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Abstract: The purpose of this work was to assess the performance of four genomic selection (GS)
models (GBLUP, BRR, Bayesian LASSO and BayesB) in 4 sorghum grain antioxidant traits (phenols,
flavonoids, total antioxidant capacity and condensed tannins) using whole-genome SNP markers in a
novel diversity panel of Sorghum bicolor lines and landraces and S. bicolor × S. halepense recombinant
inbred lines. One key breeding problem modelled was predicting the performance in the antioxidant
production of new and unphenotyped sorghum genotypes (validation set). The population was
weakly structured (analysis of molecular variance, AMOVA R2 = 9%), showed a significant genetic
diversity and expressed antioxidant traits with a good level of variability and high correlation. The
S. bicolor × S. halepense lines outperformed Sorghum bicolor populations for all the antioxidants. The
four GS models implemented in this work performed comparably across traits, with accuracy ranging
from 0.49 to 0.58, and are considered high enough to sustain sorghum breeding for antioxidants
production and allow important genetic gains per unit of time and cost. The results presented
in this work are expected to contribute to GS implementation and the genetic improvement of
sorghum grain antioxidants for different purposes, including the manufacture of health-promoting
and specialty foods.

Keywords: Sorghum bicolor; Sorghum halepense; genomic prediction; genomic selection; antioxidants;
genomic estimated breeding values; prediction accuracy

1. Introduction

Sorghum (Sorghum bicolor (L.) Moench) (2n = 2x = 20 chromosomes) is one of the world’s most
important cereals grown for food, feed and biofuel [1]. Sorghum was traditionally a staple constituting
a dominant portion of a standard diet for people in Africa and Asia, but it is becoming more popular
worldwide, including in developed countries, for its uses in food industry to satisfy a rise in demand
for specialty grains, especially those that are gluten-free and rich in health-promoting compounds [2].
This crop has interesting intrinsic properties including drought and heat resistance, adaptation to lower
and higher latitudes, low input requirements and high energy balance, all of which makes sorghum
suitable for use in current strategies to mitigate and adapt to climate change [3].

The DNA recombinant technology brought about several developments in molecular biology,
including the next generation sequencing allowing rapid cost-effective whole-genome sequencing and
genotyping. S. bicolor genome was first sequenced 10 years ago [4] with subsequent updates [5], has a
physical size of 732.2 Megabases (Mb) with more than 34,000 annotated genes. Several investigations in
genomic prediction and selection (GS) and genome-wide association studies (GWAS) in sorghum built
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upon this breakthrough [6–10]. The GWAS, also known as the linkage disequilibrium (LD) analysis,
has improved the efficiency of marker assisted selection in comparison with the conventional linkage
analysis. Quantitatively inherited traits, like antioxidants, are expected to include major and minor
quantitative trait loci (QTL). The main feature of LD mapping is the possibility to detect and locate
QTLs based on the strength of the correlation between mapped genetic markers and traits. This strategy
relies on the decay of LD, initially present in a population at a rate determined by the genetic distance
between loci and the number of generations since it arose. LD mapping offered greater precision in
QTL location than family-based linkage analysis and lead to more efficient marker-assisted selection
and gene discovery. Nonetheless, it showed its limits as it is unable to capture minor effects QTLs
falling below the p-value threshold [11].

Genomic selection is a novel breeding paradigm that has been implemented in several crop
species to address the shortcomings of the phenotypic selection [12–18] and the limitations of marker
assisted selection (MAS) relying upon GWAS and linkage analyses. Genomic selectin is based on
the infinitesimal model assuming that a trait value is a result of the linear combination of additive
genetic and nongenetic sources and uses all available markers genome-wide to generate the predicted
breeding value [19], effectively accounting for complex agronomic traits governed by many genetic
components of predominantly small effect sizes [20]. On the other hand, marker assisted selection takes
into account the effect of a small number of genetic markers that passed a significance threshold [21],
which, according to the infinitesimal model, can only approximate the genomic underpinnings of a
complex trait. MAS is therefore mostly effective for Mendelian traits controlled by a few genes of a
large effect.

The genomic selection equations trained with field phenotypes are used for selection purposes
without field evaluation, meaning that genetic gain can be increased through increased population
size and selection intensity. One of the attractive applications of GS in sorghum antioxidant breeding
can be its implementation in early generations of recombinant lines or in the preliminary screening of
germplasms to predict and select for or against the antioxidants’ concentration. The most interesting
GS advantage relative to phenotypic, biochemical and proximal analyses is the possibility to account
for the whole antioxidant QTLs and select superior strains early before seed setting. This is expected to
shorten the time to cultivar development, reduce the number of lines to be field-tested and the cost of
current breeding programs, help avoid committing resources on plant materials that are not expected
to meet breeding and market standards, and ultimately bring about increased genetic gain per unit
time and cost.

It is now acknowledged that GS is well poised to be integrated and boost population genetics
and quantitative genetics that remained for a long time without significantly benefitting from the
DNA recombinant, next generation sequencing and genotyping technologies. Genomic selection is
generally applied to facilitate recurrent selection (RS) schemes [22–24,24,25]. Recurrent selection (RS)
is a cyclical breeding approach for the improvement of quantitative traits in breeding populations, and
the production of novel gene combinations and increasing the frequency of favorable alleles [26,27].
Phenotypic recurrent selection (PRS) is implemented cyclically through the development of progeny (S0)
by crossing selected parents, the evaluation of progeny (S1 or S2) to select new parents and recombining
superior progeny to create the next cycle [28]. An accurate evaluation of progeny performance is
limited by the lack of seed and resources for replicated trials. Genomic-assisted recurrent selection
(GARS) would allow the prediction of S0 breeding values without the evaluation of S1 or S2 families in
replicated trials.

The efficiency of GS approach was evaluated in several crops, including sorghum. Further, some
studies [8,9] investigated the importance of using pedigree and marker information to predict plant
height, maturity, stay green and grain yield in sorghum testcross lines and evaluated the multi-traits
genomic selection performance to improve sorghum drought adaptation and grain yield. Avelar de
Oliveira et al. [10] implemented the Bayesian models Bayes A, Bayes B, Bayes Cπ, Bayesian LASSO
(least absolute shrinkage and selection operator) and Bayesian RR (ridge regression) and rrBLUP to fit
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the random regression best linear unbiased predictor (RRBLUP) model and evaluated their efficiencies
in phenotypic biomass traits including days to flowering, plant height, fresh and dry matter yield, fiber,
cellulose, hemicellulose and lignin proportions in sorghum landraces and breeding lines. However, to
the authors knowledge, no research work was conducted to evaluate the efficiency of GS in sorghum
grain antioxidant concentration. This work was therefore designed to fill this gap.

2. Materials and Methods

2.1. Plant Materials

The sorghum materials used in this work consisted of 114 genotypes, of which 95 and 19
were, respectively, Sorghum bicolor (SB) and a mixture of recombinant inbred lines derived from
S. bicolor × S. halepense (SBxSH) controlled crosses at different levels of filial progeny. These populations
were described in our previous works [1,29]. Sorghum bicolor genotypes were annual sorghum selections
derived from landraces from Africa and Asia, while the S. bicolor × S. halepense advanced recombinant
lines were selections from annual/perennial (A/P) crosses and A/P backcrosses to annual recurrent
parents (A*2/P; BC1), perennial/perennial (P/P) and annual/perennial//perennial (A/P//P) crosses. The
annual parents were induced tetraploids (2n = 40), standard diploid (2n = 20), genetic male-sterile
and cytoplasmic-genetic male-sterile inbred S. bicolor lines. The perennial parents were a S. halepense
plant and tetraploid lines obtained by crossing induced tetraploid sorghum plants with S. halepense.
These 114 genotypes were evaluated in open-field trials in 2014 and 2015 at CREA Research Center
for Cereal and Industrial Crops, in the experimental station of Anzola (Bologna, Italy), using an
augmented randomized complete block design with 6 controls (checks) and 6 blocks [30]. The seeds
were hand-harvested a few days after the plants reached the physiological maturity as indicated by the
appearance of the black layer (hilum) in the caryopses at the base of the panicle.

2.2. Determination of Antioxidants Concentration and Statistical Inferences

To analyze total phenols, tannins, flavonoids and antioxidant capacity (TAC), a 10 g sample
from each genotype was ground using a Cyclotec Udy Mill (sieve: 0.5 mm). The moisture in the
sample was determined after they were oven-dried overnight at 105 ◦C and antioxidants and TAC
were analyzed in duplicate using 100 mg of each sample as described in our previous work [2,31]. For
the phenolic compounds, the absorbance of samples was measured at 750 nm and expressed as gallic
acid equivalents (gGAEkg−1 dry mass basis). For condensed tannins and total flavonoids assays, the
absorbances were measured at 500 nm and 510 nm, respectively, and expressed as µg CE (catechin
equivalents) g−1 dry mass basis. The TAC was determined using the 2,20-azino-bis/3-ethylbenzthiazo-
line-6-sulphonic acid (ABTS) assay and expressed as mmol TE (Trolox equivalents) kg−1 dry basis.
Statistical inferences were performed using R, a statistical computing language and environment [32].

To evaluate the genotypic variability for the evaluated traits, the Bayesian regression models in
R was used using the probabilistic programming language Stan, implementing Hamiltonian Monte
Carlo [33,34] and its extension, the no-u-turn sampler (NUTS) [35]. The model was well described
in [36]. These algorithms converge much more quickly relative to other commonly used MCMC
algorithms, like the Metropolis Hasting and Gibbs samplers [35]. The core model implemented in this
work was the prediction of the response y by predicting all parameters θp of the response distribution
D, also known as model family [36]. In this work, the effects of the genotypes on the variability of
the traits of interest were evaluated by solving the following model yi ∼ D

(
θ1i,θ2i, . . . ,θpi

)
for ith

observation, with θpi = fp
(
ηpi

)
. The models were implemented with one random intercept and no

covariates, and therefore: η = Xβ+ Zu, where β and u are the respective coefficients at the population
level and group level, and X, Z are the corresponding design matrices. The default rules were applied
to choose hyperparameters. For each trait, the models were fitted using 4 chains, each with 50,000
iterations of which the first 10,000 were warmup (burn-in) to calibrate the sampler, leading to a total of
160,000 posterior samples upon which our analyses were based. Genotypic variability was measured
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using the mean (estimate) and the standard deviation (estimate error) of the posterior distribution as
well as two-sided 95% credible intervals (l-95% CI and u-95% CI) based on quantiles.

Variance components and trait broad-sense heritability (repeatability, hereafter referred to as
heritability) [37–39] were estimated by fitting the linear mixed model equation yi j = µ+ gi + ei j for
i = 1, . . . , s genotypes, j = 1, . . . , ni replicates (year) for genotype i, yi j is the response variable for
genotype i in replicate (year) j; it was assumed gi ∼ N

(
0, σ2

g

)
and ei ∼ N

(
0, σ2

e

)
[40]. The yearly

adjusted means were used and the model was fitted with restricted maximum likelihood using the R
package lme4 [32]. The heritability was derived through the formula σ2

g/
(
σ2

g + σ2
e /nr

)
[10,41] where

σ2
g, σ2

e and nr are the genetic (genotypic) variance, residual variance and the number of replications
(years), respectively.

2.3. DNA Extraction

In samples grown in summer, the genomic DNA was isolated from young (3 weeks old) seedlings
grown in pots under the glasshouse. Five to twenty sorghum seeds per sample were sown in peat,
watered and were treated with a fungicide (Ortiva, Syngenta, 1 mL L−1) and an insecticide (Confidor,
Bayer, 0.75 mL L−1) for plant protection purposes. For the samples grown in winter, the seeds were
treated with a seed-coating fungicide (Celest, Syngenta, 4 mL L−1 in water) and put to germinate
on wet filter paper within petri dishes laid in the incubator Venticell 111 (MMM group) at 25 ◦C for
4–6 days. Then, 1–3 healthy plantlets (nearly 10–30 cm tall) per pot or 3–5 sprouts per petri dish were
collected for DNA extraction. DNA was extracted using the GeneJET Plant Genomic DNA Purification
Kit (ThermoFisher Scientific, Waltham, MA, USA), following the manufacturer’s instructions. The
DNA concentration and purity were evaluated by a Tecan Infinite M200Pro spectrophotometer (Tecan
Group Ltd., Männedorf, Switzerland), while DNA integrity was checked through 1% agarose gel
electrophoresis containing 10 µL L−1 GelRed (Biotium) as fluorescent dye. For each DNA sample, an
aliquot of 60 µL at a concentration ≥ 10 ng µL−1 was used for the subsequent GBS SNP genotyping.

2.4. Whole-Genome GBS SNP Genotyping and Population Structure

Whole-genome genotyping-by-sequencing (GBS) strategy was carried out on the panel of 114
sorghum lines previously phenotyped for antioxidants production. For glasshouse-related logistical
reasons, the GBS was run in two batches of 184 and 196 individuals, corresponding to the two
separate sample deliveries. The ApeKI, a methylation-sensitive restriction enzyme, was used for library
preparation and GBS was carried out on an Illumina HiSeq X Ten platform by BGI Hong Kong Company
Limited. The sequencing reads were aligned to the sorghum reference genome (Sorghum_bicolor
NCBIv3) to enable variants discovery. The two batches yielded two respective matrices of 933,020 and
919,485 markers that were delivered in separate variant call format (VCF) files stored in a solid-state
disk. The two VCF files were subsequently merged into a single matrix using VCFtools [42] resulting
in a total of 1,252,091 loci. The marker quality control criteria were applied to the merged dataset
considering only genotyped and phenotyped samples. The filters were implemented in VCF tools to
restrict the dataset to high quality standards including biallelic SNPs only, minor allele frequency (MAF)
≥ 0.05, site quality or the Phred-scaled probability that reference/alternative alleles polymorphism
exists at a given site given the sequencing data Q ≥ 40 (i.e., ≥99.99% base call accuracy) and missing
genotypes (NA) ≤ 20%. The quality-controlled marker data consisted of 61,976 high-quality SNPs
which were subsequently used in this work for genomic prediction and selection analyses.

The density of these high-quality SNP markers was visualized using CMplot in R. The population
structure was investigated based on molecular marker information using a Bayesian model-based
clustering [43], neighbor-joining algorithm and the analysis of molecular variance (AMOVA). The
neighbor-joining cluster analysis was performed using Euclidean distances in the ape package
implemented in the R program [32]. In the Bayesian model-based clustering, shared allele frequencies
and an admixture model were applied to investigate the number (K) of populations. The initial
burning period was set to 500 followed by 50,000 MCMC (Markov chain Monte Carlo) iterations for
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each run. The optimal K was determined following the guidelines provided by Evanno et al. [44].
Further, analysis of molecular variance was performed in R as the hierarchical analysis of molecular
variance as described in [45]. The clusters were considered as the source of variation and the number
of permutations was set to 1000.

2.5. GS Models and Prediction Accuracy

Four parametric GS models were implemented in this work and included genomic best linear
unbiased prediction (GBLUP), Bayesian ridge regression (BRR), Bayesian LASSO (BL) and Bayes
B. The relevance of these algorithms in genomic prediction and selection was amply described in
previous works (e.g., [39,46]). However, Bayesian ridge regression is equivalent to GBLUP [47] but
with variance parameters estimated Bayesianly [48]. The models were selected as they differ in the
assumptions of the distribution of marker effects and can therefore offer the possibility to account for
different models of genetic variation and accommodate diverse modes of inheritance in different traits.
For example, GBLUP predicts breeding values by borrowing information among relatives through
their kinship [49] calculated from genomic data. However, genome-wide regression models (BRR, BL,
Bayes B) rely on the infinitesimal model of quantitative genetics, assuming that the genetic control of
complex traits is equally distributed across many (infinite) loci with small effects [19,50]. The genomic
estimated breeding values (GEBVs) for the GBLUP method are obtained from the best linear unbiased
predictions (BLUPs) of the random additive effect. The method BRR is a Bayesian version of ridge
regression, in which the marker effects are normally distributed (i.e., Gaussian prior), have identical
variance and are shrunk toward zero. Therefore, the genomic best linear unbiased prediction and
BRR methods are appropriate for traits controlled by a large number of genes with small effects i.e.,
the infinitesimal model. The BL method is expected to be best suited to the finite loci model with
stronger shrinkage of regression coefficients that are close to zero and less shrinkage of those with
large absolute values [51,52]. In contrast, the Bayes B approach allows the marker loci to explain the
different amounts of variation, with only a small number of loci having a non-zero effect and many loci
having no effect, and can therefore be best suited to assumptions made by the QTL model which is
based on a small number of genes having a large effect and many genes having a null effect [52].

Descriptively, the genomic selection models assumed that the phenotypic outcomes
yi(i = 1, 2, 3, . . . , n) were the sum of a genetic component represented by marker covariates
xi j( j = 1, 2, 3, . . . , p) and a non-genetic component (residual, εi) as translated in the linear regression
model of the form yi = µ+

∑p
j=1 xi jβ j + εi, where µ is the intercept, xi j the genotype of the ith individual

at the jth marker, β j is the corresponding coefficient of regression of y j on the jth marker covariate. The
residual was assumed to follow normal distribution with constant variance i.e., ε ∼ N

(
0, σ2

εI
)
. Since p

was much larger than n, the models were penalized and regularized as suggested by [46]. To evaluate
the GS model performance, the Monte Carlo (repeated hold-out) cross-validation approach [53,54]
was applied using 70% and 30%, respectively, as training and validation sets. In a standard hold-out
cross-validation, the data is randomly divided into two subsets: a training and a test (validation) set.
The test set represents new, unseen data to the model. To obtain a more robust performance estimate
that was less variant to how the data was split into training and test sets, the holdout method was
repeated 50 times with different random seeds and the average performance was computed over these
50 repetitions. The repeated hold-out procedure provides a better estimate of how well our model
may perform on a random test set, compared to the standard holdout validation method [54]. In
addition, it provides information about the model’s stability as to how the model, produced by a
learning algorithm, changes with different training set splits.

The model parameters were estimated in the training set and the models validated in the testing
set. The performance of the models (accuracy) was measured as the Pearson correlation coefficient
(r) between the phenotypic data (adjusted means) and the genomic estimated breeding values of the
individuals in the testing set. The models were implemented using R software, version 3.5.3 (R Core
Team, 2013) and the package BGLR [46] by applying default rules for choosing hyperparameters. The
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Gibbs sampler was used and our analyses was based on 30,000 samples from the posterior distribution
obtained after the first 5000 iterations were discarded as burn-in [1]. The diagrams and statistical
inferences used to represent the GS models’ outcomes were made using appropriate routines called
from the R software.

3. Results

3.1. Phenotypic Performance and Diversity

The descriptive statistics of the contents of the antioxidants measured in the sorghum
populations evaluated in this work, are depicted graphically using quartiles (Figure 1). A wide
range in the measured traits was observed and reflected the existence of a good phenotypic variability.
In the entire sorghum panel, the mean of the total antioxidant capacity (TAC), phenols (FEN),
tannins (TAN), and flavonoids (FLA) was, respectively, 43.31 mmol TE kg−1 dm−1,
4.36 g GAE kg−1 dm−1, 5349.23 µg CE g−1 dm−1 and 5300.49 µg CE g−1 dm−1, while the range
was 6.88–172.02 mmol TE kg−1 dm−1, 0.60–20.73 g GAE kg−1 dm−1, 66.89–27,138.56 µg CE g−1 dm−1

and 207.62–22,606.17 µg CE g−1 dm−1, respectively.
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(interquartile ranges) represent, respectively, the position of mean and the mean of the trait of 
intertest. The horizontal bar inside the green rectangles represents the median of the trait of interest. 
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Figure 1. Distribution (boxplot) of polyphenol (FEN), flavonoids (FLA), condensed tannins (TAN),
and total antioxidant concentrations. The open dot and the numbers inside the green rectangles
(interquartile ranges) represent, respectively, the position of mean and the mean of the trait of intertest.
The horizontal bar inside the green rectangles represents the median of the trait of interest. Refer to text
for the description of the traits.
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The output of the Bayesian regression models is summarized in Table 1. The estimate of the
effective sample size (ESS) was satisfactory across traits, with bulk effective sample size (ESS) and tail
ESS > 400. The ESS is the number of independent samples from the posterior distribution that would
be expected to yield the same standard error of the posterior mean as is obtained from the dependent
samples returned by the MCMC algorithm. The threshold in the Bayesian regression model using Stan
is 100 times the number of MCMC chains run [36]. The bulk ESS and tail ESS measure, respectively,
the reliability of posterior means and medians, and posterior variances. The Rhat (potential scale
reduction factor on split chains; refer to Table 1 for further descriptions) values were lower than 1.1,
meaning that the generated Markov chains converged [55] to the respective posterior (stationary)
distributions of interest. On the other hand, none of the 95% credible intervals contained zero (the
parameter value specified in the null hypothesis), implying that the evaluated population parameters
in Table 1 were significantly different from zero at the 0.05 level. The estimates of standard deviation
of the random intercepts (measures of genotypic effects on the response variables) were higher in
FLA (4461.34) and TAN (3935.62), followed by TAC (37.93) and FEN (4.26), meaning that there was
individual genotype-level variability in the traits evaluated in this work. The intercepts were 5276.13,
4.33, 43.21, and 5320.1, respectively, for FLA, FEN, TAC, and TAN. The residual (unexplained) standard
deviation (sigma) was 405.25, 253.67, 2.71, and 0.22, respectively, in FLA, TAN, TAC, and FEN and
represented 9% or less than the observed standard deviation of the genotypic effects across traits.

The broad-sense heritability was very high with values greater than 0.99 (data not shown) in all
the traits. The pairwise Pearson correlation coefficients among the four antioxidant traits (Figure 2)
were positive and very high (r > 0.90) and ranged from 0.92 (TAN-TAC) to 0.98 (TAC-FEN).
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Figure 2. Pearson correlation coefficients among the evaluated traits. FEN, FLA, TAC, TAN, respectively,
polyphenols, flavonoids, total antioxidant capacity, and condensed tannins. The filled-in areas of the
circles show the absolute value of corresponding correlation coefficients. The scale on the right-hand
side is colored from red (negative correlation) to blue (positive correlation); with the intensity of color
scaled 0–100% in proportion to the magnitude of the correlation.
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Table 1. Mean (estimate) and standard deviation (estimated error) of the posterior distributions, and
the quantile-based confidence intervals.

Traits Parameters Estimate Est. Error l–95% CI u–95% CI Rhat Bulk_ESS Tail_ESS 1

FLA
SD.G (intercept) 4461.34 291.64 3932.56 5070.77 1 8469 18871
Intercept 5276.13 415.54 4448.66 6083.73 1 2793 5094
Sigma 405.25 26.3 357.83 460.87 1 113,402 190,944

FEN
SD.G (intercept) 4.26 0.28 3.75 4.86 1 2137 4694
Intercept 4.33 0.39 3.55 5.1 1.01 466 1355
Sigma 0.22 0.01 0.19 0.25 1 45,376 84,449

TAC
SD.G (intercept) 37.93 2.48 33.45 43.24 1 1787 3107
Intercept 43.21 3.56 36.33 50.26 1.01 599 1491
Sigma 2.71 0.18 2.4 3.08 1 32,486 56,955

TAN
SD.G (intercept) 3935.62 256.08 3469.61 4468.41 1 1555 3174
Intercept 5320.1 358.8 4630.73 6044.63 1 501 887
Sigma 253.67 16.37 224.16 288.35 1 23,079 44,792

1 l–95% CI, u–95% CI: lower and upper limits of the 95% credible interval; Rhat: potential scale reduction factor
on split chains (at convergence, Rhat = 1), ESS: effective sample size, Sigma: residual standard deviation, SD.G (a
measure of genotypic effects): standard deviation of the intercept at the individual genotype level. FEN, FLA, TAC,
TAN, respectively, polyphenols, flavonoids, total antioxidant capacity, and condensed tannins.

3.2. GBS SNP Whole-Genome Genotyping

The next generation sequencing and genotyping of the panel of 114 sorghum lines evaluated in this
work yielded an unfiltered matrix of 1,252,091 SNP marker loci which, after quality control, resulted
in a final working matrix consisting of 61,976 high-quality SNPs. The physical maps of the 61,976
discovered high-quality markers covered the 10 chromosomes (Chr) of Sorghum bicolor (Figure 3).
The relative physical lengths (in Mb) of the 10 chromosomes (linkage disequilibrium groups) was, in
decreasing order, Chr1 (81) > Chr2 (78) > Chr3 (74) > Chr5 (72) > Chr4 (69) > Chr7 (66) > Chr8 (63) >

Chr6 (61) > Chr10 (61) > Chr9 (59). The density of the discovered SNPs was higher in the chromosomal
arms and increased from the centromeres to the telomeres. The SNP markers were scarce or absent in
the centromeric regions.
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3.3. Population Structure

The 114 sorghum genotypes evaluated in this work clustered in three main groups using neighbor
joining (Figure 4) and model-based structure (Figure 5) algorithms. Cluster A (slightly desaturated blue
color) included the 19 Sorghum bicolor × S. halepense recombinant lines, cluster B (vivid orange color)
included 37 Sorghum bicolor breeding lines developed mainly from Southern and Eastern African
Sorghum bicolor lines and landraces, while in cluster C (dark-cyan color) 58 Sorghum bicolor breeding
lines developed mainly from Asian Sorghum bicolor lines and landraces were grouped. As shown by
the neighbor joining algorithm, these main clusters included several sub-clusters and the model-based
structure algorithm showed that most of the lines included different levels of admixture coefficients
values. The analysis of molecular variance (AMOVA) resulted in highly significant effects (p = 0.001) of
the clusters on the molecular variance observed in the GBS SNP dataset (Table 2). The coefficient of
determination (R2) was calculated to assess how well the three-cluster model explained the variability
in the data set. In this work, R2 was low (9%), meaning that the AMOVA model based on the three
clusters did not fully account for the diversity that existed in the population.Genes 2019, 10, 841 10 of 17 
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Table 2. Analysis of molecular variance (AMOVA).

Source of
Variation

Degrees of
Freedom

Sums of
Squares

Mean
Squares

F Value R2 p Value

Clusters 2 37,773.14 37,773.14 11.47 0.09 0.001
Residuals 111 368,746.64 3292.38 NA 0.91 NA

Total 113 406,519.77 NA NA 1 NA
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3.4. Genomic Prediction of Genetic Merit

The main feature of the genomic selection approach is represented by the possibility to compute
the genomic estimated breeding value (also known as genetic merit) upon which superior strains are
selected without conventional trials and phenotyping. Four GS models were implemented in this
work to evaluate their performance in predicting the genetic merit for the production of polyphenols,
flavonoids, total antioxidants and condensed tannins in 114 sorghum genotypes. The predicting
ability as represented by the respective GS model accuracy is presented in Figure 6. GBLUP, BRR,
BL and BayesB models performed comparably across traits. The prediction accuracy ranges were
0.53–0.56 for polyphenols and flavonoids, 0.49–0.52 for the total antioxidant capacity and 0.55–0.58 for
condensed tannins.
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Figure 6. Distribution (boxplot) of GS models validated accuracy in external sample (not used during
model training) of 34 (30% of the total population) sorghum lines. FEN, FLA, TAC, TAN, respectively,
polyphenols, flavonoids, total antioxidant capacity, and condensed tannins. Traits means are included
within the boxplot. Trait means with same letter are not significantly different at the 5% level using the
Tukey’s HSD (honestly significant difference) test. Refer to text for the description of the GS models.
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4. Discussion

Compared to other grains, sorghum contains high levels of antioxidants, which can help prevent
cell and DNA damage and play a role in degenerative disease prevention [56]. Sorghum breeding
programs rely heavily on unreliable phenotypic selection for the contents of antioxidants in the grains,
using genomic breeding values estimated with genomic selection models can simplify and expedite
breeding for antioxidant in sorghum. Genomic selection was recommended for use particularly in
quantitatively inherited traits and traits with low heritability or which are hard to measure [11,39].
Although the antioxidant traits evaluated in this study exhibited a high value of broad-sense heritability,
Genomic selection can nonetheless be recommended for antioxidant breeding in sorghum for several
reasons. First, the use of grain color as a proxy to antioxidant concentration is complicated by the
necessity of having a variety of information including pericarp thickness, pigmented testa, spreader
genes and endosperm appearance, which are naturally correlated with the production of sorghums
with increased phenols and antioxidant activity levels [57,58]. Second, there are many other compounds
in sorghum grain that contribute to antioxidant activity, including vitamin E and carotenoids, most
of which are hard to measure or are associated with minor effects QTLs that cannot be detected for
use in marker assisted selection [7]. Third, for most sorghum antioxidants, an analysis through wet
chemistry is more costly than GBS SNP genotyping, whereas the cost of high-throughput analyses
(e.g., near-infrared spectroscopy, NIRS) is currently comparable to GBS SNP genotyping. Nonetheless,
even in cases of comparable costs, GBS SNP genotyping to select superior untested and unphenotyped
individuals offers unique advantages, such as the possibility to operate selection early at the seedling
stage without waiting until seed setting or harvest, which can drastically expedite and reduce the cost
of breeding programs.

This work aimed at conducting GS for sorghum grain antioxidants using SNP markers in a novel
diversity panel consisting of a combination of Sorghum bicolor landraces and a progeny derived from
S. bicolor × S. halepense (SBxSH) hybridizations. To the best of the authors’ knowledge, it is the first time
GS approach is performed to predict antioxidants in sorghum grains. The different metrics used in this
work highlighted the important diversity that existed in the evaluated sorghum materials. Using a
quantile approach and the Bayesian regression model with Stan revealed a good level of phenotypic
variability that was significantly explained by the differences between the evaluated sorghum lines
(Figure 1, Table 1). Neighbor joining and the model-based structure identified three main clusters
and the latter algorithm showed the existence of genetic admixtures. On the other hand, the analysis
of molecular variance showed the existence of a statistically significant but weak (R2 = 9%) genetic
differentiation. The lower coefficient of determination (R2) meant that much of the variance and the
structure observed in the population could be attributed to other sources, such as differences between
individuals within clusters and/or between individuals, and admixture, all of which can be associated
with different levels of pairwise kinships.

The observed diversity is associated with the intrinsic genetic properties of the plant materials
used in this work. The landraces and, particularly, the S. halepense genome constitute a good source of
antioxidants [59]. In SBxSH combinations, the wild genome of S. halepense represents an untapped
reservoir and a good source of genetic diversity that can be used in conventional and molecular breeding.
On the other hand, the S. bicolor genotypes were derived from African and Asian landraces and are
expected to harbor a high level of genetic diversity for breeding purposes inasmuch as Africa and Asia
represent, respectively, the primary and secondary sorghum centers of diversity [29]. Furthermore, the
SBxSH lines and S. bicolor landraces evaluated have a long history spanning, respectively, more than 6
and 20 years in our breeding program. They have accumulated cycles of meiotic and recombination
events that brought about genetic diversity, which qualify the sample size used herein for investigations
in genomic prediction [60–62].

The broad-sense heritability of the traits (FEN, FLA, TAC, TAN) evaluated in this work was very
high, indicating that the phenotypic variations of the measured antioxidant metrics are mainly affected
by genetic factors and therefore this panel can be used for genomic prediction and selection. On the
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other hand, the pairwise correlation among the four antioxidant traits (Figure 2) was positively very
high implying that the proportion of variance shared by the traits evaluated was mostly due to genetic
causes. It can be inferred that the observed high correlation between antioxidant components and the
TAC is an indication that the antioxidant components evaluated in this work were a major source of
antioxidant activity in the sorghum grain. A perfect correlation between traits implies that genetic
influences on the traits of interest are identical and this situation can imply the existence of either
pleiotropy (causal overlap), linkage disequilibrium, or ascertainment bias as related to sampling bias.

4.1. Contribution of S. halepense to Antioxidant Improvement in Sorghum

The purpose of this work was to conduct GS of sorghum grain antioxidants using SNPs in a
novel diversity panel of Sorghum bicolor landraces and S. bicolor × S. halepense recombinant inbred lines.
To the best of the authors’ knowledge, it is the first time GS prediction modelling is implemented
in sorghum antioxidants. Sorghum halepense is mostly used in hybridizations with domesticated
S. bicolor with the aim of introgressing perenniality into the genetic background of S. bicolor but, it can
also be used for genetic improvement of several other traits [63], such as antioxidant properties in
sorghum grain. This is particularly important as wild sorghums generally show a higher antioxidant
content compared to domesticated ones [59] in which these compounds were artificially selected
against. Indeed, in this work, S. halepense × S. bicolor lines statistically (at the 0.05 probability
level) outperformed S. bicolor populations in terms of total antioxidant capacity (TAC, 59.16 versus
40.17 mmol TE kg−1 dm−1) and the contents of tannins (7358.57 versus 3053.25 µg CE g−1 dm−1),
phenols (6.56 versus 3.93 g GAE kg−1 dm−1) and flavonoids (6738.39 versus 3869.66 µg CE g−1 dm−1).
The S. halepense × S. bicolor lines evaluated in this work can therefore be considered as a good source of
antioxidants variability in addition to the possibility of using them to breed for perennial grain sorghum
fortified with antioxidants. Nonetheless, the genomic selection for grain quality and production in
a population derived from the hybridization Sorghum bicolor × Sorghum halepense is expected to be
challenging particularly due to the necessity to eliminate negative wild-related traits such as loose
panicle, tiny seeds and seed chattering. The different breeding strategies can be applied, including
combining different traits in an index of selection with appropriate weights or applying a breeding
scheme (e.g., tandem selection) to cull the undesired traits first, before proceeding with breeding for
antioxidant production.

4.2. Genomic Selection Model Performance

Marker density resulted in a physical map length comparable to the sizes of the chromosomes of
the sorghum reference genome (Sorghum_bicolor NCBIv3) [5]. The density of the discovered SNPs was
lower in the centromeric regions, which is consistent with these constitutive heterochromatin regions
being poor in expressed genes, and with the results in [64] showing that GBS SNPs were preferentially
located either in or near gene-rich regions. The four GS models implemented in this work performed
comparably across traits (Figure 6) with GS accuracy ranging from 0.49 to 0.58 (Figure 6). This can
be explained by the high pairwise correlation between the evaluated traits which can result from the
controlling pleiotropic genetic factors and/or blocks of genetic factors that are in linkage disequilibrium
among themselves and with the traits of interest. In such situations, the GS models captured molecular
information shared among traits, resulting in comparable prediction performance. The genomic
selection investigations reported herein were based on phenotypic data collected from two open field
trials conducted over two years. The two-year trials are a threshold standard in agricultural research.
Several studies, e.g., [6,7,65] similar to ours, reported genomic prediction findings based on one-year
trials. Sorghum antioxidants concentration is a highly heritable trait. Indeed, heritability in this work
was above 0.9, meaning that the environmental noise for these qualitative traits is negligible and could
not significantly affect the statistical inferences on which our findings were based.

Three major factors that affect the GS accuracy are the training set size, marker density and
population structure [66]. In this work, the training set size (ntrn = 80) was meaningful and it was
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higher or comparable to the sizes experimented in previous works (e.g., [67]). In addition, the GS
accuracy was consistently moderately high (≥ 0.5) across traits implying that the observed weak
population structure did not impact the performance of the GS models. Regarding the marker density,
the number of the markers used in this work covered the entire length of the sorghum genome (Figure 3)
and was higher than or comparable with several previous works (e.g., [8,9,39]).

The available empirical evidence for GS efficiency in plant breeding is set to 0.5, the baseline for
GS prediction accuracy in plant breeding [14,67]. In his recent work on the hexaploid bread wheat, [38]
demonstrated that GS accuracy as low as 0.2 can allow substantial within-generation grain yield
improvement. Therefore, the GS model performances obtained in the present study are high enough to
sustain sorghum breeding for antioxidants production and allow important genetic gains per unit of
time and cost. In addition to the accuracy, the importance of the GS strategy is also evaluated using
other criteria, such as the possibility GS offers to shorten the breeding cycle with interesting economic
returns [67] due to intercrosses driven by genetic predictions, and in the case of antioxidants, GS offers
the possibility of selecting for or against this trait early (e.g., at the seedling stage) without waiting for
seed setting or harvest. The GS equations developed in this work can be directly used in sorghum
breeding programs. The GS results presented herein and experimental designs used in this work can
be implemented in antioxidants genetic investigations and in breeding programs to qualitatively and
quantitatively improve the antioxidant production for different purposes including the manufacture of
health-promoting and specialty foods.
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