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Summary
Many clinical endpoint measures, such as the number of standard drinks con-
sumed per week or the number of days that patients stayed in the hospital, are
count data with excessive zeros. However, the zero-inflated nature of such out-
comes is sometimes ignored in analyses of clinical trials. This leads to biased
estimates of study-level intervention effect and, consequently, a biased estimate
of the overall intervention effect in a meta-analysis. The current study proposes
a novel statistical approach, the Zero-inflation Bias Correction (ZIBC) method,
that can account for the bias introduced when using the Poisson regression
model, despite a high rate of inflated zeros in the outcome distribution of a
randomized clinical trial. This correction method only requires summary infor-
mation from individual studies to correct intervention effect estimates as if they
were appropriately estimated using the zero-inflated Poisson regression model,
thus it is attractive for meta-analysis when individual participant-level data are
not available in some studies. Simulation studies and real data analyses showed
that the ZIBC method performed well in correcting zero-inflation bias in most
situations.
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1 INTRODUCTION

Meta-analysis is an established statistical approach for combining data from multiple studies to provide large-scale
evidence across many disciplines, including medical, educational, and policy research.1 The majority of published
meta-analyses have relied on aggregate data (AD), which are study-level summary statistics available from published or
unpublished reports.2-4 However, AD meta-analysis is susceptible to estimation bias, because the biased result from a
study with model misspecification (eg, a biased effect size) will be carried over in meta-analysis if the study is included.
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medium, provided the original work is properly cited and is not used for commercial purposes.
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For AD meta-analysis, it is challenging to correct biased estimation from original studies without refitting raw individual
participant data (IPD) using a more suited statistical model.5 In this article, we aim to correct this estimation bias,
that is, the bias from the conventional count model on zero-inflated count outcome, when only AD are available for
meta-analysis.

Count outcomes are prevalent in clinical research, including number of seizures for each patient in epilepsy trials (eg,
Reference 6), number of relapses in multiple sclerosis trials (eg, Reference 7), and number of standard alcohol drinks in
alcohol intervention trials (eg, Reference 8). Some studies, by nature, have high proportions of zero outcome values. For
example, drinking outcomes from alcohol intervention studies reflect both individuals who abstain from alcohol following
an intervention and those who happened not to drink, resulting in a large proportion of zero drinks, above and beyond
the frequency that would be predicted by conventional count models, such as the Poisson. Therefore, estimation results
might be biased if the Poisson regression model was used in studies with potentially zero-inflated outcomes (Reference 9;
some examples may be References 10-12). If the results from Poisson regression are included in a meta-analysis, the biased
estimation results might further bias the pooled result in a meta-analysis. We, henceforth, refer to this bias as zero-inflation
bias throughout the study. The application of appropriate statistical approaches to accommodate zero-inflated outcome
data has been on the rise in recent years, with the availability of relevant software packages (eg, zero-inflated and hurdle
models in the pscl R package13). However, there still exists a non-ignorable number of publications that did not ideally
account for zero-inflation in analysis. For example, in a recent meta-analysis study of 17 brief alcohol interventions, the
proportions of participants reporting zero number of drinks were considerably high in nine studies, eight of which did
not account for zero-inflation in outcome reporting.14 The studies that did not properly account for zero-inflation may
still be pooled in meta-analysis studies for years to come. Thus, a methodological approach capable of correcting biased
estimates from past studies would help facilitate AD meta-analyses of zero-inflated count outcomes into the future.

A zero-inflated Poisson (ZIP) model is more appropriate for count data with many zeros, since it assumes that the
outcome follows a mixture of a point mass at zero and a Poisson distribution. From a clinical perspective, the two com-
ponents of the ZIP model correspond to two distinct subpopulations: (a) participants who predictably do not engage in
the behavior, and (b) participants who may or may not engage in the behavior at a particular assessment. In some clinical
situations, clinicians may focus on the latter as they are the primary target of their intervention (eg, whether an alcohol
intervention helps reduce drinking for those who regularly engage in drinking; See Section 2.1 for two examples). In this
article, we are interested in the incidence density ratio for intervention vs. control on the mean of the Poisson portion in
the ZIP model, which is important for understanding the intervention effect among the subpopulation that may poten-
tially engage in the behavior. Note that in other trial evaluation situations, modeling the overall mean of the outcome,
which accommodates structural zeros, may be more desirable.16

In this article, we focus on mitigating the impact of zero-inflation bias in meta-analysis and propose a novel statistical
method, called the Zero-inflation Bias Correction (ZIBC) method. This method corrects the biased intervention effect size
estimation that can result from the conventional Poisson regression model, the “go-to” method when modeling count
outcomes. We aim to correct zero-inflation bias and produce a bias-corrected effect size estimate equivalent to the estimate
from the ZIP regression model. This bias correction is achieved by comparing the estimating equations under the ZIP and
Poisson models and using summary statistics of intervention and control subgroups. We will refer to the Poisson and ZIP
regression models as the conventional and true methods, respectively, in the current paper.

The article proceeds as follows. In Section 2, we describe the formulation of the standard Poisson and ZIP regression
models for a single study. We then introduce the ZIBC method for correcting zero-inflation bias as well as how to apply
it in an AD meta-analysis. In Section 3, we conduct simulation studies to evaluate the performance of the ZIBC method
in bias correction. In Section 4, we consider two real data examples. In the first example, we examine the intervention
effects on alcohol use utilizing data drawn from an IPD meta-analysis study. The example is used to demonstrate the
performance of the ZIBC method, pretending we have only AD, which were derived from IPD. In the second example,
we illustrate the application of the method in a clinical trial for preventing dental caries, utilizing AD from the published
report. In this example, we have only AD and it is not possible to perform a meta-analysis using IPD. In Section 5, we
discuss the overall findings and conclusions.

2 METHOD: FROM SINGLE STUDY TO META-ANALYSIS

In this section, we describe the ZIBC method and how it corrects zero-inflation bias in an AD meta-analysis. We
first focus on the case of a single randomized clinical trial, where we set up notations for the true and conventional
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methods (Section 2.1). We then describe zero-inflation bias (Section 2.2), and provide the ZIBC method that can
correct it (Section 2.3). Next, for each clinical trial that originally used the conventional method
for zero-inflated outcomes, we implement the ZIBC method to obtain the bias-corrected intervention
effect estimate and conduct a standard meta-analysis for the overall bias-corrected intervention effect
(Section 2.4).

2.1 Model setup: Single randomized clinical trial

2.1.1 True method: ZIP regression model

For a randomized clinical trial with two arms, we assume a count outcome with an excessive rate of zeros that follows a
ZIP regression model. Suppose the study sample size is n, and for ith subject, i = 1, 2, … ,n, we assume that the outcome
yi is distributed

yi ∼

{
0 with probability 𝜋i

Poisson(𝜇i) with probability 1 − 𝜋i,
(1)

where 𝜋i is the structural zero rate and 𝜇i is the mean parameter of the Poisson portion for subject i. The mean of yi is
E[yi] = (1 − 𝜋i)𝜇i.

In the context of intervention or prevention studies, the structural zeros correspond to participants that do not engage
in the outcome (eg, alcohol abstainers who do not drink across situation and time), whereas the Poisson portion corre-
sponds to those who may or may not engage in the behavior at a given time or situation (eg, participants who may or may
not drink during the past month at 1-month follow-up). The present paper focuses on the Poisson portion characterizing
the intervention effect on the latter, which is of interest in many harm-reduction alcohol intervention studies. For example,
in alcohol prevention and intervention trials among college students, researchers may be most interested in students who
may drink if given an opportunity (eg, Section 4.1). Another example is clinical trials to prevent dental caries among chil-
dren, where the outcome of interest is number of caries developed during a certain period (eg, Section 4.1). Among the
trials, some children may be unlikely to develop dental caries (eg, due to good oral hygiene habits or protective genetic fac-
tors), while others have higher chances of developing them. Therefore, targeting the latter group of children, which can be
characterized through the Poisson portion, may produce higher cost-effectiveness and utility for dental caries prevention
strategies.

The Poisson portion can be modeled as follows. Suppose p − 1 covariates are included in the model and one of the
covariates is the intervention assignment indicator 1{Ai=T}, where Ai denotes a participant’s assignment to either the
intervention (T) or control (C) arm, and xi,p−2 = (xi2, xi3, … , xi,p−1)t denotes the remaining p − 2 covariates. The Poisson
mean parameter is estimated by the covariates in

log(𝜇i) = xt
i𝜷 = 𝛽0 + 𝛽11{Ai=T} + xt

i,p−2𝜼, (2)

where xi = (1,1{Ai=T}, xt
i,p−2)

t and 𝜷 = (𝛽0, 𝛽1, 𝜼t)t = (𝛽0, 𝛽1, 𝛽2, … , 𝛽p−1)t are the regression coefficients. Note that 𝛽1
measures the intervention effect, the log incidence density ratio difference between the intervention and con-
trol groups, which is the parameter we aim to recover. We denote 𝜷0 = (𝛽0

0 , 𝛽
0
1 , 𝜼

0,t)t as the true regression
parameters.

From Equations (1) and (2), the estimating equations under the true method is given by

SZIP(𝜷) ≜
1
n
∑
yi=0

[
𝜋i

𝜋i + (1 − 𝜋i) exp{− exp(xt
i𝜷)}

]
exp(xt

i𝜷)xi +
1
n

n∑
i=1

{− exp(xt
i𝜷) + yi}xi.

By solving SZIP(𝜷) = 0, we can obtain the maximum likelihood estimates (MLE), 𝜷MLE. As 𝜷0 are the true parameters for
the ZIP model (1), we also have E[SZIP(𝜷0)] = 0 and 𝜷MLE → 𝜷0 as n → ∞ by standard likelihood inference. Note that 𝜋i
can be modeled separately in a logistic model. However, we do not attempt to model 𝜋i because it is not the interest of the
current study.
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2.1.2 Conventional method: Standard Poisson regression model

For the same trial design described in the previous subsection, some researchers (cf., References 11,17, etc.) have used the
conventional (CV) Poisson model to analyze potentially zero-inflated count outcome yi with fCV(yi | 𝜇i) =

e−𝜇i𝜇
yi
i

yi!
, where

log(𝜇i) = xt
i𝜷.

Under the conventional method, we derive the following estimating equation

SCV(𝜷) ≜
1
n

n∑
i=1

{− exp(xt
i𝜷) + yi}xi (3)

and denote 𝜷CV as the solution of SCV(𝜷) = 0. Then 𝜷CV are the parameter estimates in the conventional method, which
are usually reported in each individual trial. Define 𝜷∗ as the solution of E[SCV(𝜷)] = 0. By the standard asymptotic theory
of M-estimation (cf., Reference 18), we can show that 𝜷CV → 𝜷∗, as n → ∞. Since the estimating equations do not account
for zero-inflation, there is a discrepancy between 𝜷∗ and the true parameter values 𝜷0, so the intervention effect estimate
from the conventional method, 𝛽1,CV, is biased. In the current study, we focus on the MLE of the true intervention effect,
𝛽1,MLE (defined in Section 2.1.1), which can be recovered by modifying 𝛽1,CV.

2.2 Zero-inflation bias

In this section, we formally describe zero-inflation bias as the difference between the parameters of the true method (ie, 𝛽0)
and those of the conventional method (ie, 𝛽∗). Denote 𝜹 as the zero-inflation bias for all parameters, then 𝜹 = 𝜷0 − 𝜷∗, and
𝜷MLE ≈ 𝜷CV + 𝜹. Since 𝛽1,MLE is of primary interest, we focus on the corresponding zero-inflation bias for the intervention
effect 𝛿1 and the following formula 𝛽1,MLE ≈ 𝛽1,CV + 𝛿1.

We can characterize 𝜹 by taking a close look at the equations E[SCV (𝜷∗)] = 0. Plugging in E[yi] = (1 − 𝜋i) exp(xt
i𝜷

0),
Equation (3) can be recast as

0 = E[SCV (𝜷∗)] = 1
n

n∑
i=1

[(1 − 𝜋i) exp{xt
i(𝜷

0 − 𝜷∗)} − 1] exp(xt
i𝜷

∗)xi

= 1
n

n∑
i=1

{(1 − 𝜋i) exp(xt
i𝜹) − 1} exp(xt

i𝜷
∗)xi

≜ B(𝜹, 𝜷∗), (4)

which shows the zero-inflation bias 𝜹 is part of the solution of B(𝜹, 𝜷∗) = 0. However, xi and 𝜋i require participant-level
information, which is unavailable in AD meta-analysis. Hence, Equation (4) cannot be solved directly. Alternatively, we
can approximate B(𝜹, 𝜷∗) by substituting xi and 𝜋i with study-level summary information. We describe the approximation
in detail in the following section.

2.3 Approximate bias 𝜹1: The ZIBC method

In this section, we describe the ZIBC method to approximate 𝛿1 using Equation (4). First, we can simplify B(𝜹, 𝜷∗) by

B(𝜹, 𝜷∗) = 1
n

n∑
i=1

{(1 − 𝜋i) exp(xt
i𝜹) − 1} exp(xt

i𝜷
∗)xi

≈ 1
n
{(1 − 𝜋) exp(xt

𝜹) − 1}
n∑

i=1
exp(xt

i𝜷
∗)xi

≜ C(𝜹)D(𝜷∗), (5)

where C(𝜹) = 1
n
{(1 − 𝜋) exp(xt

𝜹) − 1}, D(𝜷∗) =
∑n

i=1 exp(xt
i𝜷

∗)xi, 𝜋 = 1
n

∑n
i=1𝜋i is the average structural zero rate, and x

are the average values for covariates in the sample. Thus, part of the participant-level information (ie, xi and 𝜋i) are
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substituted with the study-level summary statistics (ie, x and 𝜋) to approximate B(𝜹, 𝜷∗). From the approximation of
B(𝜹, 𝜷∗) ≈ C(𝜹)D(𝜷∗), we transfer the problem of solving B(𝜹, 𝜷∗) = 0 to solving C(𝜹) = 0, which is a function with respect
to 𝜹.

Rewrite x = (1, zt)t, where z = (
∑n

i=11{Ai=T}∕n, xt
p−2)t, and 𝜹 = (𝛿0, 𝜹

t
p−1)t, then C(𝜹) = 1

n
{(1 − 𝜋) exp(𝛿0 + zt

𝜹p−1) − 1},
and a solution for C(𝜹) = 0 is

𝜹̂approx =

(
𝛿0,approx

𝜹̂p−1,approx

)
=

(
− log(1 − 𝜋)

0

)
. (6)

Thus, the MLE of the true intercept can be recovered by

𝛽0,MLE ≈ 𝛽0,CV + 𝛿0,approx = 𝛽0,CV − log(1 − 𝜋). (7)

Note that the approximation of B(𝜹, 𝜷∗) above is analogous to the expectation-maximization (EM) algorithm,19 where
the expectation-step occurs when plugging in E[yi] and average values in Equations (4) and (5). The maximization-step
occurs implicitly when maximizing the log-likelihood by taking the first derivative to obtain the estimating equations (ie,
Equation (3)). The advantage of our method is that, after approximation, the estimating equations can be directly solved
using summary statistics; therefore, iterations or IPD are not needed. A detailed derivation is provided in Appendix A in
the Supplemental Materials.

However, 𝛽1,MLE cannot be obtained directly as 𝛿1,approx = 0 in Equation (6). To get around this limitation, we can
estimate 𝛽1,MLE by estimating the MLE of the intercept separately for the control and intervention groups, based on
Equation (7). The specific steps are described as follows:

(S1) Consider the sample as being comprised of two separate and independent groups: intervention and control.
(S2) For each group, derive a bias-corrected intercept from the conventional method using Equation (7).
(S3) Merge the corrected intercepts of the two groups from (S2) to obtain the corrected intervention effect estimate. The

details are given as follows.

Denote C = {i | Ai = C, i = 1, 2, … ,n} and T = {i | Ai = T, i = 1, 2, … ,n} as the index sets for control and inter-
vention groups, respectively. We further denote |C| = nC and |T| = nT . We first consider control group. Since 1{Ai=T} = 0
for i ∈ C, Equation (2) becomes log(𝜇i) = 𝛽0 + xt

i,p−2𝜼. Denote 𝜷C,MLE and 𝜷C,CV as the parameter estimates under the true
and conventional methods, respectively. Based on Equation (7), we have

𝛽0,C,MLE ≈ 𝛽0,C,CV − log(1 − 𝜋C), (8)

where 𝜋C = 1
nC

∑
i∈C

𝜋i is the average structural zero rate in control group. For intervention group, since 1{Ai=T} = 1 for
i ∈ T, Equation (2) becomes log(𝜇i) = 𝛽0 + 𝛽1 + xt

i,p−2𝜼. Note that the intercept becomes (𝛽0 + 𝛽1), which includes the
intervention effect. Under similar arguments and notations, we then have

̂(𝛽0 + 𝛽1)T,MLE ≈ ̂(𝛽0 + 𝛽1)T,CV − log(1 − 𝜋T), (9)

where 𝜷T,CV is the parameter estimate from the conventional method and 𝜋T = 1
nT

∑
i∈T

𝜋i is the average structural zero
rate in intervention group. From Equations (8) and (9), we can see that the discrepancies in intercepts under the true and
conventional methods are − log(1 − 𝜋C) and − log(1 − 𝜋T) for the control and intervention groups, respectively. Combin-
ing the two equations, we can obtain an estimate for the zero-inflation bias 𝛿1, which is summarized in Lemma 1. The
proof is provided in Appendix B in the Supplemental Materials.

Lemma 1. In a study given by Equations (1) and (2), denote the observed covariates excluding the intervention assignment
as xi,p−2 = (xi2, xi3, … , xi,p−1)t for i = 1, … ,n. if xC,p−2 = xT,p−2, where xC,p−2 = 1

nC

∑
i∈C

xi,p−2 and xT,p−2 = 1
nT

∑
i∈T

xi,p−2,
then we have

𝛽1,MLE − 𝛽1,CV ≈ − log(1 − 𝜋T) + log(1 − 𝜋C) ≜ 𝛿1. (10)
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We denote the adjusted intervention effect as 𝛽1,ZIBC ≜ 𝛽1,CV + 𝛿1. Lemma 1 gives the correction formula,
Equation (10), of the proposed ZIBC method. The assumption xC,p−2 = xT,p−2 requires that the “average” subject in
control group has the same covariate values as the “average” subject in intervention group. In a typical two-arm random-
ized controlled trial, subjects are randomized to either a control or intervention group. Thus the covariates should follow
similar distributions across the groups. In addition, the participants in control and intervention groups are expected to
be equivalent not only in all measured covariates but also in unmeasured ones. Hence, the assumption of Lemma 1 can
reasonably hold in this case. Note that 𝛿1 depends on the relative difference between the average structural zero rates of
the two groups: 𝛿1 < 0 if 𝜋T < 𝜋C, 𝛿1 > 0 if 𝜋T > 𝜋C, and 𝛿1 = 0 if 𝜋T = 𝜋C. The zero-inflation bias would be minor if the
structural zero rates are similar for the control and intervention groups, as the respective influence of zero-inflation can-
cel each other, even when the zero-inflation itself may be strong. We conducted a simulation study in Section 3 to further
evaluate the relationship.

The group-level structural zero rates 𝜋C and 𝜋T can be estimated using the following algorithm. Take the control
group, for i ∈ C, as an example, we have

⎧⎪⎨⎪⎩
E[y] = 1

nC

∑
i∈C

E(yi) = 1
nC

∑
i∈C

(1 − 𝜋i)𝜇i ≈ yobs,C,

E[# of yi = 0] =
∑

i∈C
P(yi = 0) =

∑
i∈C

{𝜋i + (1 − 𝜋i)e−𝜇i} ≈ n0,obs,C,

(11)

where nC, yobs,C, and n0,obs,C are the sample size, observed outcome average, and observed number of zero outcomes,
respectively, for the control group. To estimate 𝜋C, we approximate Equation (11) by substituting 𝜋i with 𝜋C, and 𝜇i with
𝜇C = 1

nC

∑
i∈C

𝜇i, resulting in

{
(1 − 𝜋C)𝜇C ≈ yobs,C,

{𝜋C + (1 − 𝜋C)e−𝜇C} ≈ n0,obs,C∕nC.
(12)

Here, n0,obs,C∕nC is the proportion of zero outcome values in the control group. By solving Equation (12), we can get
an approximation of 𝜋C. Similarly, we can get 𝜋T using the same process.

The data required for the ZIBC method are (a) 𝛽1,CV, (b) yobs,C, yobs,T , and (c) n0,obs,C∕nC, n0,obs,T∕nT . In a typical trial
study, (a) and (b) are directly reported or can be obtained, while (c) are less frequently reported but may be obtained via
author queries to the investigators of original studies.

2.4 Implementation in meta-analysis

Suppose an AD meta-analysis contains K studies that used the conventional method to model zero-inflated outcomes.
For each of the K studies, we can apply the ZIBC method to obtain the bias-corrected intervention effect 𝛽1,ZIBC, which
occurs before combining data in a meta-analysis. For simplicity, we use the reported standard errors ŜE1,CV from the
conventional method. With the new set of intervention effects and standard errors, a standard AD meta-analysis can be
applied to combine results across studies and obtain the corrected overall intervention effect estimate. For example, a
random-effects meta-analysis model, which assumes intervention effects to vary across studies, may be used when study
heterogeneity needs to be accounted for in a meta-analysis.20,21

3 SIMULATION

We conducted simulation studies to examine the performance of the ZIBC method. Specifically, we compare relative
performance of the following three methods:

1. ZIP regression model (ie, the true method), the “gold standard” method, which is not feasible in AD meta-analysis,
2. Poisson regression model (ie, the conventional method), the method with zero-inflation bias when the outcome is

zero-inflated, and
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3. ZIBC method, the method to correct zero-inflation bias from the conventional method and recover the intervention
effect as if it came from the true method.

In the simulation study, we consider K = 10, 16, and 20 randomized clinical trials aimed at evaluating the effect of an
intervention on reducing alcohol consumption, where the outcome is the number of standard alcohol drinks. For each
trial, we incorporate an additional covariate that follows a standard normal distribution. The simulation was motivated
by Project INTEGRATE, a large-scale meta-analysis project examining the effectiveness of brief alcohol interventions on
reducing alcohol consumption among young adults.22 High proportions of zero alcoholic drinks (ie, non-drinking) were
observed in most trials included in the study.

The settings of the simulation are based on our observation of the motivating data. Specifically, the sample sizes for
individual trials are set at 200 and 400 for first and last half of the studies, respectively. For study s ∈ {1, 2, … ,K} with
sample size ns, the outcome of ith subject (i ∈ {1, 2, … ,ns}) is simulated by a true ZIP regression model ysi ∼ Poisson(𝜇si)
with probability 1 − 𝜋si, and 0 otherwise. The structural zero rate 𝜋si and Poisson mean parameter 𝜇si are simulated by
logit(𝜋si) = 𝛾0 + 𝛾11{Asi=T} + 𝛾2Covsi and log(𝜇si) = 𝛽0 + 𝛽11{Asi=T} + 𝛽2Covsi with a continuous covariate Covsi ∼ N(0, 1)
and intervention group assignment 1{Asi=T} ∼ Bernoulli(pT

s ), where pT
s = 0.4, 0.5, 0.6 for one-third of the studies, respec-

tively, to allow for potential group imbalance. Note that we will examine 𝛽1 in the Poisson portion; 𝜋si is used only to
generate data sets, and will not be examined in the simulation study.

We examine the relative performance of the three methods under the following parameter settings:

1) (𝛽0, 𝛽1, 𝛽2) = (1.2,−0.5, 0.25),
2) (𝛽0, 𝛽1, 𝛽2) = (1.05,−0.35, 0.25), and
3) (𝛽0, 𝛽1, 𝛽2) = (0.9,−0.2, 0.25).

Note that as the intervention effect (𝛽1) varies from −0.5 to −0.2, the intercept (𝛽0) also varies accordingly to fix the
maximum possible log(𝜇si) at the same level of 0.95.

To evaluate the impact of different degrees of zero-inflation on the bias and performance of the methods, we varied
the overall proportion of zero drinks at 0.2, 0.3, … , 0.8 among trials. Then 𝛾0, 𝛾1, and 𝛾2 can be calculated to yield the
aforementioned zero rates. In the simulation, we fixed 𝛾1 = 0.5, indicating that participants in the intervention group will
have a higher probability of no drinking, compared to the control. For example, more participants who previously drank
may quit drinking after intervention, compared with their control counterparts. To ensure identifiability of 𝛾0, 𝛾1, and 𝛾2,
one additional constraint needs to be applied, and in this simulation, we used 𝛾2 = 1

2
𝛾0. Other constraints were considered

and examined, and their comparative results from simulation remained the same (results available upon request).
In one replication of the simulation, data from K intervention studies were generated. For each study, both the true and

conventional methods were estimated first, then the ZIBC method was applied to modify the intervention effect estimate
from the conventional method. Finally, for each of the three methods, we applied a random-effects meta-analysis model
using the metafor R package,23 and generated forest plots to compare performance between the methods.

Figure 1 shows a forest plot from a typical replication during simulation when K = 10, true intervention effect
𝛽1 = −0.2, and overall zero rate = 0.4. Based on the results, we have the following four observations. First, the conven-
tional method produced biased estimates of intervention effects for individual studies as well as the overall result after
meta-analysis. Specifically, the estimated zero-inflation bias was positive (𝛿1 = −0.20 − (−0.36) = 0.16), as the structural
zero rates of intervention groups (𝜋T) were higher than those of control groups (𝜋C) across the studies, according to
Lemma 1. Second, the true method produced accurate intervention effect estimate, that is, close to 𝛽1 = −0.2, for each
study and the overall effect across studies. Third, the ZIBC method corrected zero-inflation bias in the right direction for
each study. Finally, after meta-analysis, the corrected overall estimate from the ZIBC method was very close to the true
parameter value of −0.2, and the standard error was also close to that of the true method (0.035 vs. 0.036). In sum, this typ-
ical simulation replication illustrates that the ZIBC method reasonably corrects the biased intervention effect estimates
from the conventional method.

Figure 1 graphically illustrates the good performance of the ZIBC method in a single simulation replication. To
examine the performance numerically across replications, we compared the intervention effect estimates from the three
methods with the true intervention effect 𝛽1 by calculating the coverage indicator (1 if the 95% confidence interval covers
𝛽1 and 0 otherwise) and differences with 𝛽1 at each replication. After 1000 replications, we calculated the proportion of
replications whose 95% confidence intervals captured 𝛽1 (coverage rate), and the mean squared error (MSE) between the
effect estimate and 𝛽1. To evaluate the practice of using ŜE1,CV for the ZIBC method in meta-analysis, we calculated the
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F I G U R E 1 A typical forest plot for the true, ZIBC and conventional methods when 𝛽1 = −0.2
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F I G U R E 2 Coverage rates and MSE values of the true (blue dashed line), ZIBC (red dotted line) and conventional (black solid line)
methods from 1000 replications (K = 10) [Colour figure can be viewed at wileyonlinelibrary.com]

average combined standard errors of the three methods (denoted as average ŜE1,MLE,meta, ŜE1,ZIBC,meta, and ŜE1,CV,meta), as
well as the absolute percent relative difference of the conventional method or the ZIBC method against the true method
(ie, |ŜE1,CV (or ZIBC),meta − ŜE1,MLE,meta|∕ŜE1,MLE,meta). We compared these indices across the methods.

Figure 2 presents the results for different simulation settings when K = 10. The comparative results when K = 16 and
20 (Figures S1 and S2 in the Supplemental Materials) are more or less the same as the results of K = 10. From the results
shown in Figure 2, first, the true method had the highest coverage rates, which were close to 0.95, and also had MSE values
close to 0. Second, the conventional method resulted in biased intervention effect estimates, as indicated by low coverage
rates and high MSE values. Note that as zero rates increased, zero-inflation bias became greater, leading to progressively
lower coverage rates and higher MSE values. Third, the ZIBC method had acceptable coverage rates close to 0.9 and low
MSE that were close to 0. Furthermore, the performance of the ZIBC method was consistent across different zero rates
between 0.2 and 0.8. Table 1 presents the average combined standard errors and absolute percent relative difference of
conventional vs. true method and the ZIBC vs. true method when K = 10. Compared to the conventional method, the
ZIBC method had lower absolute percent relative differences, which were within 3%, in all scenarios for zero rates ≤ 0.7.
For the zero rate of 0.8, the absolute percent relative difference of the ZIBC method increased dramatically. This is because
as the zero rate approaches to 1, the structural zero rates will also approach to 1, so a small variation in 𝜋C (and 𝜋T)
would lead to a more drastic variation in log(1 − 𝜋C) (and log(1 − 𝜋T)) in the correction formula (ie, Equation (10)). This
produces higher standard errors around the parameter estimates. Thus, we recommend using the ZIBC method with
caution when the zero rate is 80% or higher. Based on the comparative results on both the intervention effect estimates
and standard errors, the ZIBC method provides reasonable correction for the intervention effect from the conventional
method in AD meta-analysis across a wide range of zero inflation.

We conducted an additional simulation study to further verify the relationship between 𝛿1 and the relative difference
of 𝜋T and 𝜋C inferred from Lemma 1. Note that the structural zero rates between intervention and control groups are
controlled by 𝛾1, we, therefore, consider 𝛾1 = −0.5, 0, 0.5, which represent 𝜋T < 𝜋C, 𝜋T = 𝜋C, and 𝜋T > 𝜋C, respectively,
in the simulation. We also consider zero rates of 0.2, 0.4, 0.6, and 0.8, and (𝛽0, 𝛽1, 𝛽2) = (1.2,−0.5, 0.25). For each pair

http://wileyonlinelibrary.com
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T A B L E 1 Comparison of standard errors among the true, ZIBC and conventional methods (K = 10)

Average Average Average APRD APRD

𝜷1 Zero rate ŜE1,MLE,meta ŜE1,ZIBC,meta ŜE1,CV,meta ZIBC vs. true CV vs. true

−0.2 0.2 0.029 0.029 0.028 0.003 0.047

0.3 0.032 0.031 0.032 0.021 0.005

0.4 0.035 0.034 0.038 0.016 0.090

0.5 0.039 0.038 0.046 0.011 0.196

0.6 0.044 0.044 0.057 0.007 0.283

0.7 0.053 0.053 0.071 0.001 0.341

0.8 0.068 0.093 0.091 0.363 0.332

−0.35 0.2 0.029 0.030 0.028 0.007 0.052

0.3 0.033 0.032 0.032 0.025 0.024

0.4 0.036 0.035 0.038 0.019 0.061

0.5 0.040 0.039 0.046 0.014 0.164

0.6 0.045 0.045 0.057 0.012 0.254

0.7 0.054 0.056 0.071 0.031 0.312

0.8 0.070 0.081 0.090 0.163 0.300

−0.5 0.2 0.030 0.031 0.028 0.022 0.052

0.3 0.034 0.033 0.032 0.029 0.045

0.4 0.037 0.036 0.038 0.024 0.033

0.5 0.041 0.040 0.046 0.020 0.130

0.6 0.046 0.046 0.057 0.015 0.220

0.7 0.056 0.057 0.070 0.022 0.267

0.8 0.071 0.082 0.090 0.154 0.268

Abbreviation: APRD, absolute percent relative difference.

of 𝛾1 and zero rate, under a sample size of 400, Table 2 presents the average 𝛿1, 𝜋T , 𝜋C, 𝛽1,CV, 𝛽1,MLE, and 𝛽1,ZIBC under
1000 replications. Regardless of the actual zero rates (from 0.2 to 0.8), we observe, on average, 𝛿1 < 0 when 𝜋T < 𝜋C (for
𝛾1 = −0.5), 𝛿1 ≈ 0 when 𝜋T ≈ 𝜋C (for 𝛾1 = 0), and 𝛿1 > 0 when 𝜋T > 𝜋C (for 𝛾1 = 0.5), which is consistent with Lemma 1.
In addition, we observe that 𝛽1,CV is biased when 𝛾1 ≠ 0, whereas 𝛽1,ZIBC is close to 𝛽1,MLE in all settings, suggesting that
the proposed ZIBC method can provide reasonable correction for the bias in a wide range of situations.

4 REAL DATA ANALYSIS

4.1 Analysis 1: Project INTEGRATE

Project INTEGRATE is a large-scale IPD meta-analysis study examining the overall efficacy and comparative effectiveness
of brief alcohol interventions for young adults.22 A recent IPD meta-analysis of 6713 participants from 17 randomized
controlled trials examined the effect of intervention on the total number of drinks consumed in a typical week, a count
variable with a high percentage of zeros.14 Across all studies, an average of 30% of individuals reported zero drinking,
with the highest proportion of zero drinking being 66% in one study.

In this section, we evaluate the performance of the ZIBC method in a real data application. We compared the
meta-analysis results between the true, conventional and ZIBC methods using publicly available IPD from Project
INTEGRATE.24 As in Section 3 of the simulation study, IPD were used to estimate parameters from the true and con-
ventional methods. The ZIBC method was conducted using summary statistics from the conventional method (including
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T A B L E 2 Empirical verification of Lemma 1 with 1000 simulations (𝛽1 = −0.5)

Average Average Average Average Average Average

𝜸1 Zero rate 𝜹1 𝝅T 𝝅C 𝜷1,CV 𝜷1,MLE 𝜷1,ZIBC

−0.5 0.2 −0.045 0.119 0.155 −0.460 −0.505 −0.502

0.4 −0.162 0.300 0.400 −0.346 −0.508 −0.499

0.6 −0.277 0.505 0.617 −0.230 −0.507 −0.488

0.8 −0.359 0.736 0.810 −0.154 −0.514 −0.488

0 0.2 −0.001 0.144 0.135 −0.504 −0.505 −0.494

0.4 0.000 0.358 0.350 −0.506 −0.507 −0.493

0.6 0.003 0.568 0.562 −0.512 −0.509 −0.496

0.8 0.003 0.778 0.775 −0.523 −0.520 −0.511

0.5 0.2 0.039 0.166 0.115 −0.545 −0.505 −0.484

0.4 0.153 0.414 0.302 −0.660 −0.507 −0.483

0.6 0.282 0.631 0.506 −0.795 −0.513 −0.501

0.8 0.391 0.821 0.738 −0.910 −0.519 −0.522

standard errors for subsequent meta-analysis), mimicking a real data analysis setting where study reports with only sum-
mary statistics are available. Intervention studies included in the current study (a) randomly allocated participants to an
intervention or control group, (b) had a follow-up within 6 months from baseline, and (c) had at least one zero outcome in
a study. Ten of the 17 studies met the criteria (studies 2, 7 (7.1 and 7.2), 9, 11, 13/14, 15, 16, 18, and 21). For more details of
the studies, please refer to References 8, 14, 22. The outcome was the average drinks on a typical drinking day in the most
recent follow-up assessment within 6 months, with a fixed assessment time for each study. We included the intervention
group assignment as the only covariate.

The comparative results across the three methods are presented in a forest plot (Figure 3). Since the interventions
aimed at reducing the number of alcohol drinks, a negative log incidence rate ratio represents a favorable intervention
effect. For most studies, the conventional method produced biased estimates of intervention effect, compared with the
true method. Specifically, the zero-inflation bias was positive (ie, 𝛿1 > 0) in studies 9 and 16, whereas the bias was nega-
tive (ie, 𝛿1 < 0) in studies 2, 7.1, 7.2, 15, and 18. In studies 11, 13/14, and 21, the bias was negligible. Note that although
study 11 had very strong zero-inflation (𝜋T = 67%; 𝜋C = 67%), because 𝜋T was close to 𝜋C, the zero-inflation bias was very
minor. For studies 13/14 and 21, similarly, the zero-inflation bias was small because 𝜋T was close to 𝜋C. This observation
is in line with Lemma 1 such that the direction and magnitude of zero-inflation bias depends on the relative differ-
ence in structural zero rates between two groups. We also note that the standard errors from the conventional method
were identical up to the second or third decimal place to their counterparts from the true method in each individual
study, so the width of the confidence intervals was nearly the same across all three methods. Since the ZIBC method
adjusted the effect estimates to the correct level, the confidence intervals of the ZIBC and true methods were nearly
the same.

The data example demonstrates that the ZIBC method corrects zero-inflation bias regardless of the directions of the
bias in the meta-analysis. In conclusion, the ZIBC method showed good performance in correcting zero-inflation bias for
study-specific intervention effects as well as the overall pooled intervention effect in meta-analysis in a real data analysis
setting.

4.2 Analysis 2: A dental caries prevention clinical trial

We illustrate the application of the ZIBC method using a randomized controlled trial in dental caries prevention.11 The
study was aimed at evaluating whether the bucco-lingual technique could increase the effectiveness of a tooth brush-
ing program on preventing dental caries (ie, cavities) among five-year-old children. This study was a two-arm trial that
randomized participants to either a conventional tooth brushing program (Control) or a modified tooth brushing pro-
gram (Intervention). The outcome of interest was the number of enamel and dentin caries at 18-month follow up, which
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F I G U R E 3 Forest plot for the true, ZIBC and conventional methods in Project INTEGRATE (𝛽1,MLE = −0.09, 𝛽1,ZIBC = −0.09,
𝛽1,CV = −0.07 after meta-analysis)
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T A B L E 3 Information extracted from Reference 11

Summary information Data source Girls Boys

𝛽1,CV Table 3 0.29 −0.73

ŜE1,CV Table 3 0.28 0.30

yobs,C Figure 2 (with WebPlotDigitizer) 0.83 1.04

yobs,T Figure 2 (with WebPlotDigitizer) 1.06 0.49

n0,obs,C∕nC Figure 2 (with WebPlotDigitizer) 59% 45%

n0,obs,T∕nT Figure 2 (with WebPlotDigitizer) 47% 67%

T A B L E 4 Original and ZIBC method-corrected intervention effect estimates,
incidence density ratios (IDRs) and P-values, for girls and boys, respectively

Estimate IDR P-value

Girls Original 0.29 1.34 0.29

Corrected 0.01 1.01 0.97

Boys Original −0.73 0.48 0.02

Corrected −0.46 0.63 0.13

exhibited considerable zero-inflation, with rates up to 67%. The conventional Poisson regression model was used to eval-
uate the intervention effect in the original study. The analysis was stratified by gender due to baseline imbalance in
covariates. Since a high proportion of participants did not develop any dental caries, the presence of zero-inflation bias
in the intervention effect estimates from the original study is reasonable to assume. In this example, although IPD were
not available, all of the summary information needed to implement the ZIBC method could be extracted from the study
report.

We apply the ZIBC method here in order to examine the potential zero-inflation bias. First, we extracted the required
information from the original study (see Table 3). Specifically, the uncorrected effects (ie, 𝛽1,CV and ŜE1,CV) were calculated
from incidence density ratios (IDR) and 95% confidence intervals in the original Table 3 from Reference 11, and the
arm-level outcome averages and the proportion of zeros (ie, yobs,C, yobs,T , n0,obs,C∕nC and n0,obs,T∕nT) were obtained directly
from the original Figure 2 by using software WebPlotDigitizer version 4.2.25 We then estimated the arm-level average
structural zero rates 𝜋C and 𝜋T by solving Equation (12) , which were 49% and 32%, respectively, for girls, and 27% and
45%, respectively, for boys. Finally, we obtained the corrected intervention effect estimates 𝛽1,MLE by plugging the values
of 𝛽1,CV, 𝜋C, and 𝜋T into Equation (10). Using the original standard errors ŜE1,CV, we obtained the modified P-values based
on the Wald test.

The original and ZIBC method-corrected results are summarized in Table 4. According to the original analysis,
girls receiving the modified tooth brushing program tended to develop more caries with an IDR of 1.34, suggesting
a potentially negative or harmful intervention effect. After applying the ZIBC method to adjust for the zero-inflation,
the IDR was corrected to 1.01, suggesting a null intervention effect. Note that the intervention effect was statis-
tically insignificant before and after the correction, so the statistical conclusion did not change after applying the
ZIBC method. For boys, the original analysis reported a significant protective intervention effect with an IDR of
−0.74 (P-value = .02). After applying the ZIBC method, the intervention effect was reduced to an IDR of −0.46
and became statistically insignificant (P-value = .13), suggesting that the original statistical conclusion may not be
valid.

In meta-analysis, the statistical significance of an intervention effect in an individual study is less important than its
magnitude and uncertainty, which can influence the overall pooled result. Therefore, adjusting biased effect sizes would
improve precision in drawing statistical inference. When evaluating the effect of the tooth brushing program on dental
caries, it would be better to utilize bias-corrected estimates rather than estimates from the original report. Namely, 0.01
for girls and –0.46 for boys. Standard errors can also be taken from the original study (ie, 0.28 for girls; 0.30 for boys)
because we found standard errors from the original study can reasonably substitute unknown standard errors associated
with the bias-corrected intervention effect estimates (see Table 1 and Figure 3).
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5 DISCUSSION AND CONCLUSION

In this article, we propose the ZIBC method to correct zero-inflation bias that may arise in the intervention effect estimates
of clinical trials with excessive zero outcome values in AD meta-analysis. Specifically, this method aims to recover the
intervention effect estimates from a conventional Poisson model as if they were appropriately estimated in a ZIP model.
The ZIBC method works well when one can use the information of the “average” subject in the sample to approximate
the study result, as we substitute IPD required in the estimating equations with their group-level average values to relax
the IPD requirement. The idea of substituting IPD with average values is in line with the Mean Value Theorem for Inte-
grals and the EM algorithm. The statistical property of the ZIBC method is justified by Lemma 1, which is based on the
assumption that the characteristics (or covariates) of “average” subjects in control and intervention groups are similar,
which should hold in randomized controlled trials due to random assignment to groups. In other situations where the
assumption is not met, such as case-control or cross-sectional studies, the ZIBC method should be used with caution. In
addition, by imposing linear predictors in the true ZIP regression model (ie, Equation (2)), we implicitly assume no inter-
vention by covariate interactions on the outcome, which should hold in most trials. We note that the intervention effect
targeted by the ZIBC method is the mean difference between two groups and cannot be interpreted as a causal effect.26

If one is interested in drawing causal inference, then issues of noncompliance27 and assumptions of temporal stability,
causal transience, and unit homogeneity28 need to be taken into consideration.

The adjusted intervention effect estimates from the ZIBC method correspond to the Poisson portion in the ZIP model,
characterizing the subpopulation that may or may not engage in the targeted behavior, which may be of greater interest in
certain meta-analyses. In contrast, the intervention effect estimates derived from the conventional Poisson model pertain
to the entire population. However, the ZIBC method can be used to incorporate these studies into a meta-analysis focusing
on the subpopulation described above. In practice, we recommend that researchers check the population of interest before
applying the ZIBC method when conducting meta-analysis. We also acknowledge the ideal way for combining studies
with presumably biased effects is to communicate with the original investigators and request IPD, so that meta-analysts
can re-analyze raw data using statistical methods that are most suited to the research question. However, IPD may not
be available due to data sharing restrictions and other resource limitations. The proposed ZIBC method can serve as a
practical alternative to adjust for zero-inflation bias in an AD meta-analysis when obtaining original data is not feasible.

In data analysis, having a high proportion of zeros does not necessarily mean that zero-inflation bias exists in the
estimated intervention or treatment effect size. The ZIBC method should be considered only when a proportion of zeros
in data exceeds the expected proportion given a Poisson parameter. For example, when the mean of a Poisson distribution
is equal to 1, the expected zero rate is 36.8%. This high rate of zeros would be in line with the Poisson model when the
average value of the outcome is low in quantity (eg, 1) and there would be no need for the ZIBC method even if the
actual zero rate were as high as 40%. We recommend that the ZIBC method be used when the actual zero rate is much
higher than the one expected when fitting a Poisson model. In another example, the mean number of drinks following
an alcohol intervention would be usually much higher than 1 (eg, 3 drinks). For the Poisson distribution with a mean of
3, its corresponding expected zero rate is less than 5.0%. Therefore, an actual zero rate of 20% or higher would signal a
need to account for zero-inflation bias. Additionally, in the specific context of bias correction for an intervention effect
size estimate, as illustrated by Lemma 1, zero-inflation bias may not occur when the intervention and control groups have
similar zero rates, even when zero rates in both groups are high (eg, study 11 in Project INTEGRATE). In situations where
there is a difference in zero rates between groups, we recommend that the ZIBC method be used. Note that the Poisson
model is nested within the ZIP model, so misspecifying the ZIP model when the Poisson model is accurate will not lead
to biased estimates but will result in efficiency loss due to the estimation of additional parameters. The consequence of
incorrectly specifying a ZIP model when data follow a Poisson distribution is relatively minor, while the opposite would
lead to a biased estimate. Therefore, when the proportion of observed zeros is considerably higher than what was expected
or when there is a difference in the proportions of zeros between groups, the ZIBC method can be considered.

The ZIBC method adjusts the intervention effect for each of the studies separately and independently, which occurs
before combining data for meta-analysis. After correcting any zero-inflation bias for each individual trial, modified inter-
vention effects are then combined in AD meta-analysis to obtain a more accurate overall result. Note that the ZIBC method
only targets the mean intervention effect estimates, corresponding to a first-order correction. It would be theoretically
attractive to adjust standard errors for zero inflation bias as well, a second-order correction. However, it is beyond the
scope of the current study and can be investigated in future studies. For simplicity, we used the standard errors from the
Poisson models when conducting AD meta-analysis, which showed reasonable performance in our simulation study and
real data examples.
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The ZIBC method minimally requires summary information for its correction. In many situations, all the required
data can be directly obtained from study reports (eg, the real data example in Section 4.2). It also requires the group-level
outcome zero rates, which sometimes may not be described in study reports but can be obtained through inquiries with
original investigators, or an educated guess when prior information or expert knowledge is available. Note that the out-
come average and zero rate are sufficient statistics for a ZIP distribution, so they are good substitutes for IPD when only
AD are available.

The ZIBC method we describe can be extended in the future in several ways. First, although we illustrate the ZIBC
method in the context of a two-arm trial design, it can be applied to multi-arm trials by sequentially comparing each inter-
vention group with control and correcting the biased intervention effect per pair. Second, aside from the ZIBC method,
alternative strategies may be investigated for their feasibility and validity when adjusting the estimating equations for
zero-inflation bias. One potential strategy is to generate pseudo IPD based on AD of outcome and each covariate, and then
solve for 𝛿 using the pseudo data, which is similar to the idea of Approximate Bayesian Computing (see, eg, References
29,30). Finally, the proposed method is designed to recover biased intervention effect estimates from the conventional
Poisson model when the ZIP regression model should have been used; however, it can be extended to other statistical
models with appropriate adjustments, such as a negative binomial regression model and a two-sample t-test, which can
be thought of as a Wald test in a simple linear regression with intervention group membership as the lone covariate.
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