cofactors are 
present (Fig. 4 and Fig. 5, lanes 6 and 7). In addition, a band 
of phosphorylation corresponding to a molecular mass of 12 
kD appears greatly intensified when cofactors are present 
(lane 3) and when exogenous protein kinase C and cofactors 
are present (lane 7). The experiment presented in Fig. 6 
shows the influence of the concentration of the three cofac- 
tors (Ca 2+, phosphatidylserine, and phorbol ester) on the 
phosphorylation of cytoskeletal proteins by exogenous, 
partly purified protein kinase C prepared from Y-1 cell cyto- 
sol. To avoid an unmanageable number of conditions, increas- 
ing concentrations of the cofactors in a fixed proportion have 
been added to the mixture of extracted cytoskeleton plus pro- 
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Figure 3. Chromatography of cytoskeletai protein kinase C. (Left') DEAE-Sephacel: Conditions for column chromatography are given in 
Materials and Methods. Activity of protein kinase C is shown as a function of elution volume. The column was eluted with a gradient 
of NaCI (0-400 mM) in buffer II. o, no additions; o, Ca 2+ (2 mM); phosphatidylserine (10 #g/miX phorbol-12-myristate-13-acetate (100 
nM). (Right) Affinity chromatography: The conditions for affinity chromatography of the pooled fractions from DEAE-Sephacel are given 
in Materials and Methods. 1 indicates elution with CaC12 (0.1 mM) and 2 indicates elution with EDTA (2 mM). The figure shows A2so 
and activity of protein kinase C as a function of elution volume. 

tein kinase C. Protein kinase C activity with histone H-1 is 
shown on the left ordinate. Phosphorylation of 80 (o) and 
33 kD (zx) increase in parallel with increase in activity of 
protein kinase with histone H-1 ( , ) .  The degree of dephos- 
phorylation of 18 kD (o) also shows a parallel relationship 
to total activity (presented as the inverse relationship, i.e., 
extent of phosphorylation). By contrast, the 20-kD protein 
(,,) is maximally phosphorylated at a value of 6.2 % where- 
as kinase activity, phosphorylation of 33 kD, and dephos- 
phorylation of 18 kD reach plateaux at higher concentra- 
tions. Values for ECs0 for the latter three activities are not 
significantly different (p > 0.1) and are approximately 6% of 
maximal values. 

Identification of  20-kD Protein 

The partly purified protein kinase C from Y-1 cells is capable 
of catalyzing phosphorylation of exogenous myosin light chain 

Table IV. Purification of  Cytosolic Protein 
Kinase C from Y-1 Cells 

Yield Purification 
Total Specific 

Step Protein activity activity (in percent) (fold) 

nmol/min 
mg nmol/min per mg protein 

Crude cell 
extract 30.0 1.65 0.055 100 1 

DEAE-Sephacel  2.6 1.14 0.44 63 8 

Affinity 
chromatography 0.014 2.7 155.0 131 2,823 

Fractions shown in the first column were subjected to measurement of protein 
kinase C (Materials and Methods) and determination of protein content. 

from skeletal muscle (Fig. 7). The exogenous protein is seen 
in autoradiograms of two-dimensional gels (lower autoradio- 
gram); no phosphorylation above background is seen with 
endogenous proteins only (arrow in upper autoradiogram). 
The identity of 20 kD as endogenous myosin light chain has 
been established directly by Western blot and peptide map- 
ping (Papadopoulos, V., and P. E Hall, manuscript in prepa- 
ration). 

Effect of  Various Agents on Shape of  
Y-I Cell Cytoskeleton 

The shapes of cytoskeletons prepared from Y-1 cells in situ, 
i.e., on cultured cells, can be seen when the dishes are 
viewed under phase microscopy using an inverted micro- 
scope (Fig. 8). In viewing the figure it is necessary to exam- 
ine the contour of the cytoskeleton carefully to avoid confu- 
sion with the strongly defined shape of the nucleus. Flat 
cytoskeletons are seen when PBS is added to keep the cyto- 
skeletons moist (Fig. 8 A). When the three cofactors (Ca 2+, 
phosphatidylserine, and phorbol-12-myristate-13-acetate) 
are added together, intense and rapid (<30 s) rounding of the 
cytoskeletons is seen (Fig. 8 B). Mezerein (100 nM) also 
stimulates the cytoskeletons to round up (Fig. 8 C ). Round- 
ing does not occur when the cytoskeletons are extracted with 
Triton X-100 (1.0% [vol/vol]) with or without cofactors (Fig. 
8, D and E). However, intense rounding is seen when partly 
purified protein kinase C is added to the extracted cytoskele- 
ton with but not without the other two cofactors (Fig. 8, F 
and G). Ca 2+ alone, phosphatidylserine alone, and phorbol- 
12-myristate-13-acetate alone are all without effect (not shown). 
Some rounding occurs with Ca 2÷ plus phosphatidylserine 
(not shown). Intact cells show similar rounding on addition 
of phorbol 12-myristate-13-acetate (not shown). Rounding of 
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Figure 5. Phosphorylation of cytoskeletal proteins by endogenous 
and exogenous protein kinase C. Cytoskeletons were prepared from 
Y-1 cells and were incubated with h,-32p]ATP (10 nmol, 106 cpm 
per tube) and the additions shown. After incubation proteins were 
separated by gel electrophoresis followed by autoradiography. 
Lanes 1-3 were from cytoskeletons prepared in the standard way. 
Lanes 4-7 were from cytoskeletons that were extracted with Triton 
X-100 (1.0% [vol/voll) before incubation with the additions shown. 
The following concentrations were used: Ca 2+, 2 mM; phosphati- 
dylserine (PS), 10 ~tg/ml; phorbol-12-myristate-13-acetate (PMA), 
100 nm; mezereine (MEZ), 100 nM; and exogenous protein kinase 
C prepared from cytosol (PK-C), 50 ttg/ml (lanes 6 and 7). 

cells is considerably slower (>1 h) than that of the cyto- 
skeleton. 

Partial Proteolysis 

Samples of purified protein kinase C (2 ~g each) and of 

cytoskeletal proteins (100/zg) were incubated under condi- 
tions that promoted phosphorylation (Materials and Meth- 
ods). Samples were then subjected to one-dimensional elec- 
trophoresis on polyacrylamide followed by autoradiography. 
Bands corresponding to a molecular mass of 80 kD were cut 
from the slab gels and were incubated with S. aureus Vs 
protease and were again examined by one-dimensional elec- 
trophoresis on polyacrylamide followed by autoradiography 
(Materials and Methods). Fig. 9 shows that the same five 
peptides (molecular masses: 80, 67, 50, 38, and 14 kD) were 
formed with the same protease under the same conditions 
with highly purified cytoskeletal protein kinase C (lane A), 
highly purified cytosolic protein kinase C (lane B), and cyto- 
skeletal proteins (lane C). In Fig. 9, lane C (cytoskeletal pro- 
teins) a band corresponding to 44 kD is seen. The nature of 
this material is unknown. 

Action o f  Protein Kinase C in Permeabilized Cells 

When Y-1 cells were treated with digitonin (20 #M) followed 
by [3,-32p]ATP in the presence and absence of phorbol-12- 
myristate-13-acetate (100 nM), phosphorylated proteins were 
identified by electrophoresis in polyacrylamide gels of the 
cytoskeletons of the ceils prepared as described in Materials 
and Methods followed by autoradiography (Fig. 10). Phos- 
phoproteins of various molecular masses can be seen. Bands 
corresponding to 80, 67, 40, 33, and 20 kD on the autoradio- 
graphs were more intense when the cells were treated with 
phorbol ester (PMA, 100 nM) after treatment with digitonin 
(lane 2) or both before and after digitonin (lane 3). No phos- 
phoproteins were observed when cells were incubated with 
[3,-32p]ATP with or without PMA, but without digitonin 
(not shown); evidently permeabilization was necessary. The 
phosphorylation of these proteins was also seen when the 
cells were incubated with [,y-32p]ATP and digitonin with 
and without PMA all added at the same time. Again, in- 
crease in the intensity of the bands mentioned above was ob- 
served with PMA. The presence of CaCI2 in the incubation 
medium was without demonstrable effect on phosphoryla- 
tion of proteins in the presence or absence of PMA (not 
shown). 

D i s c u s s i o n  

The observations reported here establish that a typical pro- 
tein kinase C is present in the cytoskeletons of Y-1 cells. This 
enzyme is also seen in cytosol and plasma membranes of 
these cells, as reported previously (36). The enzyme appears 
to be rather loosely associated with the plasma membrane in 
keeping with possible redistribution of the protein within the 
cell as a feature of its functional activity (15, 29, 36). The 
principal interest in the present study concerns the protein 
kinase C of cytoskeleton. As with other examples of protein 

Figure 4. Purification and autophosphorylation of protein kinase C. (A) One-dimensional electrophoresis of highly purified protein kinase 
C on polyacrylamide (silver stain). (B) Phosphorylation of highly purified protein kinase C. Protein kinase C from Y-I cells was incubated 
with [3,-32P]ATP (10 nmol, 106 cpm) without ( - )  and with (+) the three cofactors (Fig. 1) for 1 min at 37°C followed by 3 min at room 
temperature. The sample was subjected to gel electrophoresis followed by autoradiography. (C and D) Highly purified cytoskeletal protein 
kinase C (2 #g) was incubated with [-r-32p]ATP under phosphorylating conditions (Materials and Methods) and then subjected to two- 
dimensional electrophoresis on polyacrylamide followed by authoradiography. Phosphorylation was performed without (C) and with (D) 
cofactors (Materials and Methods). 
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Figure 6. Effects of Y-I cell pro- 
tein kinase C and cofactors on spe- 
cific cytoskeletal substrates. Cy- 
toskeletons from Y-1 cells were 
incubated with [y-a2p]ATP (10 
nmol; 106 cpm/flask) as described 
under Materials and Methods. 
Various volumes of the three 
agents (Ca 2+, phosphatidylser- 
ine, and phorbol-12-myristate-I 3- 
acetate) were added as shown so 
that 100% represents the follow- 
ing concentrations: 1 mM, 10 #g/ 
ml, and 20 nM, respectively. The 
relative concentrations of these 
factors are shown as percentages 

of the maximal concentrations and are presented on a log scale. After incubation, one fraction of each sample was used to measure protein 
kinase C and a second fraction was boiled in Laemmli buffer and subjected to one-dimensional gel electrophoresis, Bands corresponding 
to 80 (o), 33 (zx), 20 (A), and 18 (e) kD were cut from the gels and 32p was measured by liquid scintillation spectrometry. 

kinase C, the enzyme associated with the cytoskeletons of 
adrenal cells requires Ca ~÷ and phospholipid for activity; 
phorbol-12-myristate-13-acetate causes further stimulation 
of activity beyond that seen with Ca 2÷ and phospholipid. A 
phorbol ester that does not produce tumors, namely 4c~- 
phorbol-12,13-didecanoate, is without effect on the enzyme, 
whereas mezerein, a nonphorbol tumor-promoting agent, is 
a powerful stimulus to the kinase. Again, inhibition of the 
Y-1 cell enzyme by trifluoperazine is consistent with observa- 
tions made with protein kinase C from other tissues (6, 38). 
It is possible that protein kinase C may associate reversibly 
with the cytoskeleton (15, 29). However, if this association 
is only established during disruption of the cells, it is suffi- 
ciently intense to resist treatment with Triton X-100 (0.5%) 
and octylglycoside (0.5 %). Again, the cytoskeleton possesses 
distinctive substrates for the enzyme that differ from those 
found inthe plasma membranes of Y-1 cells (36). Moreover, 
protein kinase C added to cytoskeletons alters the shapes of 
these structures (Fig. 8) and hence the shape of the whole 
cell, so that the association of the protein kinase with the 
cytoskeleton has functional consequences. Rounding of the 
cells appears to be related to the main function of adrenal 
cells; i.e., the production of steroids (1, 36). It may be that 
attachment of protein kinase C to the cytoskeleton is regu- 
lated in the whole cell. These considerations make it very 
likely that protein kinase C acts on the cytoskeleton; whether 
it is a true component of the cytoskeleton could turn out to 
be a problem of definition since the composition of the cyto- 
skeleton is to some extent determined operationally. Presum- 
ably the association of the enzyme with the cytoskeleton is 
sufficiently tight to allow it to act on this structure and yet 
sufficiently loose to permit association and disassociation. 

The cytoskeleton prepared as described here has been 
characterized previously and is known to be free of con- 
taminating plasma membranes and organelles (28). It proved 
important to our studies that protein kinase C can be readily 
and completely removed from the cytoskeleton by extraction 
with Triton X-100 (1% [vol/vol]). This meant that the enzyme 
could be added back to the extracted cytoskeleton directly to 
study its effects on cytoskeletal proteins. 

This appears to be the first report of the association of this 

protein kinase with the cytoskeleton, although other protein 
kinase enzymes have been reported in the cytoskeletons of 
adrenal and other cells (28, 30). Our studies also show that 
the protein kinase enzymes from the cytosol and the cyto- 
skeleton are indistinguishable on gel electrophoresis, auto- 
phosphorylation, and limited proteolysis. It should be point- 
ed out that the specific activity of the cytoskeletal protein 
kinase C is considerably less than that reported for the brain 
enzyme (39). The reason for this difference is not clear but 
may relate to some loss of activity under the relatively harsh 
conditions used for the preparation of the cytoskeleton. 

The purification of protein kinase C from Y-1 cells in two 
major steps also proved useful in these studies. In the first 
place, the highly purified enzyme established the identity of 
the kinase from cytoskeletons of Y-1 cells. In the second 
place, when the highly purified enzyme was incubated with 
[',/-32p]ATP, it showed intense auto-phosphorylation. This 
observation enabled us to demonstrate that the enzyme un- 
dergoes phosphorylation in situ because extracting the cyto- 
skeleton with Triton (1%) removed not only all Ca2÷/phos - 
pholipid-dependent kinase activity but also removed the 
80-kD substrate of protein kinase C which was not seen in 
extracted cytoskeletons either by silver staining Qf polyacryl- 
amide gels (not shown) or by autoradiography after incuba- 
tion with [),-32p]ATP (Fig. 5). Phosphorylation of the other 
substrates of protein kinase C (33 and 20 kD) was restored 
by addition of partly purified protein kinase C to the ex- 
tracted cytoskeleton. However, under these conditions the 
exogenous kinase C was not seen in the polyacrylamide gels 
because this protein is soluble and therefore removed during 
preparation of cytoskeleton for electrophoresis (Fig. 5, lane 
7) in contrast to stably bound endogenous protein kinase C 
(Fig. 5, lane 3). This observation incidentally supports the 
idea that the protein kinase is not merely associated with the 
cytoskeleton as the result of homogenization of cells. 

Limited proteolysis followed by electrophoresis and auto- 
radiography and two-dimensional polyacrylamide gels both 
showed that the phosphorylated 80 kD protein is protein ki- 
nase C and not a substrate of similar molecular mass that has 
been found in other cells (2). The proteolytic fragments are 
characteristic of protein kinase C and the isoelectric point of 
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Figure 7. Phosphorylation of myosin light chain. Cy- 
toskeletons from Y-I cells without (top) and with (bot- 
tom) exogenous myosin light chain from skeletal mus- 
cle (10 #g) were incubated with [,y-32P]ATP (10 nmol; 
10 6 cpm) and the three cofactors (see Fig. 1). Pro- 
teins were separated by two-dimensional electropho- 
resis on polyacrylamide gels (isofocusing ~ electro- 
phoresis) using 15% polyacrylamide in the second 
dimension followed by autoradiography. Arrow, myo- 
sin light chain. 
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Figure R Effect of protein kinase C on shape of cytoskeleton. Cytoskeletons were prepared from Y-1 cells in culture dishes and were exam- 
ined by phase microscopy immediately after the following additions: (A) PBS; (B) Ca 2+ (2 raM), PS (10 tzg/ml), and PMA (100 riM); 
(C) Ca 2+ (2 mM), PS (10 #g/ml), and mezerein (100 nM); (D) cytoskeleton extracted with Triton X-100 (1% [vol/vol]); (E) cytoskeleton 
extracted with Triton X-100 + Ca z+ + PS + PMA (100 nM); (F) cytoskeleton extracted with Triton X-100 + protein kinase C; (G) 
cytoskeleton extracted with Triton X-100 + protein kinase C + Ca 2÷ (2 mM) + PS (10 #g/ml) + PMA (100 nM). PS, phosphatidylserine. 
Bar, 25 ttm. 
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the phosphorylated protein is quite different from that of the 
80 kD substrate (2). Our preparations may contain small 
amounts ofa substrate for protein kinase C of 80 kD; alterna- 
tively the protein kinase C may exist as a more acidic form 
in addition to the usual form, as described in brain (39). In 
this connection it is interesting that similar peptides were 
seen when we examined protein kinase C in homogenate of 

Y-1 cells (36). In this case fewer inhibitors of proteolysis 
were used than in the present studies and since 80 kD protein 
was not seen, it is likely that the enzyme was degraded by 
endogenous proteolytic enzymes (36). Moreover, Fig. 9 
shows the same peptides as those reported for a tryptic digest 
of protein kinase C from brain (10). Clearly the 80 kD pro- 
tein substrate is the enzyme itself which catalyzes classical 
autophosphorylation; this is a well-recognized property of 
protein kinase C (13, 18, 39). In our studies this phenomenon 
was observed not only with the purified enzyme but also with 
the enzyme in situ in cytoskeletons. In this connection the 
similarity between the two curves (and values for ECs0) for 
protein kinase C activity and autophosphorylation of the en- 
zyme as a function of the concentration of cofactors (Fig. 6), 
suggests that the activity of the enzyme with histone H-1 is 
closely related to the state of phosphorylation of the enzyme 
itself. 

A second substrate for the cytoskeletal protein kinase C 
has been identified in these studies, namely myosin light 
chain (20 kD). Phosphorylation of myosin light chain by pro- 
tein kinase C has been reported for smooth muscle myosin 
(9, 24, 25). This is the first report of phosphorylation of en- 
dogenous myosin light chain in the cytoskeleton ofa nonmus- 
cle cell. It is worth noticing that myosin light chain phos- 
phorylation by Y-1 cell protein kinase C is saturated with 
cofactors at a concentration that is submaximal for autophos- 
phorylation of the enzyme (Fig. 6). This suggests an impor- 
tant difference which could be of functional significance if 
local concentrations of Ca 2+ were to reach the gap between 
micromolar and fully saturating levels. 

It is important that phosphorylation of the same cytoskele- 
tal proteins was observed in cells permeabilized by digitonin 
(Fig. 10) as those seen when phosphorylation was performed 
in the isolated cytoskeletons. This strongly suggests that the 
three substrates (80, 33, and 20 kD) are likely to be phos- 
phorylated by protein kinase C in the intact cell and that such 
phosphorylation cannot be dismissed as the result of artificial 

Figure 9. Partial proteolysls of protein kinase C. Protein kinase C 
from cytoskeleton (lane A), cytosol (2/~g each; lane B), and cyto- 
skeletal proteins (100 t.tg; lane C) were incubated with [~-32p]ATP 
under phosphorylating conditions (Materials and Methods) and ap- 
plied to one-dimensional gel electrophoresis. Bands corresponding 
to 80 kD were cut from each gel, incubated with S. aureus Vg pro- 
tease and again run on one-dimensional electrophoresis in poly- 
acrylamide gels. Autoradiograpy was then performed to reveal 
bands labeled with 32p. 

Figure 10. Phosphorylation of 
cytoskeletal proteins in per- 
meabilized cells. Y-1 cells were 
incubated without (lanes 1 and 
2) or with (lane 3) PMA (100 
riM) for 30 min. All cells were 
then treated with digitonin 
(20 #M) (see Materials and 
Methods) and ['),-32PIATP (50 
#Ci; 16 pmol/dish) for 10 
min without (lane 1) or with 
(lanes 2 and 3) PMA (100 
riM). Cytoskeletons were pre- 
pared and submitted to elec- 
trophoresis in polyacrylamide 
gels followed by autoradiog- 
raphy. 
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exposure of these substrates to the enzyme as the result of 
extracting the cells to prepare cytoskeletons. 

The dephosphorylation of 18K is of interest. Such a phe- 
nomenon does not appear to have been reported in other 
cells. One possible explanation for this dephosphorylation 
would be protein kinase C-dependent phosphorylation of a 
specific phosphatase. Again this response appears to be 
closely related to the degree of phosphorylation of the kinase 
as judged by ECso for cofactors (Fig. 6). At this time the 18- 
and 33-kD proteins remain unidentified although the 33-kD 
protein may be a proteolytic product of protein kinase C itself 
(19). 

The functional significance of adrenal cell protein kinase C 
remains unclear. One significant finding in this connection is 
the observation that protein kinase C causes rounding of the 
cytoskeletons of Y-1 cells when the kinase is added to the ex- 
tracted cytoskeleton in the presence of cofactors. When 
cytoskeletons were prepared by a less severe procedure than 
the routine method, they remained adherent to culture dishes 
so that they could be used for light microscopy and they con- 
tained sufficient ATP to support protein kinase C activity. 
Moreover, phorbol ester produces rounding of the intact cells. 
The rounding of the cytoskeleton is very rapid compared to 
that of cells; presumably the response of the cytoskeleton to 
the added enzyme is more direct than that of the cytoskeleton 
within the cell. No doubt the change in shape of the cytoskel- 
eton is, in turn, responsible for rounding of cells. In this con- 
nection it has been reported that phosphorylation of myosin 
light chain by protein kinase C involves different amino acid 
residues from those phosphorylated by the light chain kinase 
(25), and that phosphorylation by protein kinase C causes 
relaxation of smooth muscle myosin and decreased myosin 
ATPase (11). Furthermore, it has been proposed that the myo- 
sin of stress fibers produces isometric tension, which helps to 
bind the cell to the substratum (4). Relaxation of the light 
chain, under the influence of protein kinase C, would decrease 
this isometric tension and this, in turn, would weaken the at- 
tachment of the cell to the substratum thereby allowing it to 
round up. 

There is much evidence that rounding of Y-1 cells is accom- 
panied by increased steroid synthesis (1). Moreover, ACTH 
and cyclic AMP increase the total activity of protein kinase 
C in Y-1 cells (reference 35 and present data) and it is well 
known that ACTH and cyclic AMP cause intense rounding of 
Y-1 cells (40). Presumably the phenomenon of rounding up 
is at least a component in the steroidogenic response to these 
two agents, although the exact relationship between protein ki- 
nase C and the response to ACTH remains to be determined. 
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