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Abstract: Evaluation of renal dysfunction includes estimation of glomerular filtration rate (eGFR)
as the initial step and subsequent laboratory testing. We hypothesized that combined analysis of
serum creatinine, myo-inositol, dimethyl sulfone, and valine would allow both assessment of renal
dysfunction and precise GFR estimation. Bio-banked sera were analyzed using nuclear magnetic
resonance spectroscopy (NMR). The metabolites were combined into a metabolite constellation
(GFRNMR) using n = 95 training samples and tested in n = 189 independent samples. Tracer-measured
GFR (mGFR) served as a reference. GFRNMR was compared to eGFR based on serum creatinine
(eGFRCrea and eGFREKFC), cystatin C (eGFRCys-C), and their combination (eGFRCrea-Cys-C) when
available. The renal biomarkers provided insights into individual renal and metabolic dysfunction
profiles in selected mGFR-matched patients with otherwise homogenous clinical etiology. GFRNMR

correlated better with mGFR (Pearson correlation coefficient r = 0.84 vs. 0.79 and 0.80). Overall
percentages of eGFR values within 30% of mGFR for GFRNMR matched or exceeded those for
eGFRCrea and eGFREKFC (81% vs. 64% and 74%), eGFRCys-C (81% vs. 72%), and eGFRCrea-Cys-C (81%
vs. 81%). GFRNMR was independent of patients’ age and sex. The metabolite-based NMR approach
combined metabolic characterization of renal dysfunction with precise GFR estimation in pediatric
and adult patients in a single analytical step.

Keywords: kidney function; metabolomics; nuclear magnetic resonance spectroscopy; biomarker

1. Introduction

Although in use for decades, the methods available for estimating glomerular filtration
rate (eGFR) with endogenous markers still present important drawbacks [1,2] and thus
were described to be a weak link in renal diagnostics [3]. All endogenous filtration markers
also have non GFR determinants [1]. Limiting factors include the analytical determination
of the substance itself [4–6], substances interfering with marker quantification [7], as
well as non-glomerular filtration determinants, such as synthesis, tubular reabsorption,
secretion, and extra-renal elimination. Numerous equations were developed to compensate
for these limiting factors [8] and are now an essential part of routine clinical practice,
although still having weaknesses [1]. It was concluded that a single filtration marker
is unlikely to successfully overcome the limitations of endogenous metabolites, because
of variables affecting the pathophysiology of chronic kidney disease (CKD) other than
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GFR [1,2,4]. Indeed, combining two markers like creatinine and cystatin C improved the
accuracy of GFR estimation [2]. However, the persistence of these limitations prompted
Porrini et al. to suggests that the problem perse might be associated with the biochemical
natureof creatinine and cystatin C as markers of renal function, rather than with the
mathematical methods used for GFR estimation [8]. In addition, Hsu and Bansal suggested
that determining actual GFR with utmost accuracy may be a less important goal compared
to assessing patients’ complex renal dysfunction and complications according to the stage
of CKD [9].

Therefore, we aimed at a more complex approach that interprets multiple biomarkers
reflecting both the glomerular filtration rate and CKD-associated renal dysfunction. Such
an approach requires the quantification of several renal biomarkers with high precision and
accuracy. To avoid increasing analytical costs associated with multiple single biomarker
assays, we applied nuclear magnetic resonance spectroscopy (NMR) as a multiplex analyzer
capable to precisely quantify multiple unlabeled metabolites in a simultaneous physical
measurement step [10].

Recently, numerous metabolomic screens extensively described a multitude of NMR-
accessible renal biomarkers [11–19]. For a proof of concept, we evaluated the most consis-
tently reported biomarkers with respect to their (patho-)physiological relevance for renal
function and/or renal and extra-renal co-morbidities and selected suitable candidates for a
targeted analysis. Numerous publications reported an increase of serum myo-inositol levels
in CKD with a good inverse correlation with GFR [11,16,17,20–24]. Besides being an essen-
tial component of inositol phosphates, which are important second messengers in the cell
and are involved in different signaling pathways, myo-inositol is a uremic toxin. We also
chose dimethyl sulfone, which is a sulfur-containing substance sensitive to oxidative stress
and was found to be elevated in CKD patients [12,14,25–31]. In addition, we selected valine
whose blood levels, unlike most other blood metabolites, correlated positively with eGFR
in metabolomics screens and numerous publications reported metabolic acidosis to induce
degradation of valine, causing reduced plasma levels of valine in CKD [13,15,17,18,32,33].

We hypothesized that NMR-based analysis of myo-inositol as a marker of uremia,
dimethyl sulfone as a marker of oxidative stress, and valine as an indicator of acid-base
metabolism in combination with creatinine would provide a ‘metabolite constellation’ that
describes the complex renal and metabolic dysfunction in CKD. We tested whether this
framework would allow a precise estimation of glomerular filtration.

2. Materials and Methods
2.1. Cohorts and Samples

For biomarker quantification, bio-banked serum samples from 320 individuals from
Lyon (France), Gothenburg (Sweden), and Berlin (Germany) [34] were used. All adult
individuals gave informed consent before undergoing GFR measurement. As children
were involved in this research activity, their assent and the permission of their parents
was obtained. Assent was defined as a child’s affirmative agreement to participate in
research. A signed informed consent form from the child as well as from the parents was
obtained. The respective institutional review boards covered ethical approval for NMR
analysis of the samples in adherence to the Declaration of Helsinki. Descriptive statistics of
the study sample are given in Table 1. Samples were stored at −80 ◦C and underwent not
more than one freeze-thaw cycle before central NMR analysis. Fourteen samples had to be
excluded due to missing clinical data. In a further 21 samples, the obtained NMR spectra
failed quality control criteria even after re-analysis. Outlier analysis showed one sample
with extreme discrepancy between the creatinine quantified by NMR and the chemically
measured value and was excluded. The remaining sample set of 284 samples was split in a
training set of n = 95 samples for bio-statistical modeling and an independent test set of
n = 189 samples for performance evaluation (Supplementary Materials Table S1).
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Table 1. Descriptive statistics of the study sample.

Training Set Test Set

N 95 189
Age (years, range) 4–76 3–88

Age (years, mean ± SD) 34 ± 23 a 51 ± 24 a

Sex (% male) 53 60
mGFR
range 5–147 8–178

mean ± SD 75 ± 35 71 ± 31
iohexol 54 101
inulin 22 60

51Cr-EDTA 19 28
CKD stage

1 34 49
2 27 70
3 22 57
4 9 11
5 3 2

Storage # time (years, range) 0.4–13.4 0.4–13.3
Storage # time (mean ± SD) 2.5 ± 3.6 4.2 ± 3.9

# Storage at −80 ◦C. a: p-value U test < 0.001.

2.2. Benchmarking

Serum creatinine-based and cystatin C-based eGFR served as benchmarks. eGFR
equations were selected according to KDIGO recommendations [35]. Serum creatinine-
based eGFR (eGFRCrea) was calculated using the CKD-EPI 2009 creatinine equation [36],
while for pediatric patients, the updated “Bedside” Schwartz formula [37] was used. For an
age-independent serum creatinine-based eGFR, the European Kidney Function Consortium
equation [38] was applied (eGFREKFC). The CKD-EPI 2012 cystatin C equation [2] and the
cystatin C-based equation derived from the CKiD cohort [39] were used for calculating
eGFR from cystatin C (eGFRCys-C) in adults and children, respectively. For the adult subset,
the 2012 CKD-EPI creatinine-cystatin C equation [2] was applied to calculate eGFR from
both creatinine and cystatin C (eGFRCrea-Cys-C). Patients aged 18 years or older were
considered adults.

2.3. mGFR, Serum Creatinine, and Cystatin C Measurements

The study samples had a mixture of inulin [40], iohexol [41], or 51Cr-EDTA [42] GFR
measurements as the reference standard. The results were expressed per 1.73 m2-body
surface according to the Dubois equation: body surface area = height0.725 × weight0.425 ×
0.007184. Applied mGFR methods were reported to have sufficient accuracy compared with
the inulin method [43]. All creatinine measurements were performed with methods trace-
able to the National Institute of Standards and Technology and were isotope-dilution mass
spectrometry calibrated [44]. Serum cystatin C measurements of the Berlin cohort were
measured at Labor Limbach Heidelberg (Heidelberg, Germany) using the PENIA N Latex®

assay on the BN™ II System (Siemens Health Care Diagnostics, ex-Dade-Behring, Mar-
burg, Germany). For samples from Lyon and Gothenborg with sufficient leftover volume,
cystatin C was measured with the Human Cystatin C ELISA from Biovendor (BioVendor—
Laboratornimedicinaa.s., Brno, Czech Republic) calibrated to standard reference material
ERM-DA471/IFCC at Laborarztpraxis van de Loo, Schwäbisch Gmünd, Germany.

2.4. NMR Analysis

Serum was thawed at room temperature and 630 µL were mixed with 70 µL of Axinon®

serum additive solution (numares AG, Regensburg, Germany). A total of 600 µL were
transferred to 5-mm NMR tubes. Runs were carried out in batches of up to 93 samples,
including a calibration sample and two process controls. Samples were pre-heated at 37 ◦C
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for 7.5 min before NMR measurement in a Bruker Avance III 600 MHz and a 5-mm PATXI
probe equipped with automatic Z gradients shimming (Bruker Corporation, Billerica, MA,
USA). A modified version of the CPMG pulse sequence was used as described [45]. The
sequence accounts for a rapid and periodic refocusing of the J evolution by coherence
transfer. A 90-degree pulse was inserted at the midpoint of a double spin echo, leading
to refocusing and consequent quenching of homonuclear J modulation. -NMR spectra
were recorded using a spectral width of 20 ppm, with a recycling delay of 1.5 s, 16 scans,
and a fixed receiver gain of 50.4. A cycling time d2 of 8 ms was used together with a
corresponding T2 filter of 112 ms. The mixing time τ between two consecutive spin echoes
was 400 µs. NMR data were phase and baseline corrected by algorithms developed in-house
and using the lactate doublet at 1.32 ppm as the reference. Spectra underwent automatic
processing and quality control as part of the magnetic group signaling® technology based
on the offset and slope of the baseline in selected spectral regions and selected signals,
e.g., position, shape, and width. The system allows detection and flagging of spectra of
insufficient quality and includes a calibration for scaling to make spectra comparable across
runs and devices.

2.5. Biomarker Quantification

For robust quantification, we curve-fitted pseudo-Voigt profiles to creatinine, myo-
inositol, dimethyl sulfone, and valine NMR signals. This method allows determination
of the goodness of fit by assessing differences between the spectrum and fitted profile,
and thus indicates when the quantification is unreliable due to interference by other
metabolites. For analytical validation of biomarker quantification, precision, linearity, and
bias were analyzed.

2.5.1. Precision

For analytical validation of biomarker quantification, a 50-mL serum pool of 25 pedi-
atric outpatients between 8 and 17 years of age with eGFRCrea < 90 mL/min/1.73 m2 at the
day of serum collection was collected between October 2016 and January 2017 at Hannover
Medical School (INPREM cohort). Sampling was ethically approved by Hannover Medical
School’s institutional review board (No. 3396-2016, dated 15 September 2016). Individual
serum samples were stored no longer than 2 h at room temperature before interim storage
at −20 ◦C. Long-term storage was at −80 ◦C. Samples were pooled just before preparation
for NMR analysis. Additional human serum pools were purchased by Bavarian Red Cross
(Regensburg, Germany) and stored at −20 ◦C until utilization. Analytical precision was
assessed using three distinct serum pools: the first two pools consisted of commercially
available Bavarian Red Cross (adult normal GFR, adult low adult GFR) serum, while
the third pool contained pooled sera collected from 25 pediatric patients enrolled in the
INPREM study (pediatric low GFR, see above for details). Serum pools were measured
in five runs with three replicates per measurement on a single NMR device, resulting in
15 NMR measurements for each pool. Within-run, between-run, and total variation were
analyzed using a fully nested model II ANOVA, and analytical coefficients of variation
(CV) were computed.

2.5.2. Linearity

In the linearity study, a working range for each biomarker was determined within
which the relationship between the observed values and the true concentrations of the
metabolite of interest is linear. Therefore, a serum pool with high metabolite serum levels
(i.e., high pool) was prepared by spike-in before preparing linearity samples. A linear
dilution in 13 concentration steps down to 0% of the high pool was prepared. For each
concentration step, three replicates were analyzed.
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2.5.3. Bias

The bias analysis measured the closeness between NMR-measured metabolite con-
centrations and spike recovery or whenever available clinical chemistry reference values.
For dimethyl sulfone, myo-inositol, and valine, bias was determined by spike recovery
experiments. To generate the samples, non-modified and dialyzed sera were pooled to
generate ‘mini-pools’. Additives spiked with the respective metabolites were generated for
12 different concentration levels. The respective controls consisted of the same mini-pool
prepared with additives, but without the respective metabolite. In total, 138 mini-pools
were used in the spike recovery experiment. For creatinine, standard clinical chemistry
reference methods were used (Creatinine reagent OSR6678 on a Beckman Coulter AU640
analyzer, Beckman Coulter Inc., Brea, CA, USA). In total, 120 human serum mini-pools,
partly spiked or dialyzed to cover a broader concentration range, were measured in du-
plicates by NMR and by the reference method. In total, 115 mini-pools were used in
the study.

2.6. GFR Modeling

All statistical analyses were carried out with R software v3.5.1 [46]. In order to find a
quantitative relation between the biomarkers and mGFR, a linear regression model was set
up using second-order interactions of the form:

y = β0 + ∑
i

βixi + ∑
j=1

∑
k=j+1

β jkxjxk + ε (1)

where y represents the target value, xi is the input variables, βi is the corresponding model
coefficients, β0 is the intercept, and ε denotes the error term. The quantified renal biomarker
levels were transformed to their natural logarithmic value. The cost function within the
coefficient estimation determines the way in which values of different ranges are weighted.
As all metabolites showed range-dependent association with mGFR, fitting of separate
local submodels for different mGFR ranges was applied. Therefore, the mGFR range was
divided into two sections, i.e., <90 (‘low GFR’ and >60 mL/min/1.73 m2 ‘high GFR’) with
an overlapping transition area between 60 and 90 mL/min/1.73 m2. To obtain a result for
the NMR-based GFR, an interpolation function was applied depending on the distance to
the mGFR limits 0 and 150:

ŷcombined =


ŷlow ŷlow < 0, ŷhigh ≤ 150,
ŷhigh ŷhigh > 150,

(150−ŷhigh)
p

ŷp
high+(150−ŷhigh)

p ŷlow + ŷlow
ŷp

low+(150−ŷhigh)
p ŷhigh else.

(2)

where ŷhigh and ŷlow are the prediction values of the lower and the upper submodel, and p
is a power parameter. A value of p = 4 was used. For modelling, a maximal model size of
five features (four substances plus one interaction for each local submodel) was allowed.

2.7. Model Selection

To find the most suitable regression model, we performed a hundred times repeated
five-fold cross-validation for each substance combination. Model stability was maximized
by removing all substance combinations with a coefficient of variation of the cross-validated
substance coefficients above 15% to 20% depending on the applied model approach. The
substance combinations were then selected by their performance on root mean square error
(RMSE), mean absolute error (MAE), and logarithmic RMSE (RMSLE) in the different mGFR
ranges. The lower part of the GFR range was best estimated by using log-log-regression,
whereas the upper part was predicted best with linear regression.



Diagnostics 2021, 11, 234 6 of 15

3. Results
3.1. Biomarker Quantification

The development of quantification algorithms together with quality control strategies
enabled effective quantification of creatinine, myo-inositol, dimethyl sulfone, and valine
by NMR with limits of quantification of approximately 10–20 µmol/L. Table 2 depicts an
overview of the analytical validation results obtained for the respective quantifiers. Total
analytical precision (within and between run) for three different serum pools (normal GFR,
low adult GFR, and low pediatric GFR), linearity, and trueness are covered. Total analytical
imprecision for all markers was below 15%. Imprecision increased for serum levels at limits
of quantification of approximately 10 µmol/L. For all metabolites, Pearson correlation was
r > 0.99 except for dimethyl sulfone with r > 0.98. The analytical performance of the NMR
platform allowed a sensitive, specific, precise, and accurate measurement of the serum
biomarker levels over a linear range covering both physiological and pathophysiological
concentration ranges.

Table 2. Analytical performance of biomarker quantification.

Precision Linearity Trueness

Adult Low Pediatric Low Adult Normal

Mean
(µmol/L) CV (%) Mean

(µmol/L) CV (%) Mean
(µmol/L) CV (%) Low

(µmol/L)
High

(µmol/L)
Pearson

Correlation

creatinine 189.1 6.4 108.3 6.2 107.9 7.0 21 928 0.993
dimethyl sulfone 12.6 13.4 12.2 19.8 8.5 20.7 4 90 0.983

myo-inositol 110.5 11.1 78.5 11.2 68.5 14.2 39 441 0.991
valine 418.0 1.5 310.6 1.9 437.8 3.8 27 1250 0.998

GFRNMR 43.5 9.5 68.3 6.0 82.4 4.2 n.a. n.a. 0.84

Precision is determined in three different pooled sera (adult low GFR, pediatric low GFR, and adult normal GFR). For linearity, upper
and lower limits of the linear range are given. For dimethyl sulfone and myo-inositol, trueness was determined by spike recovery. For
creatinine and valine, clinical chemistry methods were used.

3.2. GFR Estimation

We tested the hypothesis of whether adding myo-inositol, valine, and dimethyl sulfone
to serum creatinine would allow accurate estimation of mGFR. Serum concentrations of
creatinine, myo-inositol, and dimethyl sulfone were negatively correlated, with mGFR
with log-log Pearson correlation coefficients of −0.783, −0.612, and −0.520, respectively.
In contrast, serum valine was positively correlated with mGFR. Interestingly, this weak
positive correlation with mGFR (r = 0.206, 97.5% CI−0.04 to 0.43) increased to r = 0.534
(97.5% CI 0.33 to 0.68), when valine was correlated with the residual variance of mGFR that
contributions of creatinine and myo-inositol alone are unable to cover (Figure 1).

Exhaustive searches of all possible combinations of the four metabolites were carried
out in the training set comprising n = 95 samples using mGFR as the reference. The most
suitable model took the form:

ŷlow = e−1.34 × creatinine−0.83 × myo-inositol2.22 × valine0.54 × creatinine−0.57 log(myo-inositol), (3)

ŷhigh = 285.00 − 38.35 × log(creatinine) − 12.47 × log(dimethyl sulfone), (4)

with metabolite concentrations in µmol/L.
Total analytical precision (within and between run) for GFRNMR (normal GFR, low

adult GFR, and low pediatric GFR) was between 4.2% and 9.5% (Table 2). The performance
of GFRNMR in estimating mGFR was assessed in the independent test set (n = 189) and the
percentage of estimated GFR values within 30%, 15%, and 10% of mGFR values (P30, P15,
and P10) were calculated (Table 3).
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Figure 1. Correlation of valine with measured GFR (mGFR). (a) Univariate scatterplot and Pearson
correlation coefficient r between the logarithmic serum level of valine and logarithmic mGFR. (b) The
differences between mGFR and the predicted GFR values by the lower submodelylow without valine
(consisting only of creatinine in combination with myo-inositol) were interpreted as residuals. Each
data point is one residual. When serum valine concentrations were plotted against theses residuals,
the correlation coefficient significantly increased to r = 0.534 (97.5% CI 0.33 to 0.68). Hence, serum
valine correlates with the residual variance of mGFR that contributions of creatinine and myo-inositol
alone are unable to cover.

Table 3. Diagnostic accuracy. GFRNMR compared to eGFRCrea and eGFREKFC against mGFR reference
in the independent test set of n = 189 patient samples.

eGFRCrea eGFREKFC GFRNMR

RMSE 25.30 19.61 16.51
Pearson correlation 0.79 (0.73–0.84) 0.80 (0.74–0.84) 0.84 (0.80–0.88)

P10 0.27 (0.20–0.35) 0.37 (0.29–0.45) 0.35 (0.27–0.43)
P15 0.40 (0.32–0.49) a 0.50 (0.41–0.58) 0.52 (0.44–0.60) a

P30 0.64 (0.56–0.72) b 0.74 (0.66–0.81). 0.81 (0.74–0.87) b

Note: Serum creatinine-based eGFRCrea was calculated using the CKD-EPI 2009 creatinine equation, while for
pediatric patients, the updated Schwartz Bedside formula was used. Numbers in parentheses denote 97.5%
confidence intervals, a: p-value McNemar test < 0.05, b: p-value McNemar test < 0.001.

Compared to the creatinine-based equations, i.e., CKD-EPI for adults and Schwartz
Bedside for children, GFRNMR showed a Pearson correlation coefficient of r = 0.84 compared
to r = 0.79, and a 35% reduction in the overall root mean square error (RMSE 16.5 vs. 25.3,
Figure 2a,c and Table 3). GFRNMR showed a P30 of 81% (CKD stages 5–3: 72%, CKD 2:
86%, CKD 1: 88%) compared to 64% (CKD stages 5–3: 46%, CKD 2: 68%, CKD 1: 86%)
observed for eGFRCrea. For P15 as well as for P10, consistent improvements independent
of the CKD stages were observed (Table 3). For the creatinine-based European Kidney
Function Consortium (eGFREKFC) equation, a Pearson correlation coefficient of r = 0.80, an
RMSE of 19.6, and a P30 value of 74% were observed (Figure 2b and Table 3).

In the subset of samples for which cystatin C values were available, the biomarker
constellation outperformed cystatin C-based equations (CKD-EPI for adults and the CKiD-
derived equation for children) with a better correlation with mGFR (r = 0.86 vs. 0.66), and
a P30 value of 81% compared to 72% for eGFRCys-C (Figure 3a,b and Table 4). Moreover,
GFRNMR showed a similar P30 value in adults compared to the combined CKD-EPI equa-
tion, which uses both creatinine and cystatin C as variables (81% vs. 81%, Figure 3c,d and
Table 4). Consequently, GFRNMR matched or even exceeded the performance of the eGFR
equations currently recommended by KDIGO.
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Figure 3. (a) For n = 118 out of the n= 189 test set samples, serum cystatin C data was available. For
those, the CKD-EPI 2012 cystatin C equation and the cystatin C-based equation derived from the
CKiD cohort were used for calculating cystatin C-based eGFR (eGFRCys-C) in adults and children,
respectively. (b) GFRNMR correlated better with mGFR (Pearson correlation coefficient r = 0.86
vs. 0.66) and P30 values tended to be more accurate in GFRNMR than in eGFRCys-C (81% vs. 72%).
(c) For the adult subset of the test cohort with both serum creatinine and cystatin C values available
(n = 79 of n = 189), the 2012 CKD-EPI creatinine–cystatin C equation was applied to calculate eGFR
from both creatinine and cystatin C (eGFRCrea-Cys-C). (d) The Pearson correlation coefficient for
GFRNMR was r = 0.83 vs. 0.86 eGFRCrea-Cys-C. P30 values were 81% vs. 81% for GFRNMR and in
eGFRCreaCys C, respectively.
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Table 4. (a) Cystatin-C and (b) combined creatinine and Cystatin-C based GFR estimation.

(a) eGFRCys-C * GFRNMR (b) eGFRCrea-Cys-C ** GFRNMR

n 118 118 n 79 79
RMSE 27.59 17.60 RMSE 14.87 15.32

Pearson correlation 0.66 (0.54–0.75) 0.86 (0.80–0.90) Pearson correlation 0.86 (0.79–0.91) 0.83 (0.75–0.89)
P10 0.28 (0.19–0.38) 0.31 (0.22–0.42) P10 0.42 (0.29–0.55) 0.37 (0.25–0.50)
P15 0.40 (0.30–0.51) 0.52 (0.41–0.62) P15 0.57 (0.44–0.69) 0.58 (0.45–0.71)
P30 0.72 (0.62–0.81) 0.81 (0.72–0.89) P30 0.81 (0.69–0.90) 0.81 (0.69–0.90)

Note: * CKD-EPI 2012 cystatin C equation and the cystatin C-based equation derived from the CKiD cohort were used for calculating
cystatin C-based eGFR (eGFRCys-C) in adults and children. ** The 2012 CKD-EPI creatinine–cystatin C equation was applied. Numbers in
parentheses denote 97.5% confidence intervals.

3.3. Subgroup Analysis of GFRNMR According to Sex and Age

In the test set of n = 189 serum samples, we tested in multivariate variance analysis
whether the accurate estimation of mGFR using the NMR approach is independent of the
age and sex of patients. The individual serum levels of creatinine, myo-inositol, valine,
and dimethyl sulfone were agedependent with p-values < 0.0001, but independent of
patients’ sex (p = 0.685, 0.548, 0.270, and 0.243, respectively). However, when the individual
biomarkers were considered as a metabolite constellation, an agedependency was no longer
observed. GFRNMR was a highly significant predictor of mGFR and neither age nor sex
significantly improved the mGFR estimation (Table 5).

Table 5. ANOVA results for the model mGFR = GFRNMR + Age + Sex for the test set.

Df Sum Sq Mean Sq f Value p Value

GFRNMR 1 126,206 126,206 464 <0.0001
Age 1 518 518 1.90 0.17
Sex 1 400 400 1.47 0.23

Residuals 185 50,298 272
Note: Df indicates degrees of freedom, Sum Sq indicates sum of squares, Mean Sq indicates Mean Squares.

3.4. Molecular Phenotyping by Matched Sample Sets

Biomarker profiling was applied to two sets of three age- and mGFR-matched male
patients from the test set with CKD stage 2 (mGFR of 62 mL/min/1.73 m2 (set 1) or
78 mL/min/1.73 m2 (set 2)) during end-stage liver disease (Figure 4). This procedure
aimed at testing the hypothesis of whether the chosen four biomarkers may provide further
insight into CKD pathophysiology in these patients by characterizing renal and metabolic
dysfunction. In order to compare the obtained metabolite profiles, measured biomarker
concentrations were transformed into z-scores to enable a direct comparison of the observed
fold-changes from one marker to the other. The obtained z-scores were plotted in a chart
with one axis for creatinine (as a primary marker of filtration), a second for dimethyl
sulfone (as a marker of oxidative stress), a third axis for myo-inositol (as a uremic toxin),
and a fourth axis for valine (as a marker of acid-base metabolism, Figure 4).

The obtained biomarker constellations for the three patients with measured GFR
of 62 mL/min/1.73 m2 (set 1, Figure 4a) differed significantly, although patients were
matched for etiology, age, and measured GFR. Patients depicted in red and blue showed
above average z-scores for creatinine and valine, while the patient depicted in green had
below average z-scores for creatinine, dimethyl sulfone, myo-inositol, and valine. This
observation would be in line with the conclusion that the patient depicted in green had
only minimal levels of oxidative stress, whereas patients in red and blue showed average
or increased levels.
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Figure 4. Charts of two sets of three age-, sex-, and measured GFR-matched male patients with end-stage liver disease
with CKD stage 2. (a) Mean mGFR were 62 mL/min/1.73 m2 (set 1) and (b) 78 mL/min/1.73 m2 (set 2), respectively.
Measured biomarker concentrations were transformed into z-scores indicating the plus and minus standard deviation of
substance concentrations from the mean of the total cohort. The obtained z-scores were plotted in a chart with one axis for
creatinine (as a primary marker of filtration), a second for dimethyl sulfone (as a marker of oxidative stress), a third axis for
myo-inositol (as a marker of uremia), and a fourth axis for valine (as a marker of acid-base metabolism).

The three matched patients with measured GFR of 78 mL/min/1.73 m2 (set 2) had
very similar and average levels of oxidative stress (Figure 4b). The patient depicted in blue
showed a higher level of valine when compared to the other two matched patients depicted
in green and red, suggesting an absence of metabolic acidosis. In addition, his lower level
of myo-inositol argued against the presence of uremia. None of the three patients showed
increased levels of oxidative stress indicated by dimethyl sulfone.

These observations suggest that the set of renal biomarkers bears the potential for
molecular phenotyping, providing further insights into individual renal and metabolic
dysfunction profiles.

4. Discussion

The presented proof of concept shows that the uremic toxin myo-inositol, valine
as an indicator of acid-base metabolism, and dimethyl sulfone as a marker of oxidative
stress in combination with serum creatinine reflect the glomerular filtration rate as well
as CKD-associated renal dysfunction. The novel approach matched or even exceeded the
accuracy of eGFR equations currently recommended by KDIGO. In addition, the framework
of the four metabolites bears the potential for individualized metabolic phenotyping of
CKD patients, providing additional insights into the underlying renal disease and (extra-)
renal co-morbidities.

A crucial question with respect to the presented approach of four biomarkers refers
to the explanation of why myo-inositol, valine, and dimethyl sulfone effectively comple-
mented serum creatinine in such a way that a sex-independent GFR estimation over a large
range of age becomes possible. As tubular excretion of serum creatinine is counterbalanced
by tubular re-absorption, estimation of glomerular renal function should also consider
tubular dysfunction, which may lead to interstitial fibrosis and induces tubulo-glomerular
cross talk [47]. In renal dysfunction, the tubular cells develop several disturbances of
metabolism and molecular transport as well as of inflammatory reactions detectable in
blood circulation that are reflected only partially by serum creatinine [28,48]. Accordingly,
tubular clearances of secretory solutes were suggested to provide complementary informa-
tion about kidney health beyond measurements of glomerular function alone [49]. Thus,
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the pathogenesis of renal dysfunction can be considered a complex multi-factorial series of
molecular events associated with alterations of various disease pathways.

Keeping creatinine as a marker may be criticized because eGFRCrea is influenced by
age, sex, muscle mass, and other patient factors [1]. For example, current eGFR equations
often correct for differences in serum creatinine generation among males and females
by ‘dividing’ serum creatinine by the mean or median serum creatinine for males and
females [36]. Our concept does not ‘correct’ for sexdifferences. However, the three markers
as a whole turned out to be a sufficient set of markers to complement serum creatinine for
accurate GFR estimation and outbalanced its deficiencies for admittedly hitherto unknown
reasons. The observed values for P30 and P15 of 0.81 and 0.52, respectively, even fulfill
the criteria for sufficient precision as proposed by Soveri et al. [43], i.e., P30 ≥ 0.80 and
P15 ≥ 0.50. Therefore, the complex interplay of the four metabolites, complementing each
other in way of mitigating individual weaknesses and potentiating their contribution to
overall clinical value, defines a kind of ‘metabolite constellation’. Like individual stars
in a star constellation contribute to this constellation’s overall appearance, the concept
of the metabolite constellation expands the previous approach suggested by Levey and
co-workers to combine metabolites into a panel to more closely correlate with mGFR [19,50],
by additionally reflecting CKD-associated renal dysfunction and co-morbidities.

If using GFR alone, different CKD stages are diagnosed in isolation from associated
extra renal and metabolic comorbidities (KDIGO guidelines, https://kdigo.org/guidelines,
and [51]). Our proof of concept expands this mono-causal approach by interpreting
GFR in the context of CKD-associated metabolic co-morbidities. In future, this might
offer several advantages compared to standard GFR methods. Firstly, such a test would
provide further insights into underlying renal co-morbidities in individual patients even
in homogenous clinical etiologies. To fully exploit such a kind of phenotyping approach,
the understanding of the effects of biological variation and extra-renal comorbidity on
the biomarkers may benefit from hemodynamic or metabolic stimulation tests. These
might reveal secondary renal and extra-renal functional responses to a decrease of GFR
under variable life conditions. In addition, the current literature-based assignment of the
biomarkers to renal and extra-renal pathophysiology needs experimental proof.

The new concept might push the current limits of accuracy for GFR estimation largely
by adding further biomarkers to the metabolite constellation. However, significantly
enlarged samples sets are needed to implement and to test such expansions due to an
increasing risk of overfitting associated with every new term added to the regression
equation. Finally, the novel concept bears the potential of accurate estimation of GFR in
pediatric, adolescent, adult, and geriatric patients irrespective of the patient’s sex, which
would enable GFR monitoring from the age of three years into late adulthood.

Our concept is associated with several strengths and weaknesses. The total number
of patient samples of both the training and test cohort would certainly benefit from addi-
tional samples. Besides increasing statistical power, validation of the concept in further
cohorts, including African-American and Asian ethnic groups, as well as patients with,
e.g., type 2 diabetes mellitus under metformin treatment, nephrotic syndrome, or various
tubulopathies, would allow a comprehensive evaluation of the potential clinical utility of
the method. In addition, our training cohort consisted of a sample set with a heterogeneous
reference standard with a mixture of inulin, 51Cr-EDTA, or iohexol renal clearances. As
even inulin clearance is associated with a coefficient variation of 7% for repeated measure-
ments [52], imprecision might increase even more when renal clearances of 51Cr-EDTA
or iothalamate and plasma clearances of 51Cr-EDTA or iohexolare applied for measuring
GFR [43]. Hence, the errors of inulin and other exogenous clearance markers are often
underestimated when they are used as referenced standards for establishing new eGFR
equations [9]. Although we could not determine any dependency of the GFRNMR results
from the applied reference method in post-hoc analysis, we cannot exclude the possibility
of a reference or selection bias.

https://kdigo.org/guidelines
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Our results obtained for eGFR equations considering cystatin C might have been
influenced by both the prolonged storage times of our bio-banked samples and the use
of different ELISA assays for cystatin C quantification. Although sample storage was
at −80 ◦C and the applied assays were calibrated to standard reference material, future
work should consider an optimized design. Finally, we established the method on serum
samples of at least a 630-µL volume, and its transferability to lower volumes or blood
plasma cannot be considered as simply given. However, this may be less a limitation on its
ability to perform in clinical routine than its application in clinical research with bio-banked
serum samples.

Concerning the strengths of our concept, we employed a technically advanced and
standardized analytical platform with proven compatibility for daily diagnostic routine
application and worldwide availability [53]. Moreover, we demonstrated its sufficient
analytical reproducibility for simultaneous quantification of multiple metabolites with
known and unknown correlations with renal dysfunctions. This finding effectively trans-
lates the requirements for the application of NMR in clinical routine settings proposed by
Markley et al. [53]. Hence, in public health systems under a constantly increasing finan-
cial burden, our concept might help to control the incremental costs associated with the
step-by-step quantification of single biomarkers as constituents of multi-biomarker pan-
els [54] that have been increasingly proposed in recent years [1]. Finally, we demonstrated
the accurate estimation of GFR in a multi-center cohort with the gold standard of renal
clearance methods as a reference. The observed accuracy matched or even exceeded the
one of serum creatinine, serum cystatin C, or their combination in patients with various
nephrological conditions.

In conclusion, we developed and tested a metabolite-based serum test for accurate
estimation of GFR in pediatric, adult, and geriatric patients, obviating the need for invasive
tracer application and bearing the potential of metabolic phenotyping of CKD patients.

5. Patents
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