
REVIEW
published: 29 November 2018

doi: 10.3389/fendo.2018.00707

Frontiers in Endocrinology | www.frontiersin.org 1 November 2018 | Volume 9 | Article 707

Edited by:

Ilpo Huhtaniemi,

Imperial College London,

United Kingdom

Reviewed by:

Livio Casarini,

Università degli Studi di Modena e

Reggio Emilia, Italy

Peter Stanton,

Hudson Institute of Medical Research,

Australia

Kim Jonas,

University of London, United Kingdom

*Correspondence:

Alfredo Ulloa-Aguirre

aulloaa@unam.mx

Specialty section:

This article was submitted to

Reproduction,

a section of the journal

Frontiers in Endocrinology

Received: 19 September 2018

Accepted: 09 November 2018

Published: 29 November 2018

Citation:

Ulloa-Aguirre A, Zariñán T,

Jardón-Valadez E, Gutiérrez-Sagal R

and Dias JA (2018) Structure-Function

Relationships of the

Follicle-Stimulating Hormone

Receptor. Front. Endocrinol. 9:707.

doi: 10.3389/fendo.2018.00707

Structure-Function Relationships of
the Follicle-Stimulating Hormone
Receptor
Alfredo Ulloa-Aguirre 1*, Teresa Zariñán 1, Eduardo Jardón-Valadez 2,

Rubén Gutiérrez-Sagal 1 and James A. Dias 3

1 Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y

Nutrición Salvador Zubirán, Mexico City, Mexico, 2Departamento de Ciencias Ambientales, Universidad Autónoma

Metropolitana Unidad Lerma, Lerma, Mexico, 3Department of Biomedical Sciences, School of Public Health, University at

Albany, Albany, NY, United States

The follicle-stimulating hormone receptor (FSHR) plays a crucial role in reproduction.
This structurally complex receptor is a member of the G-protein coupled receptor
(GPCR) superfamily of membrane receptors. As with the other structurally similar
glycoprotein hormone receptors (the thyroid-stimulating hormone and luteinizing
hormone-chorionic gonadotropin hormone receptors), the FSHR is characterized by
an extensive extracellular domain, where binding to FSH occurs, linked to the signal
specificity subdomain or hinge region. This region is involved in ligand-stimulated receptor
activation whereas the seven transmembrane domain is associated with receptor
activation and transmission of the activation process to the intracellular loops comprised
of amino acid sequences, which predicate coupling to effectors, interaction with adapter
proteins, and triggering of downstream intracellular signaling. In this review, we describe
the most important structural features of the FSHR intimately involved in regulation of
FSHR function, including trafficking, dimerization, and oligomerization, ligand binding,
agonist-stimulated activation, and signal transduction.

Keywords: follicle-stimulating hormone receptor (FSHR), follitropin receptor, structure, G protein-coupled

receptor (GPCR), glycoprotein hormone receptors

INTRODUCTION

The glycoprotein hormone (GPH) receptors (GPHR), are members of the highly conserved Class
A subfamily (or rhodopsin-like family) of the G protein-coupled receptor (GPCR) superfamily
(1–5). GPCRs are 7-transmembrane-helix protein molecules that transmit intracellular effects
through activating intracellular signaling mediated by members of the guanine-nucleotide-binding
signal-transducing proteins (G proteins); they are characterized by a single polypeptide chain
that traverses the lipid bilayer of the plasma membrane seven times, forming characteristic
transmembrane α-helices linked by alternating extracellular and intracellular sequences or loops,
with an extracellular amino-terminus end and an intracellular carboxyl-terminal tail (C-tail)
of variable lengths. In the case of GPHRs, common features include a large amino-terminal
extracellular domain (ECD), where recognition and binding of their cognate ligands, follicle-
stimulating hormone or follitropin (FSH), luteinizing hormone (LH), and thyroid-stimulating
hormone (TSH) occur (6). This domain contains a central structural motif of imperfect leucine-rich
repeats [12 in the FSH receptor (FSHR), 9 in the luteinizing hormone/chorionic gonadotropin
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receptor (LHCGR) and 11 in the TSH receptor (TSHR) (7–
9)] that is shared with several cell surface plasma membrane
receptors. The leucine-rich repeats motif comprises a surface
that is involved in selectivity for ligands and specific protein-
protein interactions, and is formed by successive repeating units
(β-strand and α-helix) that collectively predispose the ECD to
adopt a horse shoe-shaped tertiary structure (see Figure 1A in
the schematic representation of the FSHR, a prototypical member
of the GPHR family) (7, 10). At the COOH-terminal end of the
large ECD resides the “hinge” region, which links the leucine-rich
repeat (LRR) ECD with the serpentine, seven-transmembrane α-
helical domains (7TMD) and that plays a critical role of signaling
functionality of the receptor (7) (Figure 1B). The hinge region
of all GPHRs is involved not only in high affinity binding of
the ligand but in also receptor activation, intramolecular signal
transduction and silencing of basal activity in the absence of
ligand (9).

The FSHR is about 190Kb long and is located on chromosome
2p21–p16 (11); its coding region comprises 10 exons, each
varying in size from 69 to 1,234 bp, and 9 introns with sizes
108 to 15 kb. Exons 1–9 of the receptor gene encode the large
ECD, including the hinge region, whereas exon 10 encodes the
COOH-terminal end of the hinge region, the 7TMD (which
contains 3 extracellular loops and 3 intracellular loops) and
the intracellular C-tail (3, 11). The human FSHR (hereafter
abbreviated as only FSHR) protein is composed of 695 amino
acid residues; the first set of 17 amino acids encodes the signal
sequence, which after cleavage results in a predicted cell surface
plasma membrane (PM)-expressed, mature FSHR of 678 amino
acid residues exhibiting an approximate molecular weight of
75 kDa as predicted from its cDNA sequence (12). However,
further cleavage of the FSHR occurs at the C-tail, but the exact
location of this cleavage has yet to be determined (13). Three of
four potential N-linked glycosylation sites yields receptor forms
with molecular weights (as determined by gel electrophoresis) of
∼80 to ∼87 kDa for the mature receptor (14). A high degree
sequence homology is present in both the FSHR and its closely
related LHCGR. In fact, their sequence homology is ∼46% in
the ECD and ∼72% in the 7TMD (12, 15). Of the three domains
of the gonadotropin receptors, the intracellular sequences, which
include the intervening loops and the C-tail, present the lowest
sequence homology (∼27% identity), except the NH2-ends of the
carboxyl-termini, which have cysteine residues for palmitoylation
and the primary sequence motif [F(X)6LL] that is involved
in intracellular trafficking from the endoplasmic reticulum to
the PM (16–18). Both of these structural features are quite
common in the rhodopsin-like GPCR Class and likely play a role
in signaling specificity particularly when two members of the
same family (FSHR and LHR) are coexpressed in the same cell
(granulosa cell).

Gonadotropins and their receptors play an essential role in
reproduction. In the ovary, FSHR is predominantly expressed in
granulosa cells of developing follicles, where the FSH-activated
receptor triggers activation of a complex signaling network
that promotes follicle growth and maturation, and induces in
the granulosa cells the necessary enzymes for converting the
androgens provided by the theca cells under the LH stimulus

to estrogens (19). In the testis, the Sertoli cells lining the
seminiferous tubules are the targets of FSH action, where
the gonadotropin promotes their growth and maturation and,
together with testosterone produced by LH-stimulated Leydig
cells, initiates, and supports high quality spermatogenesis (20,
21). Interestingly, a recent study in transgenic mice showed that
a constitutively active mutant (CAM) FSHRmay support normal
spermatogenesis alone in the absence of androgens (22).Whether
this finding in mice is relevant in humans remains an open
question.

In recent years there have been reports of FSHR detected in
other than the canonical gonadal tissues. Extragonadal FSHRs,
which include bone (23, 24), monocytes (25, 26), different
sites of the female reproductive tract and the developing
placenta (27), endothelial cells from umbilical vein (28) and
blood vessels from malignant tumors and metastases (29–31),
and the liver (32), have been identified employing different
detection approaches, mainly immunohistochemistry and more
recently in vitro and in vivo imaging of FSH-conjugated NIRII-
fluorophore (33). It has been proposed that these extragonadal
FSHRs might play a role in diverse physiological processes,
mainly related with osteoclast-mediated bone resorption and
angiogenesis (34–40). However, expression of FSHRs in some
extragonadal tissues has been recently questioned (41). Regarding
their structure-function relationship, it is interesting to note that
the FSHRs mRNA transcripts identified in human monocytes
and osteoclasts apparently correspond to receptor isoforms or
variants resulting from differential splicing that do not transduce
signals in response to FSH via the canonical Gs protein pathway
(26) but rather, probably, through Gi2 which in turn triggers
MEK/Erk, NF-kB, and Akt activation leading to increased
osteoclast formation (23).

More recently, Liu and colleagues (42) showed that
immunoneutralization of circulating FSH levels via
administration of either a polyclonal or monoclonal anti-
FSHβ antibody to mice, not only led to attenuation in bone
loss in ovariectomized animals but also prevented adipose
tissue accumulation and parallely enhanced brown adipose
tissue and thermogenesis, probably by blocking the inhibition
promoted by FSH on uncoupling protein 1 (Ucp1) expression,
a regulator of white fat beiging and thermogenesis (43). Given
the physiological and therapeutic implications of extragonadal
FSHRs, more studies, particularly in humans, are warranted
to confirm that extragonadal FSHRs are expressed at sufficient
densities to evoke significant biological effects particularly when
exposed to increased FSH levels, as those present during the
peri- and postmenopause.

The FSHR protein includes a number of specific primary
sequences involved in many of the functions of the receptor.
These sequences are involved in outward trafficking from its site
of synthesis (the endoplasmic reticulum; ER) to the PM (upward
trafficking), agonist binding and activation, signal transduction,
desensitization and internalization, and degradation or recycling
(downward trafficking). Alterations in any of these primary
sequences by gene mutations or due to single nucleotide
polymorphisms (SNPs), may potentially result in abnormal
function of the receptor protein and eventually to disease.
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FIGURE 1 | Schematic representation of the FSHR, showing its amino acid sequence and domains involved in different receptor functions, including binding to
agonist, activation, and signal transduction. (A) Hormone specific binding domain. Residues buried in the FSH/FSHR interface and located in the high affinity-binding
site are colored circles (green, binding to FSH α-subunit only; blue, binding to FSH β-subunit only; orange, residues that interact with both FSH subunits). Beta strands
located in the concave (corresponding to the leucine-rich repeats) or convex surface of ECD are indicated by the colorless arrows. Mutations in this domain leading to
promiscuous ligand binding are depicted in magenta (S128Y), whereas mutations in residues leading to loss-of-function are colored in red. The majority of these
mutations provoke defects in receptor trafficking. (B) Hinge region with the sulfated tyrosine (in position 335) involved in ligand-provoked binding to the FSH subunits
is indicated by the green oval. (C) 7TMD with the α helices represented as cylinders. The location of naturally occurring loss-of-function mutations are shown as
red-colored circles, while the gain-of-function mutations are represented by green squares. The mutation at V514 (magenta circle at the EL2), led to increased plasma
membrane expression of the receptor and OHSS at low FSH doses [reviewed in (4)]. Also indicated are sequences and residues located in the cytoplasmic side
involved in association of the receptor with interacting proteins, receptor activation, upward trafficking, internalization, and post-endocytic fate. For details, see the text.

Frontiers in Endocrinology | www.frontiersin.org 3 November 2018 | Volume 9 | Article 707

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Ulloa-Aguirre et al. FSHR Structure-Activity Correlates

DOMAINS AND MOTIFS INVOLVED IN
FSHR UPWARD TRAFFICKING

The endoplasmic reticulum (ER) is the cell organelle where
the life cycle of GPCRs begins; here, the newly synthesized
peptide sequence is translocated, folded into secondary and
tertiary structures via disulfide bonds formation and assembled
into quaternary complexes. Properly folded receptors are then
exported to the ER-Golgi intermediate complex and then to
the Golgi apparatus and trans-Golgi network; here, processing
is completed, and the receptor proteins are ready to complete
their outward trafficking to the PM and become exposed to
cognate ligands (44, 45). Similar to other GPCRs, if the FSHR
is not correctly folded the quality control surveillance of the
proteosome removes the misfolded receptor. If properly folded,
in the ER FSHR continues its transit to the Golgi and the PM
(46). N-linked glycosylation (as well as disulfide bond formation)
is a frequent feature of GPCRs that occurs during biosynthesis
and facilitates folding of protein precursors by increasing their
solubility, protecting from detrimental non-productive protein-
protein interactions and stabilizing protein conformation (47).
Glycosylation plays a crucial role in folding, maturation, and
intracellular trafficking of the receptors from the ER to the PM
(48). As mentioned above, the ECD of the FSHR contains four
potential N-linked glycosylation sites (sequence NXS/T, where
X is any amino acid except proline) at positions 191, 199,
293, and 318 (12). However, the crystal structure of the FSHR
ECD at residues 25 to 250 in complex with FSH (7, 49) (see
below) has provided positive evidence for glycosylation at only
one of these sites. That structure revealed that carbohydrate is
attached at residue N191, which protrudes into solvent, while
no incorporation of carbohydrate complex occurs at residue
N199, which projects from the flat β-sheet into the hormone-
receptor binding interface and if present would prevent hormone
binding, as might be predicted by the FSH-FSHR ECD crystal
structure (14). Information is lacking on FSHR glycosylation at
residues 293 and 318, albeit some studies suggest that it might
occur at two of the three (at positions 191, 199, 293) N-linked
glycosylation consensus sequences (50) (Figure 1A). Naturally
occurring mutations at the ECD of the FSHR (51, 52) near
or at putative glycosylation sites are deleterious, emphasizing
the important role of glycosylation on receptor targeting to the
cell surface and insertion into the PM. In fact, the A189V, and
N191I naturally occurring FSHR mutations lead to a profound
defect in targeting the receptor protein to the PM, confirming
the role of the conserved 189AFNGT193 motif (which hosts
one glycosylation site) in FSHR trafficking. Nevertheless, it is
not known whether the A189V mutant FSHR is glycosylated at
position N191, given that V189 as well as I191 may potentially
impair proper receptor LRR formation, particularly its α-helical
portion, and hence receptor trafficking.

On the other hand, mutagenesis, and biochemical studies
suggest that in the rat FSHR glycosylation is present at two
glycosylation consensus sequences and that disruption of either
of these two glycosylation sites (N191 or N293) does not
apparently affect receptor folding and trafficking to the PM (50).
The authors interpretation of this finding is that in this rodent

species, at least one glycosylation site at the ECD is needed for
FSHR folding and efficient trafficking to the PM (50). Abscence of
glycosylation of the mature rat FSHR does not impact on binding
or affinity, albeit glycans appear to be important structures
for the maturation of the newly synthesized receptor helping
on folding, conformational stability, and correct routing to the
plasma membrane.

Mutations at the amino-terminal end of the ECD also
affects cell surface residency of the FSHR. In this region,
alanine scanning mutagenesis identified two regions comprising
amino acid residues V9-L31 and E39-N47 which are apparently
important for receptor trafficking (53, 54). Mutations in several
amino acid residues, specifically at F30, I40, D43, L44, R46,
and N47 significantly decreased cell surface PM expression
due to failure for proper trafficking (54). Although mutations
at these sites might impair glycosylation of the receptor,
the abnormal trafficking was more likely due to abnormal
NH2-terminal folding and trapping FSHR intermediates by
surveillance mechanisms that incidentally may interfere with
appropriate glycosylation processing in the ER-Golgi.

In addition to the above described 189AFNGT193 motif
in the FSHR, where mutations influence upward trafficking
of gonadotropin receptors, other sequence motifs located in
intracellular domains seem to be involved in the exit of these and
other GPCRs from the ER and the Golgi. Among these export
motifs is the F(X)6LL (where X is any amino acid) sequence
described by Duvernay and colleagues (16, 55) located between
residues 633 and 641 in the FSHR (Figure 1C). The C-tail
sequence of the FSHR also contains the minimal BBXXB motif
reversed (BXXBB, where B represents a basic amino acid and
X any other amino acid) in its juxtamembrane region (residues
631KNFRR635) (56); the last arginine residues of this latter motif
(at positions 634 and 635) and the preceding F633 also are
included within the NH2-terminal end of the F(X)6LL sequence,
and hence substitutions in these residues impaired trafficking and
PM expression of the receptor (56, 57). The intracellular loop
(IL) 3 of the FSHR also contains this BXXBB motif (residues
569RIAKR573) and either deletion or replacement of its basic
residues with alanine also impairs PM expression of the receptor
(56, 58).

There are other naturally-occurring mutations that affect
trafficking of the FSHR besides those at exon 7 already described,
as well as those that impact on ECD glycosylation. These
have been identified by virtue of their causal relationship to
intracellular retention of FSHR and include the I160T andD224V
mutations (at exons 6 and 9, respectively) at the ECD (59, 60),
D408Y at the TMD2 (61), and P519T at the extracelullar loop
(EL) 2 (62) (Figure 1 red-filled circles). There have been few
studies of the molecular physiopathogenesis leading to impaired
upward trafficking of these FSHR mutants. The Pro519Thr
mutation in the middle of the EL2 results in complete failure of
FSHR to bind FSH and incompetence for triggering intracellular
signaling. The loss of a proline residue at this position may
potentially provoke a severe conformational flexibility that leads
to misfolding and intracellular trapping of the mutant receptor.
The peptide backbone of proline, which is constrained in a
ring structure, is associated with a forced turn in the protein
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sequence, which is lost when the less constraining threonine
is present instead. Thus, it is possible that the abrupt turn
at the middle of the EL2 [where the highly conserved motif
KVSICXPMDV/T/I (residues 513–522 in the FSHR) present in
all three glycoprotein hormone receptors is located], may be
an obligatory requisite for both signal transduction activity and
proper routing of the receptor to the PM membrane (62). The
remaining mutations (at positions 160, 224, and 408) also occur
at highly conserved residues or sequences across species (12),
supporting their importance on FSHR function, at least on its
proper intracellular routing to the PM.

The above mentioned FSHR D408Y mutation represents
an interesting paradigm to explore the molecular mechanisms
subserving misfolding and impaired intracellular trafficking of
mutant FSHR to the PM. Potential alterations in the secondary
structure of the D408Y mutant receptor have been proposed
using template-based modeling techniques. Bramble et al. (61)
compared a model of the WT FSHR to a model of FSHR
containing the D408Ymutation using the RaptorX software (63).
The exercise detected a distorted helical structure upstream at the
site of the mutation at the 7TMD helix 2; this observation was
corroborated by a calculated decreased in the helicity score of the
400 to 410 region using ExPASy secondary structure predictor
(61). A caveat should be noted, however, that template-based-
modeling relies on known structures of proteins (templates)
that display sequence homology with the unknown protein [by
homology modeling or fold recognition of individual amino
acids in the context of all known structures (protein threading)].
Therefore, the accuracy of prediction of protein structure using
template-based modeling of membrane proteins will be limited
by the fact that there are not many solved structures of GPCR
TM domains. This will likely resolve in the near future as
the use of cryo-electron microscopy becomes more accessible
to scientists studying GPCRs (64), which undoubtedly will
transform further understanding of how GPCRs function. In
the absence of such advances and complementary to this new
resource, alternative approaches, such as molecular dynamics
(MD) simulations, had emerged (65). All-atom MD simulations
provides atomistic grounds for understanding membrane folding
processes, protein-lipid affinity, and protein conformational
changes, among other important phenomena for studying
membrane proteins physiology in an aqueous environment. For
example, in the case of the D408Y FSHR mutant, all atom
MD simulations performed for a period of 20 ns within a
lipid bilater environment of polyunsaturated lipids predicted
that mutations at residue 408 would only affect very slightly
the secondary structure. This is because the H-bonds stabilizing
the helical domains are located in the hydrophobic core of the
bilayer, where electrostatic interactions are enhanced due to the
non-polar environment of the lipid hydrocarbon tails. However,
contacts between TMD2 and TMD7 are indeed disrupted upon
replacement of aspartic acid with tyrosine at position 408
(Figure 2). Here Y408 made contacts (with S456 at TMD3, C584
at TMD6, and H615 at TM7) not observed in the WT receptor
(Figure 3). This indicated that replacements at position 408 may
severely impact on the conformational dynamics of the receptor
and thereby promote distinct fluctuations throughout to the

FIGURE 2 | Follicle stimulating hormone receptor (magenta ribbons) in a lipid
membrane bilayer (violet spheres and sticks). The 7TMD domains are identified
with numbers 1–7. Extracellular loops 2 and 3, and the intracellular loop 3, are
labeled as EL2, EL3 and IL3, respectively. The NH2 terminus with a fragment of
the ectodomain (ECD) (starting at residue 317) is depicted in the extracellular
side. Palmitoylated cysteine residues anchored in the membrane are depicted
in cyan spheres. The lipid heads are represented by the phosphorous atoms,
which are depicted as violet spheres, and the lipid tails are represented as
free-drawn vertical lines in the background. Water molecules at the intra- and
extraccelular sides are depicted as a continum solvent in violent.

whole receptor structure (Figure 4), which may potentially lead
tomisfolding and retention of the mutant receptor within the cell
by the quality control system of the cell.

Dimerization and Upward Trafficking
Association between GPCRs, either in the form of dimers or
oligomers, plays a pivotal role in GPCR function, influencing
intracellular trafficking, ligand binding, and signaling regulation
(66–68). In the case of the FSHR, the receptor self-associates
early during receptor biosynthesis, and using both biochemical
and super-resolution imaging approaches evidence supports
the quaternary association at the PM as both monomers and
higher order structures (dimers and oligomers) (13, 69, 70).
Nevertheless, whether association of FSHRs in the ER is an
obligatory pre-requisite for trafficking to the PM, as with other
GPCRs (71–77), is an open question. Although biochemical
studies have found that both the ECD and TMD contribute to
early FSHR association, the sites of interaction(s) remain to be
identified. In fact, in one study (69), mutations in TMD helix 1
and/or 4, which have previously been suggested to be involved
in dimerization of the α1β-adrenergic receptor, dopamine D2
receptor, and CCR5 (78–80), failed to alter the propensity of
the FSHR to associate. Nevertheless, some domains potentially
involved in intracellular FSHR-FSHR interactions have been
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FIGURE 3 | Contacts between side chain atoms of residues at helix 2 (TMD2) and residues at helices 3 (TMD3), 6 (TMD6), and 7 (TMD7). (A) Side chain interactions
in the WT FSHR with the carboxyl group of D408 forming hydrogen bonds with S619 and N622. (B) Side chain interactions of Y408 at TMD helix 2 and residues at
TMD helix 3, helix 6, and helix 7. A hydrogen bond between Y408 and H615 is shown; C584 is depicted since it is close neighbor of Y408 within a 3.5 Å cut-off. Side
chains are depicted as sticks, and the color code is: carbon,cyan; oxigen,red; hydrogen, white; sulfur,yellow; and nitrogen, blue. Only small fragments of the helical
regions are depicted (green or cyan ribons for the WT and 408 mutant receptors, respectively).

identified employing short interfering sequences specific for
particular TMDs and the C-tail (57). That study suggested that
association of FSHRs may occur via multiple contact sites at the
7TMD, including helices 5, 6, and 7, and the C-tail. Although in
how this FSHR-FSHR interaction might influence upward traffic
of the FSHR to the PM has not yet been particularly addressed,
the same study also demonstrated that heterozygous mutations
causing misrouting of the receptor led to defective upward
intracellular trafficking and interfered with proper maturation of
the WT, functional FSHR (57). The more recent crystal structure
of the FSHR ECD, which included the entire 350 amino acid
of the ECD, demonstrated an additional mode of association
of hormone with the ECD that includes the hinge region of
the receptor (Figure 1B) and represented a trimeric receptor
structure (14, 81). This latter observation will be an important
platform for defining the number of FSH molecules hosted by
the receptor but whose formation during the biosynthetic process
and role in receptor trafficking has not been yet documented.
In this vein it is possible that association of FSHR receptors
as dimers or trimers may facilitate coupling the receptor to
several and distinct G proteins and adaptors. In fact, a recent
study has shown that heteromers of adenosine A2A receptor
and dopamine D2 receptor homodimers associated to distinct G
proteins, may modulate signal transduction selectivity through
different molecular interactions with effectors (82).

Heterodimerization of FSHR with the closely related LHCGR,
has been studied employing different experimental approaches
(57, 70, 83, 84). However, it is not yet known whether
such hetero-association also occurs early during biosynthesis,
as demonstrated for FSHR homodimers, or later, when the
individual receptors are already at the cell surface PM. In any
case, the presence of FSHR-LHCGR heterodimers appears to

convey important physiological implications, particularly during
follicular maturation, as it may prevent premature luteinization
of the follicle or ovarian hyperstimulation, according with the
level of expression of each receptor (83). As in the case of
association between FSHRs, it is still unknown which are the
potential contact sites of interaction between these receptors,
although experiments using mutant FSHRs coexpressed with the
WT LHCGR suggest that this hetero-association may also occur
via multiple inter-TMD contacts (57).

FSHR DOMAINS INVOLVED IN LIGAND
BINDING AND RECEPTOR ACTIVATION

The Extracellular Domain (ECD) and Ligand
Binding
As described above and shown in Figure 1A, the mature, PM
expressed FSHR exhibits a large ectodomain, where recognition
and binding of its cognate ligand occurs (14). The current
dogma is that in the FSHR ECD resides both the binding
site for agonist and the region essential for ligand-provoked
triggering of receptor activation. The first reported structure
of the FSH complexed with the extracellular-hormone binding
domain of the FSHR (FSHRHB) (49) documented the important
structural relationship between FSH and FSHR. However, the
expressed protein used for crystalization did not include the
signal specificity subdomain or hinge region, which had been
considered as a separate structure participating on FSHR
activation (85–87). This groundbreaking structure showed for
the first time that FSH binds to FSHRHB like a “handclasp” and
that most β-strands in the inner surface are involved in ligand
binding (Figure 1A). Moreover, extensive previous mutagenesis
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FIGURE 4 | Root mean square fluctiations (RMSF) for α-carbon atoms of the
WT FSHR and the mutant D408Y. (A) Fluctuations calculated for residues in
the tansmembrane domain from Y362 to C646. Helical regions display lower
RMSF values since they are rather rigid within the bilayer hydrophobic core,
whereas larger fluctuations represent flexible regions such as the loops.
(B) Structures of the WT FSHR and the D408Y mutant colored according to
the RMSF values, with rigid regions in red and flexible regions in blue. Flexibility
seems to increase from helix 5 to helix 8 in the mutant receptor, since larger
RMSF values were yield by the mutant than by the WT FSHR.

and biochemical analyses of FSHmutants provided an immediate
validation of the dogma that both non-covalently linked α- and
β-subunits (present in all glycoprotein hormones) are involved in
specific binding to the receptor. Importantly, this structure also
demonstrated that carbohydrates are not actually involved in the
formation of the binding interface of the FSH–FSHRHB structure,
but are rather sequestered to the periphery of the complex
(88, 89). This observation would argue against the notion that
pharmacodynamics of FSH biosimilars may vary depending on
their carbohydrate composition. The second and subsequent
crystal structure of the FSH-FSHR complex shed additional light
on this topic while suggesting even more complicated structure-
function correlates to consider.

The second crystal structure of FSH bound with the entire
FSHR ECD reported by Jiang and colleagues (7) includes the

hinge region (FSHRED). That structure described in more detail
the role of the glycoprotein hormones receptors ECD not only
in ligand binding but also on receptor activation. Accordingly,
this structure predicts that FSH is initially recruited by the
previously described FSHRHB through high-affinity interactions
between the gonadotropin and the concave surface of leucine-
rich repeats (Figure 1A, gray arrows within the amino acid
sequence of the ECD) 1–8. However, the interface between the
FSH and the FSHR ECD is broader than that previously identified
in the Fan and Hendrickson FSH-FSHRHB structure (49) due
to the presence of secondary interaction sites (shown also in
Figure 1A). According to this newer structure, binding of FSH
to the FSHR hormone binding domain provokes conformational
alterations in the L2β loop (residues V38β-Q48β) of FSH leading
to interactions between amino acid residues in the L2β loop
and LRRs 8 and 9, as well as to interactions of FSHR residues
located in the hinge region with residues on FSH α- and β-
subunits. Several residues on the FSHR determine specificity of
the receptor for its ligand, including L55, E76, R101, K179, and
I222, in which L55 and K179 are important to distinctly identify
LH, human chorionic gonadotropin (hCG) and FSH due to their
interaction with the FSHβ “seat belt,” whereas the other residues
dictate specificity preventing binding to TSH (7, 14). A more
detailed map of interaction between residues from FSH and the
FSHED is shown in Figure 5. The FSHR ECD structure reported
by Jiang and colleagues (7), identified the hinge region as an
integral part of the ECD (Figure 1B), and confirmed previously
reported biochemical data on the FSHR and TSHR (85, 90–93),
underlying the role of this region in ligand-stimulated receptor
activation. These and other studies (94) have also suggested that
the ECD of the glycoprotein hormone receptors acts as a tethered
inverse agonist. In this scenario, the ECD acts as an agonist upon
ligand binding and activates the sequence 353FNPCEDIMGY362
located in the junction of the carboxyl-terminal end of the hinge
region and the 7TMD helix 1, which function as an internal
agonist unit (Figure 1B).

The agonist-stimulated activation mechanism of the FSHR
includes a sulfated tyrosine residue at position 335 of the hinge
region. Here, exposure of a pocket located in the interface of the
α- and β-subunits of FSH formed upon binding of the ligand to
the hormone binding domain, is the binding site for the sulfated
tyrosine residue located immediately adjacent to the rigid hairpin
loop (Figure 1B). The proposal is that this initial binding event
is followed by lifting of the hairpin loop leading to relieving of
the inhibitory effects of the loop on the 7TMD. Rotation of a
fixed short helix formed by residues S273 to A279 (Figure 1B)
additionally contributes to the conformational change of the
hinge region that leads to receptor activation (7, 14). The fact that
substitution of the S273 residue with a non-polar hydrophobic
residue (isoleucine; S273I) leads to constitutive activation of the
receptor, emphasizes on the importance of this helix movements
on FSHR activation; thismechanismmay also explain the effect of
the S277I mutation on LHCGR constitutive activation (95). The
disulfide bridges C275-C346 and C276-C356 play an additional
role in FSHR activation through fastening the last β-strand
(LRR 12) to the short helix forming a rigid body and tying this
helix to the last few residues before the 7TMD helix 1 (internal
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FIGURE 5 | Schematic representation of detailed interaction of FSH and FSHR interface. Contacting residues from FSHR hormone binding domain are shown as
yellow dots, those from FSHα as red dots, and FSHβ as blue dots. The middle area indicates the specific side-chain interactions between FSHR and its ligand.
Interactions that contribute to common affinities among all the GPH–GPHR family members are shown as green-filled circles (for charge–charge interactions) or boxes
(for non-charged atomic contacts), and they are connected by green lines toward the yellow dots in FSHR or red or blue dots in FSH α- or β-subunits, respectively.
Interactions involved in specificity are shown as purple- or red-filled circles or boxes connected by lines of the same color to the dotted residues in the receptor and
ligand. LRR, leucine-rich repeats.

agonist in Figure 1B). The movement of the hairpin loop
occurring upon ligand binding presumably affects and influences
the conformation of this and the remaining TMDs, thereby
provoking receptor activation (see below). This structure has far-
reaching impact. Given the similarity among the structures of
glycoprotein hormones and glycoprotein hormone receptors, it
is highly possible that all glycoprotein hormone receptors share
the 2-step recognition/activation process described above. For
example, mutants of glycoprotein hormone receptors created
to remove this critical sulfated tyrosine, exhibit a marked
loss of sensitivity to their corresponding ligands (86, 87, 96).
Moreover, FSH with mutations in residues located below the
sulfated tyrosine-binding pocket or at the potential exosite
(αF74E and βL73E, respectively) promote signaling presumably
by taking the hairpin loop up toward the top of the
pocket (7).

FSHR (and TSHR as well) promiscuity for ligand specificity
caused by particular mutations in the ECD (and the 7TMD
as well, see below) (Figure 1) is an issue that has important

implications in the clinical setting. This is because of the
structural similarities among the glycoprotein hormones and
their receptors and the limited number of residues in the
ligand and the LRRs at the hormone-binding domain that
participate in ligand-receptor interactions. For example, a ligand
structurally similar to a glycoprotein hormone receptor cognate
ligand could interact with and activate the receptor. This
could even occur with a low affinity and without triggering
detectable receptor activation under basal conditions. In this
regard, replacements of key residues that presumably participate
in receptor-ligand interaction may hamper ligand discrimination
of the receptor and result in recognition and interaction of
the mutant receptor with other than its specific ligand. In this
setting, the S128Y mutation at the FSHR (Figure 1) may provoke
ovarian hyperstimulation syndrome [OHSS; which may be life-
threatening in its severe form (97)] associated to pregnancy
due to increased responsiveness of the FSHR to high levels of
hCG present during the first trimester of pregnancy (98). In this
mutation, replacement of serine with tyrosine allows the FSHR
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to hydrogen bond αR95 at the hCGmolecule, leading to receptor
activation.

Since the ELs are extracellular projections of the TMDs, it
was anticipated that these loops also may be involved in ligand-
receptor interaction and receptor activation, particularly EL1 and
EL3, which is, indeed, the case. The role of the FSHR ELs in these
processes has been described in detail in a recent review (4).

The 7TMD and Receptor Activation
Given that no structural data are currently available on
gonadotropin receptors 7TMD, homology modeling with other
GPCRs has been a very useful tool to explore the potential
molecular mechanisms occurring at the 7TMD level that lead
to the initial activation of FSHR by its ligand. Among a
number of ligand-bound GPCR structures currently available,
the following structures are important to understand the
activation mechanism: a. A ligand-free form of opsin that is
co-crystalized with the carboxyl-terminus of the α-subunit of
Gαt (99); b. A β2AR bound to agonist and stabilized in the
active conformation by a nanobody mimicking the G protein
(100); c. Agonist-bound β2AR and adenosine A2A receptor co-
crystallized with heterotrimeric stimulatory G protein (Gαs −

β1γ 2) (101, 102); and d. The structures of four GPCRs bound
to Gi obtained through cryo-electron microscopy (103–106).
Previously described crystal structures, may be useful as a
first approximation of ligand-induced activation of FSHR.
However, since none of those receptors entertain a large
extracellular domain for ligand binding, the common structural
rearrangements noted may not translate well to the FSHR
or other glycoprotein hormone receptors (107). Upon ligand
binding, the extracellular portion of the 7TMD is initially affected
by agonist-evoked local structural changes, including: a. A small
distortion of TM helix 5; b. Relocation of TM helices 3 and 7;
and c. Translation/rotation of TM helix 5 and helix 6. These
movements occur concurrently with rearrangements in a cluster
of conserved hydrophobic and aromatic residues (positions 3.40,
5.51, 6.44, and 6.48)1, that constitute a transmission switch
deeper in the core of the receptor leading to rearrangement at
the TMD helix 3–helix 5 interface, and formation of new non-
covalent contacts at the TMD helix 5–TMD helix 6 interface
(109). Several residues in this transmission switch are highly
conserved among Class A GPCRs, suggesting that they are a
common feature of GPCR activation of effector proteins. These
local changes are translated into large-scale helix movements
occurring intracellularly at the cytoplasmic side of the plasma
membrane (107), yielding rearrangements of TMD helix 5 at
its cytoplasmic side (110) associated with a modification of
theTMD helix 5–helix 6 interface, which result in the large-
scale relocation of the cytoplasmic side of TMD helix 6 (111).
Consequently, a cleft required for hosting G protein α-subunits
opens. Further, recent studies on receptor-Gi complexes suggest
that a smaller displacement of the TMD helix 6 might interfere

1Amino acid numbering according to the Ballesteros andWeinstein nomenclature,

in which the first number denotes the helix (1–7) and the second the residue

position relative to the most conserved position, which is assigned the number

50. [see Ballesteros and Weinstein (108)].

with binding of the receptor to Gs and allow to selectively
bind Gi (103–106). Importantly, residues from the IL2 and
the cytoplasmic end of TMD helix 3 (R3.50 of the conserved
E/DRY/W sequence) participate in interaction with the G protein
following activation (101, 112). As a result of receptor activation,
the salt bridge between residues R3.50 and E6.30 in the inactive
state is broken (99). These structural and biophysical studies
indicate that agonist binding may not be solely sufficient to
stabilize fully active states of the receptor and that binding
of an effector protein on the cytosolic face of the receptor
seems necessary to fully attain the active state of the receptor
(113). Further, there may not be a single active state arguing
that different ligands with or without allosteric modulators, can
stabilize distinct conformations and give rise to diverse and
distinct downstream responses (114, 115). It would follow then
that CAM receptors might exist in conformations that facilitate
recruitment of non-G protein effectors such as β-arrestins (116,
117), giving rise to biased signaling. Thus, from a clinical
point of view understanding or determining their structure can
guide development of therapeutically useful negative allosteric
modulators. From a basic view, solving the structures of the
constitutively active receptors will lead to additional insights
about ligand-induced activation of FSHR, particularly with
regard to engagement of downstream effectors.

Long-range conformational changes and rearrangements
transmitted down stream the intracellular extensions of the TMD
helices and associated with the ILs and C-tail of the receptor
induce reorganization that allows accommodation and activation
of multiple downstream effectors. The α-helices conforming the
7TMD may oscillate between multiple active conformations,
which eventually determine the activation of several or distinct
downstream signaling pathways and account for functional
selectivity (see below). Given the structural and functional
similarities among Class A GPCRs, it is highly possible that
the FSHR (and other glycoprotein hormone receptors as well)
may share some of recently described structural mechanisms
of activation at the 7TMD exhibited by other members of this
particular Class of GPCRs. Here it is important to note that in
the case of rhodopsin the active conformation is not as variable
as in other GPCRs with diffusible ligands, because upon light
exposure rhodopsin exhibits (and, in fact, vision requires) a
high switching fidelity and very fast activation dynamics than
other GPCRs, which switch asynchronically during the ligand-
stimulated activation process (118). In fact, a recent crystal
structure of rhodopsin in complex with a mini-Go protein
(119) showed that the structure and active conformational state
of rhodopsin bound to Go is very similar to that previously
observed for the rhodopsin-arrestin complex (120), implying that
rhodopsin exposes the same sites to recognize its cognate G
protein (Gt) and arrestin and that fewer stable conformations in
the active state exist in this receptor compared to other GPCRs
(119).

The specific intermolecular interactions and nature of
the conformational changes subserving stabilization of the
glycoprotein hormone receptors 7TMD in different (inactive or
active) conformations are not yet fully understood at atomic
resolution. Yet evidence derived from combined experimental
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approaches (mutagenic, structural, and in silico strategies)
as well as from in vitro recreation of naturally occurring
inactivating and activating mutations (see below), have allowed
identification of potential structural determinants and network
interactions that predominate during the inactive and active
conformations of these receptors (7, 121–126). Application of in
silico and mutagenesis approaches, particularly on the LHCGR,
have unveiled important information about TMD helices and
particular amino acid residues involved in intra- and inter-
helical non-covalent ionic interactions, network formation, and
pathways that are associated with the different activation states of
the gonadotropin receptors. In this regard, almost all conserved
amino acid residues in the majority of the LHCGR helices
participate in the formation of intramolecular networks in either
inactive and/or active states. Moreover, highly conserved and
non-conserved residues form ionic inter-helix network pathways
that connect the extracellular and intracellular components of
this receptor during different conformational states. Finally,
salt bridging of R464 (R467 in the FSHR) at the ERW
highly conserved motif located at the COOH-end of the TM3
(Figure 1C) with E463 (FSHR E466) and D564 (FSHR D567)
(at the IL3-TMD helix 6 junction) represents a key network
important for stabilization of the inactive conformation of the
receptor (122, 123, 125, 127). This is the case for other GPCRs
belonging to the rhodopsin/β-adrenergic-like family. As shown
by recent crystal structures of GPCRs-coupled with G proteins,
the majority of LHCGR CAMs would disrupt this essential
TMD3-TMD6 inter-helical stabilizing bridge. That would enable
flexibility for the opening of an intracellular crevice between the
IL2 and IL3 and TMD helix 3 and helix 6, which in turn would
allow exposure of key residues potentially involved in Gs and
Gi activation, (99–106). Integrity of the TMD helix 3-helix 6
salt bridge as a requisite for keeping the inactive conformation
of glycoprotein hormone receptors is further emphasized by
experimental evidence. For example, D567G/N and D619G
mutations lead to constitutive activation of the FSH and TSH
receptors, respectively (128–133). In addition, in silico studies on
a number of laboratory manufactured CAM FSHRs harboring
mutations at residues 401, 580, 545, and 460 (Figure 1) are
known to provoke constitutive activation of the LHCGR (127). It
is also noteworthy that the majority of naturally occurring CAMs
in the LHCG and TSH receptors are located at the TMD helix 6,
which again underlines the importance of this particular helix on
G protein coupling and signal transduction.

In contrast to the LHCGR or TSHR, gain-of-function
mutations in the 7TMD of the FSHR leading to constitutive
activation are relatively rare (Figure 1) despite the relatively
high homology between their 7TMD [reviewed in (134)]. This
observation suggests a higher stability of the FSHR 7TMD in
the inactive state compared with those of other glycoprotein
hormone receptors (135). Nevertheless, it is important to keep
in mind that CAMs of the FSHR are actually difficult to detect in
the clinic because they usually do not exhibit severe phenotypes
(136). In fact, mutations leading to ligand-independent activation
of LHCGR show low constitutive activity when introduced into
the FSHR (127, 135), despite strong promiscuous activation
by hCG and TSH (127). Promiscuous activation also has been

observed in three out of six naturally occurring FSHR CAMs
(134), suggesting a close link between constitutive activation
of this receptor and ligand promiscuity, an association not
always observed in the other related receptors (91, 130).
Partial activation of the FSHR apparently facilitates relaxing
the inhibitory constraints of the 7TMD, making the receptor
prone to full activation by related ligands when present at high
concentrations.

FSHR DOMAINS AND SIGNAL
TRANSDUCTION

As described above, binding of agonist to the FSHR provokes
conformational changes in the receptor molecule, that are
transmitted through the 7TMD to the intracellular domains,
where coupling to effectors, interaction with adapter proteins,
and triggering of downstream intracellular signaling takes place.
As in other GPCRs, the intracellular domains of the glycoprotein
hormone receptors are extensions of the TMDs, that participate
in downstream effector activation. Accordingly, conformational
changes in the 7TMD helices lead to activation of G proteins and
other interacting proteins involved in signaling, desensitization
and internalization of the receptor (15, 56, 58, 122, 137–
142) (Figure 1C). In addition to activation of the canonical
Gs/adenylyl ciclase(cAMP/protein kinase A (PKA) pathway, the
FSHR also activates signaling cascades involved in a variety of
cellular processes, including proliferation and/or differentiation,
functional selectivity and differential gene expression [reviewed
in (143)]. Some of the motifs involved in these complex signaling
networks are shown in Figure 1. For example interaction of the
FSHR with the adaptor protein containing pleckstrin homology
domain, phosphotyrosine binding domain, and leucine zipper
motif (APPL), has been mapped to the IL-1, specifically to K393,
L394, and F399 (144, 145). The adapter APPL1 may regulate
signal specificity and trafficking through the interaction with
PI3K and Akt, which is followed by FOXO1a phosphorylation,
leading to abrogation of apoptosis (145); in addition, this adaptor
is also involved in FSHR-mediated Ca2+ signaling and other
functions (84, 146). Meanwhile, association of the FSHR with
the 14-3-3τ protein has been mapped to the IL2, overlapping
the above mentioned ERW motif (138, 147); 14-3-3 proteins
are involved in several cell processes and play an important
role in modulating signaling pathways through interacting with
activated signaling proteins (148). Mutagenesis studies also
have identified other residues in this loop, such as Leu477,
that are important for maintaining the receptor in an inactive
conformation (142), and it has been suggested that this particular
loop may function as a conformational switch to evoke G
protein activation, as reported for the LHCGR (58, 149, 150).
Sequences in IL3 have been identified that are involved in
signal transduction, including the reverse BBXXB motif in the
juxtamembrane region of this loop (56, 151, 152). Replacement
of R573 with cysteine does not affect PM expression or binding
to agonist yet signaling mediated by Gs is severely impaired (59).

The C-tail exhibits a putative class B S/T cluster closely related
with receptor phosphorylation by G protein-coupled receptor
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kinases (GRKs) and β-arrestin recruitment, which are scaffold
intermediates involved not only in receptor desensitization,
internalization, and recycling, but also in Gs-independent
ERK1/2-mediated signaling (see below) (153–156).

The C-tail of the FSHR also exhibits an aspargine residue at
position 680, which is the site for the expression of the most
common functional variant (N680S) of the WT FSHR resulting
from a single nucleotide polymorfism (SNP) in the FSHR and
that exists in strong linkage disequilibrium with the amino acid
residue in position 307 (T307A) at the ECD (157). Expression
of the S680S FSHR variant in vivo has been associated with
variations in the sensitivity of the FSHR to its cognate ligand
(158, 159), whereas in vitro this variant exhibited attenuated
intracellular signaling kinetics, enhanced β-arresting recruitment
and ligand-stimulated internalization, and decreased CREB-
dependent gene transcription and nuclear PKA activation (160,
161). The functional abnormalities of the S680S FSHR variant
might be responsible for the altered response to exogenous FSH
administration presented by women bearing the homozygous
state as well as for the lower pregnancy rates observed in some
particular populations (162).

Potentially important domains at the 7TMD and ILs involved
in receptor-G protein association have been described in the
preceding section.

FSHR DOMAINS INVOLVED IN
INTERNALIZATION AND
POST-ENDOCYTIC PROCESSING

G protein-coupled receptor interaction with agonist at the PM
triggers downward trafficking of the receptor, which occurs
through a series of well-known distinct processes. These include:
a. phosphorylation and β-arrestin recruitment, which by
interacting with clathrin and the clathrin adaptor AP2 promote
receptor internalization into endosomes, and b. either targeting
of the receptor to the lysosomes and/or proteasomes or recycling
of the receptor back to the PM. Hence, the balance between
trafficking from the site of synthesis (the ER) to the PM and the
endocytosis-recycling/degradation pathway is what defines the
final density of receptor protein available to agonist and required
to evoke a biological response. Recently, FSHR was identified in
very early endosomes during its post-endocytic sorting, rather
than to early endosomes as in most GPCRs; apparently, sorting
to very early endosomes represents an important mechanism
subserving receptor recycling, where PKA-phosphorylated
APPL1 present in this particular endosomal compartment plays
an essential role (163–165). In addition to phosphorylation
by PKA and PKC (both second messenger-dependent
kinases), FSHR is phosphorylated by GRKs 2, 3, 5, and 6
(153, 155, 166, 167). Although both PKA and PKC participate
in agonist-dependent and -independent desensitization
(homologous and heterologous desensitization, respectively)
of the FSHR, phosphorylation mediated by GRK results in
more complex effects, including homologous desensitization,
regulation of β-arrestin recruitment, internalization, and G
protein-independent signaling (153). As described in the

previous section, a cluster of five serine and threonine residues
has been identified in the C-tail of the FSHR as target for
phosphorylation by GRKs (153). β-arrestins associated with the
GRK2- or GRK5/6-phosphorylated, agonist-occupied FSHR,
apparently extert distinct intracellular functions: the FSHR
phosphorylated by GRK2 predominates in the β-arrestin-
stimulated desensitization process, while phosphorylation
by GRK5- and GRK6- is necessary for β-arrestin-mediated
MAPK-ERK1/2 activation (153, 154, 168).

β-arrestin recruitment to GRK-phosphorylated FSHR is a
well-recognized process leading to receptor internalization (153,
167, 169). In the case of the LHCGR this effect is rather
mediated by the interaction with ADP ribosylation factor
nucleotide-binding site opener (ARNO), which is an exchange
factor for ADP ribosylation factor 6 (ARF6) that recruits β-
arrestins when bound to GTP (170, 171). In contrast with
the LHCGR (in which only 30% of the internalized receptor
recycles back to the PM), most of the internalized FSHR is
recycled back to the cell surface (166, 172). Palmitoylation
plays and important role in determining the post-endocytic fate
(degradation vs. recycling) of gonadotropin receptors (17, 18,
173–175). The importance of this S-acylation in internalization
and post-endocytic processing of GPCRs varies depending
on the particular receptor. In contrast to the LHCGR in
which prevention of palmitoylation by site-directed mutagenesis
increased the rate of agonist-stimulated internalization (174),
abrogation of palmitoylation of the C-tail cysteine residues
(cysteines 644, 646, and 672, Figure 1C) at the FSHR did not
affect the dynamics of internalization of the hormone/FSHR
complex (172). Nevertheless, in both unpalmitoylated receptors,
recycling to the cell surface was impaired and the fraction of
receptor/hormone complex submitted to degradation via the
proteasome/lysosome pathway was increased (17, 174). Further,
studies in HEK293 cells showed that in the non-palmitoylated
FSHR degradation through proteasomes predominated over that
mediated by lysosomes, as revealed by experiments in which
proteosomal but not lysosomal degradation was inhibited (17).
In fact, the FSHR is ubiquitinated in IL3 (Figure 1C) and
proteosomal inhibitors increase cell surface residency of this
receptor (17, 176). Thus in both gonadotropin receptors, S-
acylation plays an important role in postendocytic processing.

In addition to palmitoylation, postendocytic trafficking also
may be influenced by specific amino acid residues present in the
C-tail of the FSHR. Similar to the LHCGR, truncations involving
the last eight residues of the FSHR resulted in re-routing of a
substantial amount of the internalized FSH-FSHR complex to the
degradation pathway (166).

CONCLUSIONS

This review summarizes the information available on the
relationship between structure and function of the FSHR.
Although a substantial amount of information on this particular
receptor structure-activity relationship has emerged during the
last decade, there are still several issues that remain to be
resolved, including elucidation of the entire crystal structure
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of the receptor including the 7TMD. This critical step will
unambiguously and more precisely identify those residues and
domains within the 7TMD and intracellular domains involved in
receptor activation, FSHR-FSHR and FSHR/LHCGR association,
and interaction with the array of proteins involved in intracellular
signaling, and also in specific binding of allosteric modulators,
the latter with important implications in the clinical arena.

Since there is no firm structural data on whether reported
extragonadal FSHRs are variants of the canonical FSHR
structure, particularly the FSHRs represented to be in bone,
adipose tissue and malignant tumors (33, 177, 178), a more
precise identification of such structural features might allow
the design of highly specific therapeutic strategies, which block
putative deleterious FSH effects on these particular tissues. In
this vein, application of novel imaging techniques (179) may be
useful to critically evaluate whether expression levels of FSHR in
those extragonadal tissues are sufficient to incur these deleterious
effects or whether their density changes as the menopausal
status progresses. Without any doubt, crystals of gonadotropin
receptors also will aid to clarify many aspects on extragonadal
FSHRs function that may be translated in the near-term to
human therapeutics.

Finally, another interesting issue concerns to the altered
response of the S680S FSHR variant to the FSH stimulus. In
this regard, two novel therapeutic FSH compounds produced
by human cell lines have emerged; comparatively, these
preparations differ somehow in glycosylation pattern and
apparently exhibit a more favorable pharmacodynamic profile

than the recombinant preparations synthesized by non-human
cell lines (180–182). Those novel FSH preparations might
be more advantageous than the widely used non-human
cell-derived FSH compounds in women bearing the less
favorable S680S FSHR variant. Nonetheless, more detailed data
on the structural and biochemical features of these human
cell-derived FSH preparations as well as on their binding
dynamics at the FSHR and, more importantly, their effects
on intracellular signaling, still are necessary before considering
these new FSH formulations as a worthy option for these
women.
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