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Abstract

We wanted to clone the glucocorticoid receptor (GR) from slender African lungfish (Proto-

pterus dolloi) for comparison to the P. dolloi mineralocorticoid receptor (MR), which we

had cloned and were characterizing, as well as for comparison to the GRs from humans,

elephant shark and zebrafish. However, although sequencing of the genome of the Aus-

tralian lungfish (Neoceratodus forsteri), as well as, that of the West African lungfish (Pro-

topterus annectens) were reported in the first three months of 2021, we could not retrieve

a GR sequence with a BLAST search of GenBank, when we submitted our research for

publication in July 2021. Moreover, we were unsuccessful in cloning the GR from slender

African lungfish using a cDNA from the ovary of P. dolloi and PCR primers that had suc-

cessfully cloned a GR from elephant shark, Xenopus and gar GRs. On October 21, 2021

the nucleotide sequence of West African lungfish (P. annectens) GR was deposited in

GenBank. We used this GR sequence to construct PCR primers that successfully cloned

the GR from the slender spotted lungfish. Here, we report the sequences of nine P. dolloi

GR isoforms and explain the basis for the previous failure to clone a GR from slender Afri-

can lungfish using PCR primers that cloned the GR from elephant shark, Xenopus and

gar. Studies are underway to determine corticosteroid activation of these slender African

lungfish GRs.

Introduction

The glucocorticoid receptor (GR) belongs to the nuclear receptor family, a diverse group of

transcription factors that arose in multicellular animals [1–4]. The GR has many key roles

in the physiology of humans and other terrestrial vertebrates and fish [5–8]. Important for
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understanding the function of the GR is that it is closely related to the mineralocorticoid

receptor (MR) [9–11]. These two steroid receptors evolved from a duplication of an ances-

tral corticoid receptor (CR) in a jawless fish (cyclostome), which has descendants in modern

lampreys and hagfish [11–13]. A distinct GR and MR first appear in cartilaginous fishes

(Chondrichthyes) [1, 9, 11, 14, 15], which diverged from bony vertebrates about 450 million

years ago [16, 17].

Lungfishes are important in the transition of vertebrates from water to land [18–22],

and aldosterone activation of the MR is important in this process [11, 22–25]. Aldoste-

rone, the main physiological mineralocorticoid in humans and other terrestrial verte-

brates [26–29], first appears in lungfish [21–23]. To investigate the origins of aldosterone

signaling, we cloned the MR from slender spotted African lungfish (P. dolloi) and studied

its activation by aldosterone, other corticosteroids and progesterone [30]. To continue

our investigation of early events in the evolution of the GR and MR, we sought to clone

the P. dolloi GR for comparison with P. dolloi MR, as well as with the GR in coelacanths,

zebrafish and humans. However, a BLAST search with the sequence of the GR from coela-

canth and zebrafish did not retrieve the sequence of P. dolloi GR or any other lungfish GR

from GenBank. Nor could we clone the P. dolloi GR using a cDNA from P. dolloi ovary

using PCR primers that had successfully cloned a GR from elephant shark GR [15] and

chicken, alligator and frog GRs [31]. Fortunately, on October 21, 2021 the nucleotide

sequence of African lungfish (P. annectens) GR was deposited in GenBank, which gave us

sufficient information for PCR primers to clone nine isoforms of P. dolloi GR. Here we

report the sequences of these nine P. dolloi GR isoforms and explain the basis for the pre-

vious failure to clone a GR from slender African lungfish using PCR primers that previ-

ously cloned the GR from elephant shark, Xenopus and gar [15, 31, 32]. Our analysis of

these nine GR sequences indicates that they evolved by alternative splicing and gene

duplication [33, 34].

Results and discussion

Multiple sequence alignment of nine P. dolloi GR isoforms

Fig 1 shows a multiple sequence alignment of the nine isoforms of P. dolloi GR. The nine P.

dolloi GRs cluster into three groups: group I (GR-A1, GR-A2), group II (GR-B1, GR-B2,

GR-B3) and group III (GR-C1, GR-C2, GR-C3, GR-C4). GR-A2 begins at “MMDP”, a

sequence motif that is conserved in all nine GRs.

The multiple alignment reveals that these nine slender African lungfish GRs evolved

through alternative splicing and gene duplications (Fig 1). GR-A2 appears to be a product

of alternative splicing of GR-A1. GR-C4 appears to be a product of alternative splicing of

one or more GR-C isoforms, which supports a GR gene duplication in P. dolloi genome.

There also is evidence for gene duplications among the P. dolloi GRs. MLSE at the begin-

ning of GR-A1 is conserved in GR-B2 and GR-C2. A closely following YAPAD sequence is

conserved in all P. dolloi GR isoforms. Fifteen of the first sixteen amino acids at the amino

terminus of GR-A-1 are conserved in GR-B2 and GR-C2 (Fig 1A). This amino acid

sequence is highly conserved in the other seven GRs. The rest of GR-A2 beginning at

MMDPAGALNSLNGTQSLNKY is identical in GR-A1, and this amino acid sequence is

highly conserved in the other seven GRs. MPFESLKYYAPAD is conserved at the begin-

ning of GR-B3 and GR-C3. Beginning at the conserved MMDP sequence in the N-terminal

domain, the two GR-A isoforms differ at 55 positions from the three GR-B and the four

GR-C isoforms.
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Comparison of slender African lungfish GRs and West African lungfish

GRs

To begin to understand sequence conservation and divergence among lungfish GRs, we com-

pared GR-A1, GR-B1 and GR-C1, which are the three longest slender African lungfish GRs,

with the four West African lungfish glucocorticoid receptor sequences in GenBank (Fig 2).

The multiple sequence alignment, shown in Fig 2, reveals strong sequence conservation in

the DBD, with a difference at only one position containing a semi-conserved phenylalanine-

tyrosine. The sequences in the LBD and hinge domains of slender African lungfish GR and

Fig 1. Multiple alignment of the amino acid sequences slender African lungfish glucocorticoid receptors. Total RNA was isolated from P. dolloi ovary and translated

into cDNA. PCR was performed using four primer sets based on the sequence of P. annectens GR, as described in the Methods section. The amplified DNA fragments

were sub-cloned into a vector for sequence analysis. Similar to other steroid receptors, slender African lungfish GR can be divided into four functional domains [6, 8],

consisting of a ligand-binding domain (LBD) at the C-terminus, a DNA-binding domain (DBD) in the center that is joined to the LBD by a short hinge domain (hinge),

and a domain at the amino-terminus (NTD). GenBank accession no. BDF84376 for GR-A1, BDF84377 for GR-A2, BDF84378 for GR-B1, BDF84379 for GR-B2,

BDF84380 for GR-B3, BDF84381 for GR-C1, BDF84382 for GR-C2, BDF84383 for GR-C3, and BDF84384 for GR-C4. Sequences were aligned with Clustal W [35], as

described in the Methods section.

https://doi.org/10.1371/journal.pone.0272219.g001
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West African lungfish GR also are highly conserved. There are small segments of sequence

divergence in the NTD, but most of the NTD is conserved. Overall slender African lungfish

GRs and African lungfish GRs are very similar to each other.

Comparison of the amino acid sequences of slender African lungfish GR,

West African lungfish GR, coelacanth GR, zebrafish GR and human GR

To begin to understand the relationship of lungfish GRs to other selected GRs, we constructed a

multiple sequence alignment of slender African lungfish GR with West African lungfish GR, coe-

lacanth GR, zebrafish GR and human GR (Fig 3). The DBD and hinge domains are highly con-

served in all GRs. There is good sequence conservation of the LBD in all six GRs. However, there

is an interesting pattern of sequence conservation in the NTD. There is excellent sequence conser-

vation in the NTD among slender African lungfish GR, West African lungfish GR, coelacanth

GR and human GR. The stronger conservation of the NTD in lungfish GRs with human GR than

with zebrafish GR, indicates that the NTD in zebrafish GR has diverged from the other GRs.

Comparison of functional domains in slender African lungfish GR with

domains in West African lungfish GR, coelacanth GR, zebrafish GR and

human GR

Fig 4 shows the percent identity in the comparison of the different functional domains on slen-

der African lungfish GR with the GR and MR from other vertebrates.

Fig 2. Multiple alignment of the amino acid sequences of three African lungfish GRs and four West African lungfish GRs. West African lungfish glucocorticoid

receptor sequences were downloaded from GenBank (Accessions XP_043925084 for X1, XP_043925085 for X2, XP_043925087 for X3, XP_043925088 for X4). Sequences

were aligned with Clustal W [35], as described in the Methods section.

https://doi.org/10.1371/journal.pone.0272219.g002
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Fig 3. Multiple sequence alignment of slender African lungfish GR, West African lungfish GR, coelacanth GR, zebrafish

GR and human GR. Glucocorticoid receptor sequences were downloaded from GenBank (Accession no. NP_000167 for

human GR, XP_005996162 for coelacanth GR, and NP_001018547 for zebrafish GR) and aligned with Clustal W [35], as

described in the Methods section. The NTD in zebrafish GR has gaps and sequence differences with the other GRs.

https://doi.org/10.1371/journal.pone.0272219.g003
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As shown in Fig 4, the DBD and LBD are highly conserved in all GRs. For example, slender

African lungfish GR and human GR have 98% and 66% identity in DBD and LBD, respec-

tively. There are similar % identities between corresponding DBDs and LBDs in lungfish GR

and other GRs. This strong conservation of the DBD and LBD contrasts with the lower

sequence identity between the NTD of slender African lungfish GR and human GR (38%) and

even lower sequence identity with the NTD in zebrafish GR (28%).

Phylogenetic analysis

To better understand the relationships among the nine P. dolloi GRs and four P. annectens
GRs, we constructed the phylogenetic tree, shown in Fig 5. In this phylogeny, the four African

lungfish GRs cluster into one group. Slender African lungfish GR-A1 and GR-A2 are in a sepa-

rate branch from the other slender African lungfish GRs. GR-A2 appears to be formed by alter-

native splicing of GR-A1. GR-B1, GR-B2 and GR-B3 cluster. GR-C3 and GR-C4 cluster, and

GR-C4 appears to be formed by alternative splicing of GR-C3.

Basis for the failure to clone P. dolloi GR

Fig 6 shows the location of the PCR primers that we used to successfully clone GRs from

chicken, alligator and frog [31]. Due to the strong conservation of the GR and MR these PCR

primers retrieved partial sequences from both the GR and MR in chicken, alligator and frog.

The full sequences of these GRs and MRs was achieved in the next step using RACE. Our fail-

ure to clone P. dolloi GR was due using WQRFYQ instead of WQRFFQ for the 1st/2nd-reverse

primer. When we used WQRFFQ we were able to clone P. dolloi GR.

Summary

P. dolloi contains nine GR isoforms, in contrast to P. annectens, which contains four GR iso-

forms. We do not know how many GR isoforms are in Australian lungfish (Neoceratodus

Fig 4. Comparison of functional domains of slender lungfish GR with domains in West African lungfish GR, coelacanth GR, zebrafish GR,

human GR. Comparison of domains in slender African lungfish GR with GRs from West African lungfish, coelacanths, humans and zebrafish and MRs

from slender African lungfish, West African lungfish, humans and zebrafish. The functional NTD (A/B), DBD (C), hinge (D) and LBD (E) domains are

schematically represented with the numbers of amino acid residues and the percentage of amino acid identity depicted.

https://doi.org/10.1371/journal.pone.0272219.g004
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forsteri) because their GR sequences have not been deposited in GenBank. The availability of

sequences of P. dolloi GRs and P. annectens GRs should permit using PCR to clone N. forsteri
GRs, which would elucidate the number GR isoforms in this lungfish and the relationship of

their GRs to the GRs of P. dolloi and P. annectens.
The response to corticosteroids of any lungfish GR is not known, nor are the functions of the

multiple GR isoforms in P. dolloi GRs and P. annectens GRs. We have initiated studies to

Fig 5. Phylogeny of slender African lungfish glucocorticoid receptors, West African lungfish glucocorticoid receptors, coelacanth GR and

elephant shark GR. MEGA5 [36] was used to construct this phylogeny. Statistics are based on 1,000 runs.

https://doi.org/10.1371/journal.pone.0272219.g005

Fig 6. Location of PCR primers used for cloning of slender African lungfish GR, coelacanth GR, elephant shark GR, zebrafish GR and

human GR. The correct 1st/2nd-reverse primer for PCR cloning of P. dolloi GR is WQRFFQ instead of WQRFYQ.

https://doi.org/10.1371/journal.pone.0272219.g006
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determine corticosteroid activation of P. dolloi GRs to begin to elucidate the functions of slender

African lungfish GRs. It is interesting that there are multiple isoforms of human GR, due to alter-

native splicing of human GR, and these isoforms are important in achieving functional diversity

of human GR [6, 8, 34, 37]. A similar scenario is likely for P. dolloi GRs and P. annectens GRs.

Materials and methods

Animals

African lungfish (Protopterus dolloi) were purchased from a local commercial supplier. Lung-

fish were anesthetized in freshwater containing 0.02% ethyl 3-aminobenzoate methanesulfo-

nate (Sigma-Aldrich Corp., St. Louis, MO), and tissue samples were quickly dissected and

frozen in liquid nitrogen. We used two individuals of lungfish. All experiments in this study

were carried out under the guidelines specified by the Institutional Animal Care and Use

Committee at the Hokkaido University (Chairman: Prof. Masahiko Watanabe, permission No.

12–0015). The Institutional Animal Care and Use Committee at the Hokkaido University pro-

spectively approved this research.

Molecular cloning of lungfish P. dolloi glucocorticoid receptor

For P. dolloi GR cloning, we designed 4 types of forward N-terminal primers:

F-X1: 5’-GTCATTTTCCCCGTGCTTAACGAA-3’,

F-X2: 5’-GTCTGCAGCTTGAAACTTTGTAAC-3’,

F-X3: 5’-GACGAACATGCTGACCGGATCATAA-3’, and

F-X4: 5’-CATACTGCATTTACCAGAATAGAC-3’

and one C-terminal Reverse primer: R: 5’-GTTAAGGCAAATTTCTGATATTAAGGCAG-
3’ based on the sequences of P. annectens GR (X1: XM_044069149, X2: XM_044069150, X3:

XM_044069152, X4: XM_044069153). PCR was performed using four primer sets (F-X1xR,

F-X2xR, F-X3xR, and F-X4xR) with ovary cDNA of P. dolloi, and the amplified DNA frag-

ments with KOD-plus- DNA polymerase were subcloned into a cloning vector, pCR-BluntII--

TOPO, and sequence analysis was performed for 10 or more clones for each primer sets.

Database and sequence analysis

GRs for phylogenetic analysis were collected with Blast searches of Genbank. A phylogenetic

tree for GRs was constructed by Maximum Likelihood analysis based on the JTT + G model

after sequences were aligned by Clustal W [35]. Statistical confidence for each branch in the

tree was evaluated by the bootstrap methods [38] with 1000 replications. Evolutionary analyses

were conducted in MEGA5 program [36].
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