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Granzyme B is a renowned effector molecule primarily utilized by CTLs and NK cells
against ill-defined and/or transformed cells during immunosurveillance. The overall
expression of granzyme B within tumor microenvironment has been well-established as
a prognostic marker indicative of priming immunity for a long time. Until recent years,
increasing immunosuppressive effects of granzyme B are unveiled in the setting of different
immunological context. The accumulative evidence confounded the roles of granzyme B
in immune responses, thereby arousing great interests in characterizing detailed feature of
granzyme B-positive niche. In this paper, the granzyme B-related regulatory effects of
major suppressor cells as well as the tumor microenvironment that defines such
functionalities were longitudinally summarized and discussed. Multiplex networks were
built upon the interactions among different transcriptional factors, cytokines, and
chemokines that regarded to the initiation and regulation of granzyme B-mediated
immunosuppression. The conclusions and prospect may facilitate better interpretations
of the clinical significance of granzyme B, guiding the rational development of therapeutic
regimen and diagnostic probes for anti-tumor purposes.
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INTRODUCTION

Granzyme B (GrB) is a serine protease famous for its activity in proteolysis-mediated apoptosis and
works as a critical effector molecule of cytotoxic lymphocytes (CLs) against pathogens during
immunosurveillance (1). Upon being properly activated, CLs could recognize the ill-defined cells
and secrete cytotoxic granules into an immunological synapse where granzyme B is endocytosed
into the cytosol of target cells and triggers the downstream apoptotic pathways (2).

For a long time, granzyme B has been well-accepted as a representative marker for the priming of
immunity and efficient killing of tumor cells. In light of the anti-tumor reputation of granzyme B,
the development of GrB-based/targeted theranostics has been advanced rapidly in recent years (3,
4). However, the expression of granzyme B is not always positively correlated with anti-tumor
org April 2021 | Volume 12 | Article 6703241
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performance. Some researchers even noticed that GrB-
deficient mice demonstrated better eradication ability of
either allogeneic or syngeneic tumor cells than did wild-type
mice (5). Although granzyme B is selective on conserved
amino acid sequences of its substrates, its cytotoxicity is
non-specific to tumor cells, suggesting that granzyme B in
active form, especially the one released to extracellular space,
might harm both parties of the immune responses within the
tumor microenvironment (TME) (5). These observations and
hypothesis bring up a question: is granzyme B always a
noteworthy ally against tumors or a waverer that sometimes
works in the opposite way.

Increasing evidence has emerged to support the pleiotropic
roles of granzyme B within which the immunosuppressive effects
being highlighted. Aside from CD4+/CD8+ T cells and NK cells,
the expression of active granzyme B is observed in many other
types of cells such as B cells, dendritic cells, macrophages, mast
cells, basophils, keratinocytes and chondrocytes etc., some are
even the bystanders of lymphocytes (6). One part of them
constitutively expresses granzyme B, while the other part only
expresses it under proper stimulations. The significance of
granzyme B expressed by these cells lies in not only their
Frontiers in Immunology | www.frontiersin.org 2
intrinsic feature but also the context that defines their roles. So
far, several cell types, exemplified by T regulatory cells (Tregs), B
regulatory cells (Bregs), and plasmacytoid dendritic cells (pDCs)
are discovered to secrete granzyme B for immunosuppressive
purposes as demonstrated in Figure 1, though the regulation
networks are yet to be established (5, 7–9).

The immunosuppressive role of granzyme B was initially
observed in the degradation of T cell receptor (TCR) zeta
chain that is essential to the surface expression of TCRs for T
cell development (10). The loss of TCR zeta chain seems to be a
common phenomenon in tumor-infiltrating lymphocytes,
especially the ones suffering from immune exhaustion.
Although several mechanisms might involve the loss of TCR
zeta chain, the degradation caused by granzyme B practically
linked granzyme B with the immunosuppressive components in
TME. Nevertheless, the degradation of TCR zeta chain is not the
only way in which granzyme B suppresses the priming
immunity. More mechanisms and participants have been
unearthed in association with immunosuppressive roles of
granzyme B, summing up a clearer picture of the GrB-
expressing niches in TME, which we are going to discuss
detailly in this review.
FIGURE 1 | Suppressor cells that secrete granzyme B for immunosuppressive purposes. MDSCs, Myeloid-derived suppressor cell; ESCs, Embryonic stem cell;
MSCs, Mesenchymal stem cells; PRF, Perforin.
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GRB+ SUPPRESSOR CELLS

T Regulatory Cells
Tregs are a suppressive subset of T cells with the typical
hallmarks of CD25 and Foxp3 expression. Although Tregs only
occupy a small proportion of CD4+ T cells, they play central roles
within the whole immunosuppressive microenvironment either
in healthy or ill-defined conditions (11). They are essential to
maintaining peripheral tolerance and immune homeostasis in
the setting of autoimmune diseases while suppressing beneficial
anti-tumor immunity in TME to facilitate tumor evasion
and metastasis.

Varied stimulatorymolecules induce the differentiation ofTregs
into diversified subsets, thereby exerting their immunosuppressive
functions against different immune cells viamultiplepathways (12).
For instance, Tregs competitively consume interleukin2 (IL-2)with
weakly activated T effector cells (Teff), causing the suppression of
adaptive immune responses (13).Moreover,Tregs secrete IL-10, IL-
35, adenosine, and transforming growth factor-b (TGF-b) while
express surface molecules, such as cytotoxic T-lymphocyte antigen
4 (CTLA-4), lymphocyte activation gene 3 (LAG-3), and
programmed death-1 (PD-1) for general immunosuppressive
purposes (14). Other than inhibiting cell function or decreasing
cell viability, Tregs can directly induce apoptosis or cytolysis of B
cells, antigen-presenting cells (APCs) and Teff, etc., through a GrB-
mediated manner (15, 16). This immunosuppression pattern may
or may not require cell-to-cell contact, indicating different
mechanisms that trigger granzyme B attack.

The association between granzyme B and immunosuppressive
effects in Tregs was initially established based on the frequent
presence of GrB+ Tregs in malignant tumor lesions (17). Also,
high levels of GrB+ Treg was found to negatively correlated
with the occurrence of acute graft-versus-host disease
after hematopoietic stem cell transplantation, implying a
regulatory effect on active participants of adaptive immunity
(18). The expression and secretion of granzyme B by Tregs seem
to be context-dependent, as evidenced by the disproportionate
level of granzyme B in naturally occurring Tregs (nTregs) from
thymus comparing to stimuli-inducible Tregs (iTregs) in
TME (19).

CD4+CD25+FoxP3+ Treg is a typical phenotype that bears
granzyme B for immunosuppressive purposes. In contrast to
CD4+CD25+ Tregs, they present an elevated expression of
CD275 (ICOSL), CD278 (ICOS), major histocompatibility
complex (MHC) II and loss of CD73, which could suppress
primed T cells in vivo via a GrB-dependent way (5, 20, 21).
Unlike tumor-infiltrating Tregs, the circulating Tregs
demonstrate very few GrB+ cells with frequencies of lower than
0.3% in all subtypes, further highlights the latent stimuli in
specific niches that determine the presence of GrB+ Tregs (15).

Generally, the expression of granzyme B in T cells can be
activated by prolonged TCR stimulation through CD3/CD28.
However, the generation of GrB+ Tregs needs the participation of
IL-2, as either TCR stimulation or IL-2 treatment alone would
fail to induce granzyme B in Tregs (22). In addition to CD3/
CD28, stimulation of naive CD4+ T cells with anti-CD46
monoclonal antibodies could convert them into granzymes/
Frontiers in Immunology | www.frontiersin.org 3
perforin/IL-10 producing Tregs that kill allogeneic cells as well
as autologous immune cells (23, 24).

The induction of other immunosuppressive molecules often
accompanies the generation of granzyme B in Tregs. Latency-
associated peptide (LAP), the N-terminal pro-peptide of the
TGF-b precursor, could facilitate the conversion of naive Tregs
to iTregs. Studies have shown that these iTregs expressed more
granzyme B and TGF-b than their LAP negative counterpart,
exerting their immunosuppressive effects via both granzyme B
and TGF-b mediated mechanisms (25–28). In another case, the
up-regulation of granzyme B was observed in a “self-feeding”
process of Tregs caused by an intercellular CC motif ligand
(CCL) 1-CC chemokine receptor (CCR) 8 interaction, leading to
synchronized up-regulation of FoxP3, CD39 and IL-10, which
substantiated the in vivo proliferation and immunosuppressive
activities of these Tregs (29). Even when encountered with OX40
agonist, potential immunotherapy that enhances anti-tumor
immune responses, it did not harm the regulatory ability of
Tregs due to the simultaneous increase in granzyme B, IFN-g,
and T-bet expression.

Although the immunosuppressive ability of Tregs would
sometimes be reprogrammed or overwhelmed by a subtle
environment, the expression and secretion of active granzyme
B in Tregs could be a valuable prognostic for immunosuppressive
status (30).

B Regulatory Cells
B cells have been classically associated with antibody secretion,
antigen presentation, and T cell activation. However, the
presence of B cell-mediated immune response does not always
positively correlate with a benign prognosis during anti-tumor
therapy. Some subsets of B cells, particularly the ones from
tumor-derived lymph node (TDLN), exhibit regulatory
phenotype and inhibitory activity toward other anti-tumor
participants, probably contributing to the immunological
tolerance of malignancies (31). These B cells with regulatory
effects are termed as Bregs though there are no consensus
markers about this classification (32).

The typical phenotype that different Bregs share is the
secretion of IL-10 and expression of CD1d and CD5, although
subsets of Bregs are known to express not only IL-10 but also
other inhibitory molecules, including PD-L1, granzyme B, and
TGF-b. Bregs express these cytokines for specific reasons. For
instance, TGF-b from Bregs could induce iTregs which would, in
turn, facilitate the differentiation of immature B cells into Bregs,
hence synergistically controlling the inflammatory responses
(33). GrB+ Breg is a special and potent regulatory subtype
phenotypically and functionally distinct from IL-10-producing
Bregs (B10 cells) in humans. In human GrB+ Bregs, most of the
regulatory molecules are expressed primarily on GrB+, but not
GrB- B cells. This suggests that granzyme B might be an
important novel marker indicative of immunosuppressive
effects of human Bregs (34). IL-21 derived from CD4+ T cells
was found to dominantly drive the generation of GrB+ B cells,
during which CD40L was identified as an important determinant
for the differentiation of B cells into either plasma cells or GrB+ B
cells (35). Only when cultured with IL-21+ CD40L- Th cells
April 2021 | Volume 12 | Article 670324
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would B cells directly differentiate into GrB+ Bregs (36). The
population of GrB+ Bregs is also positively correlated with IL-21
production. B cells from tolerant recipients but no other patients
could regulate both the number of IL-21+ T cells and IL-21
production, suggesting a feedback loop that increases excessive B
cell activation and endows the regulatory ability (37).
Subsequently, GrB+ Bregs potently suppress the proliferation of
co-cultured CD4+ T cells in a GrB-dependent manner. Aside
from IL-21 producing cells such as CD4+ T cells, follicular helper
T (Tfh) cells, and Natural killer T (NKT) cells, GrB+ Bregs also
target excessive B cells for self-regulatory purposes as well as
other bystander immune cells via paracrine mechanisms (7).

GrB+ B cells were unveiled to have pleiotropic roles in
immune responses. One is the regulatory role that could
maintain allospecific tolerance, and the other is the effector
role against infected or ill-defined intruders (38). Within
peripheral circulation, B cells from healthy individuals could
produce and secrete granzyme B while encountering sufficient
IL-21 and the stimulation of B cell receptors. A higher frequency
of GrB+ B cells in peripheral blood often correlated with immune
tolerance in the settings of autoimmune diseases, viral infection,
and tumor progression (39). On the other hand, some GrB+ B
cells were evidenced to initiate an attack against tumor cells due
to its MHC-independent recognition of antigens. Such
phenomenon often occurred in the early stage of neoplastic
process, and, as the oncogenesis progressed, GrB+ B cells were
gradually polarized into Bregs that might lead to malignancies
during late-stage cancer (7, 38). That explains why GrB+ B cells
found within the microenvironment of different tumor types
were usually associated with the progress and metastasis
of tumors.

The immunosuppressive mechanism exerted by GrB+ Bregs
mainly converged on the GrB-dependent degradation of T cell
receptor zeta-chain, which is similar to that by Tregs and pDCs.
However, the ways Bregs work on other immunological
participants for suppressive goals, especially those independent of
T cell receptors for activation, still remain obscure (40, 41). In
addition to direct inhibition of effector cells, Bregs with activated
STAT3 are found in proximity to tumor vasculature and proved to
be proangiogenic and positively correlatedwith tumor progression.
Considering that STAT3 is a critical upstream transcription factor
for granzymeB expression, such tumorigenic effects ofB cellsmight
partially attribute to either the cytotoxicity of granzyme B toward
ambient effector cells or the proteolysis of extracellular matrix
(ECM) by granzyme B (42).

Some researchers have tried to decipher the phenotypic
signature of Bregs that could signify the expression level of
GrB, leading to a few meaningful results as presented in
Table 1 (33, 34). Nevertheless, puzzles delineating the
Frontiers in Immunology | www.frontiersin.org 4
phenotypes of GrB+ Bregs are yet to be settled. The ambiguity
might relate to the origin of B cells which confer different
phenotypes to Bregs in TDLNs, peripheral blood, and tonsil (43).

Plasmacytoid Dendritic Cells
Dendritic cells comprise versatile subsets designated to carry out
different missions in response to immunologic stimuli. Some of
them are determined effector cells against pathogen while others
exert pleiotropic effects under different circumstances (44).
Plasmacytoid dendritic cells (pDCs) play a crucial role during
innate immunity by secreting bulk amounts of type I interferons
(IFNs) in response to Toll-like receptor (TLR)–mediated
pathogen recognition. Besides, pDCs can contribute to
adaptive anti-tumor immunity by activation of antigen-specific
T cells (45).

However, the presence of pDCs is not always beneficial to the
boost of immunities. It has been evidenced in some cases that the
complex interaction of pDCs with tumor cells and their
microenvironment might lead to immunologic tolerance (46).
For instance, factors such as TNF-a, TGF-b and IL-10 would
abrogate the anti-tumor responses from pDCs and facilitate their
pro-tumorigenic effects (47). The immunosuppressive roles of
pDCs are closely associated with the functionality of Tregs
because pDCs are one of the main driving forces for the
development of Tregs in T-lymphocyte-rich areas of lymphatic
organs (48). Hence an increase in intratumoral pDCs was often
observed with simultaneous increase of Foxp3+ regulatory T
cells in the same lesion and positively correlated with tumor
vascular density (49). In a resting state, pDCs might induce
unbiased Th1, Th2, or Treg responses, whereas, upon being
activated with CD40 ligand (CD40L) and interleukin-3, pDCs
specific of ICOS ligand (ICOSL) expression preferentially
enhanced the generation of IL-10-secreting nTregs in
periphery blood (47, 50). Such CD40-CD40L-mediated
interaction between pDCs and nTregs established a feedback
loop critical to pDC maturation and nTreg differentiation in the
steady-state human thymus (51). In addition to the indirect
immunosuppressive effect relating to Tregs, pDCs could directly
participate in the immunomodulatory process via autocrine and/
or paracrine mechanisms, such as via the secretion of IDO,
ICOSL and Granzyme B, etc (8, 52, 53). Unlike effector T cells
and NK cells which express and secrete perforin and granzyme B
synergistically to fight against cancer, pDCs can produce and
utilize a bulk amount of granzyme B independent of perforin.
pDCs secrete granzyme B to the extracellular area, where it plays
dual roles for anti-tumor immunity as it would help process
peptide antigen to facilitate cross-presentation while generally
suppress T cell activation and expansion through degrading the
zeta chain of its TCR (54, 55).
TABLE 1 | General information of GrB+ Bregs documented.

No. Phenotype Origin Key regulatory molecules Disease model

1 CD19+CD38+CD1d+CD14+IgM+ Human CD25, IDO, IL-10, GrB Epithelial cancers (breast,cervical, ovarian, colorectal, and prostate carcinoma)
2 CD19+CD5+CD43+CD86+CD147+ Human GrB HIV-1
3 CD19+CD5+CD27+CD138+CD38+ Human GrB Kidney transplant
April 2021 | Volume 12 | Article 670324
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Some researchers thought only specific subtypes of pDCs
highly express and secrete granzyme B, as evidenced in a
squamous carcinoma model (56). Another well-accepted
notion suggested that the production of granzyme B could be
induced and promoted in pDC precursors by certain
immunosuppressive cytokines, including IL-3, IL-10, and IL-
21. IL-3 was proved to be pivotal to GrB induction in pDCs (8).
Literature has reported that IL-3 stimulated pDCs were able to
decrease the population of both CD4+ and CD8+ T cells in a GrB-
dependent manner. Such immunosuppressive effect of pDCs was
further enhanced by IL-10, probably due to its contribution to
granzyme B production, but inhibited by TLR stimulation which
would downmodulate granzyme B expression in pDCs and
polarize them into tumoricidal phenotypes (34, 57). IL-21 is a
pleiotropic cytokine with a broad range of actions converging on
immunogenicity (58). However, it could also induce the
expression and secretion of granzyme B in pDCs, which is
partially responsible for the pDC-mediated downregulation of
CD4+ T cell proliferation (45). The regulatory side of IL-21
induced pDC can be reversed by the autocrine of type I IFNs
which is consistent with the observation that TLR stimulation
would convert GrBhigh pDCs into its GrBlow counterpart with
immunogenic feature (59).

Other Cell Types
Expression of granzyme B is not specific to cytotoxic
lymphocytes as many other cell types have been proved to
express and secrete granzyme B under defined circumstances.

Except for conventional participants in immune responses
(dendritic cells, macrophages, myeloid-derived suppressor cells,
mast cells, basophils and B cells, etc.), these GrB expressing cells
also include non-lymphocytes such as keratinocytes, platelets,
human articular chondrocytes, and even cancer cells (60). Some
cell types express GrB with perforin and other members of the
granzyme family, which are often regarded as effector cells
against cancer, while others express GrB independent of those
cytotoxic components that might lead to pleiotropic effects (6).

Myeloid-derived suppressor cells (MDSCs) are one of the
critical immunosuppressive cells against effector T cells, NK cells,
dendritic cells and macrophages in the TME (61, 62). Even
though their mechanisms of action are yet to be established, the
clinical and experimental practice has demonstrated that tumors
densely infiltrated with MDSCs are associated with poor
prognosis and resistance to immunotherapies (63). Previous
studies unearthed the metabolism of L-arginine and the
generation of excessive ROS as major strategies that MDSCs
invited to suppress immunological responses (64, 65). In recent
years, some researchers had noticed a contact-dependent
suppression of T lymphocytes by MDSCs and linked such
phenomenon to the way cytotoxic T cells kill their targets via
granzyme B/perforin (66). Then the expression of perforin and
Granzyme B was validated in in vitromodel of MDSC culture, ex
vivo experiments of MDSCs isolated from tumor-bearing mice,
and MDSCs from human. After deleting perforin/GzmB in
MDSCs in vivo, an increased amount of CD8+ T cells
appeared in the tumor lesion together with better therapeutic
performance, suggesting an immunosuppressive role of
Frontiers in Immunology | www.frontiersin.org 5
granzyme B from MDSCs. Nevertheless, the detailed
interaction between Granzyme B in MDSCs and the
promotion of tumor growth still keep in the dark and warrant
further investigation (9).

Sometimes seemingly innocent bystanders in body fluid could
be educated into “granzyme B-armed killers” toward active
lymphocytes. As in the case of sepsis, platelets were found
accumulating in lymphoid microvasculature and suspicious of
contributing to sepsis-related lymphoid apoptosis. Granzyme B,
independent of perforin, secreted by these platelets, was a
prerequisite to the lymphodepletion process, which required
cel l-to-cel l contact with healthy lymphocytes . The
immunosuppressive roles of GrB+ platelets were further
substantiated in either the in vivo experiment that the absence
of granzyme B slows sepsis progression or the ex vivo proof that
platelets from septic mice radically decrease the population of
healthy splenocytes through GrB-induced apoptosis (67, 68).
Such unique platelets originated from septic megakaryocytes
with an upregulated Itga2b gene which altered the mRNA
profiles of the platelets and empowers them with the functions
of granzyme B (69).

Embryonic stem cells (ESCs) and mesenchymal stem cells
(MSCs) are long known to possess immunosuppressive potential,
though the mechanisms are still unclear. ESCs could increase the
proportion of FoxP3+ Tregs during alloimmunity as well as direct
their regulatory effects toward CD4+ T cells through expression and
secretion of granzyme B. The immunosuppressive process mediated
by these stem cells requires cell-to-cell contact and is independent
of perforin, PDL-1, or Fas ligand, etc. (70). While in the case of
MSCs, the situation is more complicated and debatable. MSCs
freshly isolated from healthy donor bone marrow were found to
express and secrete a bulk amount of enzymatically active granzyme
B, which was initially hypothesized to be a major suppressive
molecule. Nonetheless unambiguous immunosuppression
occurred in a co-culture of MSCs and CD4+ T cells, researchers
failed to validate the immunosuppressive roles of granzyme B by
one of its inhibitors. Therefore further studies are necessary to
elucidate the genuine suppressive mechanisms of MSCs and
whether or not they have any relationship with the regulation of
granzyme B as presented in ESCs.
IMMUNOSUPPRESSIVE MECHANISMS
OF GRANZYME B

Activation Induced Cell Death of
T Lymphocytes
Activation-induced cell death (AICD) is a regulatory program
co-opted for maintaining the population of activated T
lymphocytes induced by repeated stimulation of TCRs (59, 71).

It had been widely accepted that AICD was mediated through
the Fas-Fas ligand death pathway until recent literature found
granzyme B could promote such process in patients with
nonfunctioning Fas (1). Further investigations unveiled a
relationship between GrB-induced AICD and the degradation
of T cell zeta-chain, a critical component of TCR complex that
April 2021 | Volume 12 | Article 670324
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works with TCR and CD3 molecules to activate both cytotoxic T
cells, T helper cells and NK cells (72). Tregs, pDCs and Bregs are
frequently witnessed with such consequences. While these
suppressor cells making contact with effector lymphocytes,
their granzyme B could enter into the target cells via three
potential pathways: a) passes through membrane pores formed
by perforin; b) being endocytosed by membrane repair response
during perforin-mediated Ca2+ influx; c) adsorbes onto the
surface of target cell by electrostatic force that triggers
endocytosis (2). Thereafter granzyme B could either directly
degrade T cell zeta-chain at multiple sites or trigger the caspase
cascade to indirectly cleave it, because T cell zeta-chain is a direct
substrate for both caspase 3 and granzyme B. Either way it can
abrogate the surface expression of TCR, resulting in
malfunct ioning T cel l act ivat ion. Consider ing the
predominance of effector T cells in the setting of anti-tumor
immunity, AICD is supposed to be a primary cause for granzyme
B-mediated immunosuppression.

Within cytotoxic lymphocytes, granzyme B was expressed
and stored in a lysosomal granule if being properly stimulated.
However, lysosomal membrane permeabilization (LMP)
happens in proliferating and activated lymphocytes and leaks
granzyme B into the cytosol, especially when host cells encounter
excessive stimulation by TCR. Thereafter, serpin proteinase
inhibitor 9 (SERPINB9) would counteract with active
granzyme B, preventing it from damaging its host. The
competition between SERPINB9 and granzyme B determines
the destiny of host cells. If granzyme B overwhelms SERPINB9, it
would consequently trigger a series of adverse effects such as
direct Bid to the mitochondrial membrane as well as activate
caspase 3 and other death substrates, thereby executing AICD
(73, 74). Hence AICD is like a suicide program hardwired into
cytotoxic lymphocytes that contribute to auto-regulatory
apoptosis. This is an important mechanism of self-tolerance to
control the size of the lymphocyte pool during and after
immunological responses (75).

GrB-Mediated Cell Death in a
Paracrine Manner
In addition to AICD-induced “suicide,” granzyme B could be
either intentionally secreted to extracellular space or randomly
escape from the immunological synapse between cytotoxic
lymphocytes and their target cells during immune surveillance.
This diffusive granzyme B would adsorb onto the cell membrane
of other bystanders and being endocytosed inside the cells by
different mechanisms to induce cell death (76, 77). The randomly
escaped granzyme B would flow with body fluid and initiate an
indiscriminate attack to any cells it makes contact with, leading
to the increased inflammatory status, which might facilitate
tumor progression (6). In contrast, vectorial granzyme B
secretion is programmed under specific stimulation and often
conducted in a contact-dependent manner. For instance,
granzyme B can be released from Tregs due to prolonged IL-2
stimulation and non-specific TCR signaling and kills target DCs
via a perforin-dependent way to undermine adaptive immunity.
By analyzing the mobility of Tregs and DCs in TDLNs, a positive
Frontiers in Immunology | www.frontiersin.org 6
correlation between the death rate of DCs and their duration of
contact with GrB+ Tregs was established, further highlighting the
contact-dependent killing mode of extracellular granzyme B
(78). Paracrine signaling of granzyme B is a “double-edged
sword” that contributes to either immunogenic or
immunosuppressive responses, which depends on the origin of
those granzymes. Both cytotoxic lymphocytes and suppressor
cells (including cancer cells) could fight against each other via
paracrine granzyme B. Thus results from the overall detection of
granzyme B are hard to be interpreted and need scrutinization
on the components of specific niche where granzyme B
is presented.

Emperitosis
Secreted granzyme B can be taken back up by its host with
potential harm, especially if it were trapped in a confined space
(79). During immune surveillance, cytotoxic T lymphocytes
(CTLs) could be engulfed into the vacuoles of tumor cells
where granzyme B was degranulated. Due to the vacuole
restriction, granzyme B cannot be transferred to the cytosol of
tumor cells, hence being re-uptaken by its host and initiate a
suicide-like death. Such cell-in-cell death is termed Emperitosis
(80). It occurred in a variety of tumor types and promoted tumor
progression in most cases, which could be leveraged to probe the
stages of tumor development (81). Ex vivo and in vitro
experiments revealed that IL-6 could enhance the adsorption
between colon cancer cells and CTLs by upregulating the
expression of cell adhesion molecule ICAM1 and polarize
CTLs into cancer cells through STAT3, STAT5, ERK, and
Rho-ROCK signaling pathways, both of which facilitated the
formation of cell-in-cell structure. Furthermore, IL-6 could
promote the autophagic activity of target cancer cells after
engulfing CTLs, so that protect them from toxic effects and
help them survive immune surveillance (82, 83). These results
suggested a unique mechanism for immune evasion of cancer
cells in TME.

Facilitate Tumor Angiogenesis
As a potent serine protease, granzyme B can modulate the
configuration and components of ECM by degrading vital
con junc t ions and pro t e in s , wh i ch re l ea s e s some
proinflammatory cytokines initially inert or sequestered in
ECM. These cytokines would then underlie a favorable TME
(84). The immunosuppressive effects that granzyme B enforces
through ECM degradation and remodeling were suggested in
some reports. For example, granzyme B could release VEGF and
TGF-b by cleaving a number of glycoproteins, their anchors to
ECM, thereby promoting vascular permeability and tumor
angiogenesis during chronic inflammation. Such a process is
similar to that presented in the case of MMP-2 and MMP-9
induced tumor angiogenesis (85, 86). Besides, extracellular
granzyme B could directly degrade IL-1a within ECM into its
fragments that favor the chronic inflammatory environment
(87). Therefore, targeting granzyme B in ECM could be a
promising strategy to attenuate tumor angiogenesis and
mitigate the inflammatory response in TME.
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Potential Determinants for the
Immunosuppressive Roles of GrB in TME
Granzyme B expression within TME always experiences
dynamic variation along with the pathophysiological changes
(88). Except for the aforementioned cells that could express
active granzyme B for immunosuppressive purposes, many
factors potentially involved in switching the tumoricidal/
tumorigenic roles of granzyme B, predisposing a specific niche
within TME.

At the initiation phase of carcinogenesis, first responders in
the immune system such as macrophages and NK cells recognize
and eliminate the immunogenic cancer cells. Within this stage,
these first arrivals not only play a direct tumoricidal role but also
secrete chemokines like CCL5 and X-C Motif Chemokine Ligand
(XCL) 1, which, combining with dangerous signals generated
from necrotic cancer cells, recruit other active participants to
enhance anti-tumor immunity (89). Once cytotoxic NK cells and
effector T cells all got involved, a cytokine storm of granzyme B
would show up and is presented as a tumoricidal molecule
accompanied by perforin (90). However, the first wave of
attack from the immune system is often inadequate for
eradicating the cancer cell variants that are less immunogenic.
These escaped cancer cells would utilize every resource they have
to instigate their bystander cells to establish immune tolerance in
a way termed as cancer immunoediting (91, 92). Subsequently,
suppresser cells, including tumor-associated macrophages
(TAMs), tumor-associated neutrophils (TANs), Tregs, Bregs,
MDSCs, and pDCs, etc. are assembled in context-dependent
manners and intervene with the anti-tumor immunity shaped by
effector cells, where granzyme B possesses dual opposing roles
depending on the cell source and relative abundance of those
cells in TME (88, 93).

Mechanisms regarding the recruitment of potential
immunosuppressive cells into TME have been explicitly
described elsewhere. However, a comprehensive understanding
of the induction and regulation of granzyme B in these cells is yet
to be clarified (94). Though crosstalk between GrB-secreting cells
and other players in TME is rather complicated considering the
individual differences of host immunity and tumor
heterogeneity, GrB+ Tregs are generally accepted as central
suppressor cells to form the immunosuppressive environment
(95, 96). Actually, Tregs share some common routes with effector
T cells in the production of granzyme B, such as the JAK/STAT
pathway (97). Opposing to the tumor-killing nature of effector T
cell-derived GrB, high levels of Treg-derived GrB are confirmed
to promote tumor growth (2). Since tumor-specific antigens
could both recruit effector T cells and promote the activation
and proliferation of autologous Tregs in TME, whatever breaks
the balance between Tregs and effector T cells would greatly
influence the tumor fate (19).

During immunosurveillance, unconventional TCR
stimulation, as well as specific costimulatory molecules and
cytokines, could drive the differentiation of CD4+ Foxp3−

conventional T cells into CD4+ Foxp3+ iTregs with elevated
granzyme B level comparing to nTregs (25, 98). Such iTregs can
induce NK cell death in a GrB- and perforin-dependent fashion
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and inhibit the priming of T helper and effector T cells by GrB-
mediated cleavage of their T cell zeta chain (5). Besides, they can
kill DCs within TDLNs and TME in a contact-dependent way
where Tregs recognize tumor-specific antigens presented by class
2 MHC ligand on DCs and release granzyme B/perforin granules
to eliminate them. Hence GrB+ Tregs could both impair
autoimmunity and prevent the onset of DC-mediated adaptive
immunity (77).

IL-2 has an essential impact on the differentiation and
proliferation of both regulatory and effector T cells, hence
playing important roles in the tradeoff between anti-tumor
tolerance and immunity (99). It could also enhance the
expression of granzyme B in both cell types and trigger a GrB-
mediated reciprocal death between them, as illustrated in
Figure 2 (100). Detailed investigations of different IL-2
concentrations fed to the co-culture of autologous Tregs and
responder T cells (RC) revealed a favorable RC killing toward
Tregs under low concentration of IL-2 (150 IU/mL) in opposite
to a reverse scenario when its concentration reached 1000 IU/
mL. Combined with the fact that IL-2 concentration would
experience a phased increase during immune responses, the
results above could partially explain T cell exhaustion within
TME in the case of malignancies and underline the significance
of granzyme B in the setting of immunosuppression (101, 102).
Some Tregs, such as Gata3+IRF4+IL4+Foxp3+ Th2-like Tregs, are
hardwired with enhanced autocrine IL-2-mediated activation so
that they could express more granzyme B than other subsets,
which helps them survive effector T cells in TME and maintains a
tumorigenic environment (103).

IL-3 is another promotive factor for the differentiation of
Tregs and often works with IL-2 to facilitate granzyme B
expression. After being secreted by activated T cells,
monocytes, and/or tumor-associated stromal cells, IL-3 could
induce a concomitant increase in the percentage of both Foxp3+

Tregs and IL-2 secreting Th cells in a dose-dependent manner
(104, 105). The resulting IL-2 would enhance the differentiation
of naive T cells into iTregs with high levels of granzyme B.
Intriguingly, Tregs could express IL-3 themselves in response to
TGF-b, which would further increase the concentration of IL-2
in TME and forms a self-feeding loop to stall anti-tumor
immunity (106).

In addition to cytokines, CCL1, a potent chemokine for Treg
recruitment in TME, was recently proved to be closely related to
granzyme B expression in Tregs (29, 107, 108). It could be
secreted by activated monocytes, macrophages, T lymphocytes,
endothelial cells, and tumor cells (109, 110). After being released,
it can bind with its specific receptor, namely CCR8, on peripheral
Tregs and attract them to tumor sites where it induces a STAT3-
dependent elevation of granzyme B level that would confer Tregs
with a powerful weapon against their targets (29). Other
chemokines that could draw Tregs into tumor lesions, such as
the ligands for CCR4 and CCR10, are also largely produced in
TME, whereas their contribution to granzyme B expression in
Tregs is yet to be established (107).

Except for secreting granzyme B themselves, Tregs could
underlay GrB-mediated suppression in several indirect ways
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(Figure 3). Tumor-infiltrating Tregs were often found in
aggregates of other suppressor cells exemplified by TAMs,
Bregs, pDCs, and MDSCs, etc. (32, 34). Within the aggregates,
Tregs could secrete IL-3, IL-10, and IL-21 that empowers their
neighbors with elevated levels of granzyme B. These cytokines
are vital factors to granzyme B expression in pDCs, among which
IL-21 is the dominant driving force for the generation of GrB+

Bregs (8).
However, some immunogenic components could counteract

the granzyme B expression in suppressor cells where these cells
have been adapted to fight against such adversities. TLR-
mediated stimulation is a general response in leukocytes
encountering pathogen-associated molecular patterns (PAMPs)
derived from cellular components (111). When pDCs recognize
PAMPs, the upcoming stimulation will activate their type I IFN
signaling pathway and quench the granzyme B expression,
thereby converting tolerogenic pDCs into immunogenic pDCs.
Interestingly, type I IFNs generated from pDCs could promote
IL-10 production in Tregs, which would, in turn, abrogate the
type I IFN signaling pathway in pDCs and gradually restore their
expression of granzyme B (112, 113). To add fuel to the fire, TLR
stimulated pDCs could express the inducible costimulatory
molecule (ICOS) ligand, which binds with ICOS on Tregs to
promote their expansion and IL-10 secretion (114). Meanwhile,
pDC-derived IDO can catabolize surrounding tryptophan into
kynurenine derivatives which work on the aryl hydrocarbon
receptor (AhR) of Tregs and stabilize their suppressor phenotype
with productive granzyme B expression (115–117).

In another respect, IL-21-induced GrB+ Bregs contribute to the
granzyme B regulation networks within these suppressor cells in
Frontiers in Immunology | www.frontiersin.org 8
similar ways as described above. Put aside whether or not GrB+

Bregs could express TGF-b, which still remains to be determined,
they are definitely capable of IL-10 and IDO secretion, which
positively relate to granzyme B production in both Tregs and
pDCs (32, 118). Some components in TME, even not directly
linked with granzyme B expression, can skew the immune
homeostasis in favor of suppressor cells, facilitating the GrB-
mediated immunosuppressive responses. CD40 and CD40 ligand
(CD40L) are pivotal costimulatory molecules to the licensing of
DCs and activation of effect T cells (119–121). Suppressor cells such
as pDCs and Bregs also express CD40 and interact with CD40L on
effector cells (122, 123). Unfortunately, CD40-CD40L interaction
between regulatory and effector cells is most likely detrimental to
granzyme B expression in the regulatory types and even transforms
them into tumoricidal cells (34, 51). But that does not stop tumor
cells from fighting a way out from their demise. Some neoplastic
cells constitutively express CD40 and competitively consume
CD40L from activated T cells, thus protecting granzyme B-
expressing regulatory cells from turning anergy (124, 125).

Tumor-derived exosomes (TEX) are another powerful
weapon tumor bears to inhibit the proliferation and viability of
multiple immune effector cells. Researches indicated that
exosomes from either the in vitro culture of tumor cells or the
peripheral blood of tumor-bearing patients could educate
CD4+CD25- T cell into iTregs with elevated granzyme B level,
which effectively suppressed the immune responses against
tumors (126, 127). But the understanding of what in TEX and
how these components elicit such effect keeps limited.

In contrast, TGF-b is a common regulatory factor in immune
response and could explicitly increase granzyme B level in Tregs (128).
FIGURE 2 | GrB+ Treg is a central orchestrator in the GrB-mediated immunosuppressive niche within TME. Tumor cells conjugate with naive T cells via PD-L1/PD-1
ligation and convert them into Tregs with the assist of TEX and TGF-b. No matter derived from TME or periphery, Tregs orchestrate the generation of other GrB+

suppressor cells as well as the attack against Teffs through the secretion of IL-2, IL-3, and IL-21.
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Tumor cells, TAMs, tumor-associated neutrophils (TANs), Tregs, and
MDSCs generally secrete TGF-b while express surface PD-L1 that
binds with PD-1 on T cells, which all together promote the expression
of FoxP3, thus differentiating T cells into GrBhigh iTregs (129).

Tumors in both mice and humans secrete high levels of
macrophage colony-stimulating factor (M-CSF) and CCL2,
potent chemoattractants that could recruit macrophages to
tumor sites where they would be educated into TAMs (130,
131). In malignant tumors, TAMs are the most densely
populated cell type among all white blood cells, therefore
deemed as the major driving force for TME formation (132).
Other than direct suppression on T cell function through the
surface presentation of several immunosuppressive ligands,
TAMs are an abundant source of IL-10 and TGF-b, both of
which crosslink with the regulation network of granzyme B and
might boost its levels in Tregs, Bregs, and pDCs (133). Although
they act aggressively in ingesting tumor antigens, they have been
proved relatively inert to trigger adaptive immunity in contrast
to effector DCs (134). Given the high density of TAMs in TME,
they are speculated to consume most of the immunogenic
cellular segments, including TLR agonists, so that might
alleviate TLR-mediated granzyme B reduction in pDCs.

The last concern regarding the immunosuppressive roles of
granzyme B might focus on its attack mode against effector cells.
Since cell-to-cell contact is not necessary to all GrB-mediated
Frontiers in Immunology | www.frontiersin.org 9
immunosuppressive processes, one may wonder if the secreted
granzyme B would escape from its original mission and harm
adjacent tumor cells instead. Theoretically, the ubiquitous
secretion of granzyme B into extracellular space is somehow
harmful to every cell that it gets in contact with. That might
explain the contradictory discoveries on some GrB-expressing
suppressor cells that also pose threats to tumor cells in a GrB-
dependent manner (135–137). Among the strategies that tumor
cells employ to survive the adversities caused by effector
lymphocytes, the one for overcoming GrB-mediated apoptosis
is unique and convergent on SERPINB9, the well-defined
granzyme B inhibitor that protects its host from being killed
by this cytotoxic molecule (138, 139). While upregulation of
SERPINB9 has been observed in several tumor types and linked
with their resistance to T cell-mediated killing, a comprehensive
understanding of SERPINB9 regulation in tumor cells within
TME remains in the dark (140–143).

Some researchers confirmed increasing concentrations of
estrogen, as well as elevated expression of estrogen receptor
alpha (ERa), significantly elevated SERPINB9 level in breast
cancer cells, thus effectively deactivated granzyme B and
mitigated NK cell-induced cell death. Such effect might be
tissue- and/or cell-line-specific due to the causation between
estrogen and breast cancer, which is doubtful if it could apply to
the increased expression of SERPINB9 in other cancers (144).
FIGURE 3 | Potential interaction networks that indirectly elevate GrB levels in suppressor cells within TME. Stimulation of TLR would trigger Type I IFN signaling that
counteracts with GrB expression in pDCs. Tumor cells recruit TAMs to competitively consume TLR agonists and work with IL-10 from Tregs and Bregs to impair
Type I IFN signaling, which indirectly increases the GrB level in pDCs. Tumor cells could consume CD40L and bring down the CD40-CD40L mediated inhibition of
GrB expression in Bregs and pDCs. IDO from pDCs and Bregs could enhance GrB expression in Tregs through the catabolite of tryptophan.
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Another meaningful discovery unearthed that type I IFNs
could upregulate SERPINB9 in certain cancer cells, thereby
blocking GrB-mediated apoptosis and leading to a subsequent
insusceptibility to T cell killing after radiotherapy. Since type I
IFNs are frequent participants in TME and most cancer cells
express their receptors, induction of SERPINB9 should be a more
plausible mechanism underlying the evasion of tumor cells from
GrB-dependent proteolysis (145).
CONCLUSION

Though granzyme B demonstrates pleiotropic effects in different
hosts, excessive expression of granzyme B within the same
context has been proved to culminate in anti-tumor propensity
due to its innate cytotoxicity (89). In many cases, the GrB-
mediated immunosuppression had been treated as collateral
events to the interaction between the immune system and
pathogens. However, if we zoom in on the battlefield of tumor
immune microenvironment (TIME), granzyme B could be
evidenced in most fights. The truth is we focused too much on
the tumoricidal effects of granzyme B and somehow neglected
what it can do to other participants in immunosurveillance. In
this review, we introduced several suppressor cells that could
secrete active granzyme B for immunosuppressive purposes and
discussed possible mechanisms involved in the occurrence of
such effects based on what has been documented. Cells with a
sporadical expression of granzyme B were not included because
little is known about what they utilize granzyme B for. Besides,
the gene expression of granzyme B in some suppressor cells is not
parallel to the actual level of secreted protein, suggesting the
involvement of post-transcriptional regulation (146, 147). All we
know now is the signaling pathways of granzyme B in suppressor
cells are similar to those seen in effector cells, which converged
on the transcription factors of JAK1, STAT3, and STAT5 (8,
148). Recent studies demonstrated that JunB, the AP-1
Frontiers in Immunology | www.frontiersin.org 10
transcription factor, was essential to the differentiation of
effector Tregs and the expression of their effector molecules,
including granzyme B (149, 150). But that study did not go deep
into detailed investigations of regulation networks around
granzyme B. Another noteworthy issue is some tumor cells are
observed with endogenous granzyme B and suspect of expressing
such proteinase themselves. Nonetheless, the reason why tumor
cells evolved to produce granzyme B, which might lead to their
suicide, is still unknown (151, 152). Further researches are
encouraged to address these issues and should include
the GrB+ suppressor cells developed from all organs of the
immune system for a comprehensive understanding of the
immunosuppressive roles of granzyme B.
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