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Occupational activity represents a large percentage of people’s daily activity and
thus likely is as impactful for people’s general and cognitive health as other lifestyle
components such as leisure activity, sleep, diet, and exercise. Different occupations,
however, require different skills, abilities, activities, credentials, work styles, etc.,
constituting a rich multidimensional formative exposure with likely consequences for
brain development over the lifespan. In the current study, we were interested in how
different occupations with their different attributes relate to five variables: structural
brain health, duration of early-life education, gender, IQ, and age, although the main
focus was the relationship to brain health. To this end, we used the Occupation
Information Network (O∗NET), which provides quantification of occupations along 246
items. Occupational patterns with different loadings for these 246 items were derived
from 277 community-dwelling adults, ranging in age from 40 to 80, based upon the
five subject measures. We found significant patterns underlying four of our variables
of interest, with gender and education predictably showing the most numerous and
strongest associations, while brain health and intelligence showed weaker associations,
and age did not manifest any associations. For the occupational pattern associated
with brain health, we found mainly positive associations on items pertaining to rigorous
problem-solving, leadership, responsibility, and information processing. We emphasize
that the findings are correlational and cannot establish causation. Future extensions of
this work will assess the influence of occupation on future cognitive brain status and
cognitive performance.

Keywords: cortical thickness, occupational data, community cohort, education, age, gender

INTRODUCTION

Occupational attainment and fulfillment has been linked to successful cognitive performance
(Garibotto et al., 2008, 2012; Bickel and Kurz, 2009; Foubert-Samier et al., 2012; Pool et al., 2016;
Chan et al., 2018; Dodich et al., 2018), psychiatric aging, and general well-being (Dragano et al.,
2011; Platts et al., 2013; Wahrendorf et al., 2013) in older adults, independent of socio-economic
and educational status.
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The relation between occupational attainment/satisfaction
and markers of brain-structural health, however, has been probed
and observed far less frequently. Some studies have addressed
relationships between occupation and brain metabolism (Spreng
et al., 2010; Spreng et al., 2011) and white-matter tract integrity
(Kaup et al., 2018). In the few studies that have examined
cortical thickness and volume, occupation has been shown to
be negatively associated with occupational stress (Blix et al.,
2013; Savic, 2015; Savic et al., 2018). Negative associations after
controlling for clinical disease severity in neurodegenerative
disease suggests that occupational attainment is a form of
cognitive reserve (Boots et al., 2015).

In the current study, we were interested in the relationship
between occupation and structural brain health, with a particular
interest in the extent of this relationship beyond possible
demographic variables that are collinear confounders of general
health status, including age, education, IQ, and gender.

We studied and used occupational attainment as quantified by
the extensive characterization in the Occupational Information
Network (O∗NET1), an online resource maintained by the
US Department of Labor. Every job, for example Physics
Teacher, Postsecondary or Marketing Manager, is assigned
a Standard Occupational Classification (SOC) numeric code,
25-1054.00 and 11-2021.00 respectively, and is quantified in
terms of a multitude of indicator variables or dimensions.
Here, we followed previous research conventions (Peterson and
American Psychological Association, 1999; Gadermann et al.,
2014) and retained 246 worker-centric variables with data-
ratings. These dimensions are drawn from different domains,
including ‘work values’ (6 items), ‘interests’ (6 items), ‘knowledge’
(33 items), ‘abilities’ (52 items), ‘work activities’ (41 items),
‘work styles’ (16 items), ‘skills’ (35 items), and ‘work context’
(57 items). To further illustrate this taxonomy, we give a few
examples of items in these different categories. ‘Work values,’
‘interests,’ and ‘knowledge’ are more general and abstract, and
thus the labels need more explicit consultation of the online
data base. For instance, ‘work values’ concerns items such as
‘achievement’ which specifies an orientation awards results and
accomplishments, whereas ‘support’ captures occupations that
involve institutionalized support structures (management, HR,
etc.). A watch repairer (code 49-9064.00), for instance, would
score high on ‘achievement,’ but low on ‘support.’

Domains that are more concrete are ‘work styles,’ ‘work
context,’ ‘skills,’ ‘work activities,’ and ‘abilities.’ The labels
for the these items are usually self-explanatory, such as
‘Persistence’ (work styles), ‘Contact with others’ (work context),’
‘Science’ (skills), ‘Interacting with computers’ (work activities),
or ‘Memorization’ (abilities). For all results in this paper, every
item label will also be supplemented by the appropriate domain
label. If the label is not self-explanatory, the exact definition can
be looked up in O∗NET.

It is noteworthy that the quantification of occupations along
the 246 dimensions necessarily induces positive or negative
correlations between items. The reasons are twofold: (1) some of
the items are intrinsically similar or oppositional. For instance,

1https://www.onetonline.org/

the complementary work-context item ‘Time spent standing’
can only correlate negatively with ‘Time spent sitting.’ (2)
More interestingly, some items are not intrinsically similar or
oppositional, but they become so because of the empirical nature
of most occupations in our sample. The skill- and work-activities
items ‘Critical thinking’ and ‘Handling and moving objects’
are not a priori oppositional, and there might be specialized
occupations that require both. However, in our sample –
and probably the majority of population-based research– they
are negatively correlated (R = −0.51, p < 0.0001). Further,
occupational data will most likely be rank-deficient, i.e., the
numbers of observations (= participants in sample) might be
larger than the number of different occupations. This is the case
for our data array, where 277 participants constitute only 152
different occupations.

Apart from inherent correlations between the occupational
items, occupational attainment, intelligence, education and brain
structural health also usually show mutual associations, and this
was no different in our data. Thus, it is difficult isolate a relation
between brain health and occupation free from these confounders
in cross-sectional associations. At the same time, randomized
interventions with occupation are either impossible, or at least
only possible in very narrow contexts, and so associational studies
have to resort to techniques that try to adjust for the confounders
post hoc.

In the current study, we investigated the association between
a measure of structural brain health and occupational attainment
in 246 indicator variables in a community-based cohort of 277
participants, aged 40 to 80. Gender, age, education, and IQ were
simultaneously entered with structural brain health as covariates
in a general linear model to identify associated items in the
occupational data.

MATERIALS AND METHODS

Subject Sample, Acquired Data, and
Pre-processing
Participants who lived within a radius of 10 miles of the
Columbia University Medical Center were recruited to the
study via random market mailing, and were screened for
magnetic resonance imaging (MRI) contraindications and
hearing or visual impairment that would impede testing. Older
adult participants were additionally screened for dementia and
mild cognitive impairment prior to participating in the study,
and participants who met criteria for either were excluded.
Apart from these cognitive exclusion criteria, health-related
exclusion criteria included myocardial infarction, congestive
heart failure or any other heart disease, brain disorder such as
stroke, tumor, infection, epilepsy, multiple sclerosis, degenerative
diseases, head injury (loss of consciousness > 5 min), intellectual
disability, seizure, Parkinson’s disease, Huntington’s disease,
normal pressure hydrocephalus, essential/familial tremor,
Down Syndrome, HIV Infection or AIDS diagnosis, learning
disability/dyslexia, ADHD or ADD, uncontrolled hypertension,
uncontrolled diabetes mellitus, uncontrolled thyroid or other
endocrine disease, uncorrectable vision, color blindness,
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uncorrectable hearing and implant, pregnancy, lactating, any
medication targeting central nervous system, cancer within last
5 years, renal insufficiency, untreated neurosyphillis, any alcohol
and drug abuse within last 12 month, recent non-skin neoplastic
disease or melanoma, active hepatic disease, insulin dependent
diabetes, any history of psychosis or ECT, recent (past 5 years)
major depressive, bipolar, or anxiety disorder, objective cognitive
impairment (dementia rating scale of < 130), and subjective
functional impairment (BFAS > 1).

All procedures undertaken for this study were approved by the
Columbia Institutional Review Board. Table 1 provides sample
information. IQ was assessed with the National Adult Reading
Test (Nelson, 1982; Blair and Spreen, 1989).

Occupational Data Acquisition
Comprehensive EXCEL spreadsheets for all 8 domain
labels for 969 occupations were downloaded from O∗NET
in August 2016, then processed and collated following
prior established convention (Gadermann et al., 2014).
Participants were asked to provide the occupation of the
longest duration during their lifetime. A Research Assistant
matched the occupation to the O∗NET SOC code, and the
246 indicator variables for each code were obtained from the
collated spreadsheet.

Structural Brain Data Acquisition (T1, DTI, and FLAIR)
and Processing
Magnetic resonance imaging images were acquired in a 3.0T
Philips Achieva Magnet using a standard quadrature head coil.
A T1-weighted scout image was acquired to determine subject
position. One hundred sixty-five contiguous 1 mm coronal T1-
weighted images of the whole brain were acquired for each subject
with an MPRAGE sequence using the following parameters: TR
6.5 ms, TE 3 ms; flip angle 8◦, acquisition matrix 256 × 256
and 240 mm field of view. The DTI images were acquired in 55
directions using these parameters: b = 800 s/mm2, TE = 69 ms,
TR = 11032 ms, Flip Angle = 90◦, in-plane resolution 112 × 112
voxels, acquisition time 12 min 56 s, slice thickness = 2 mm
(no gap), 75 slices. Lastly, a FLAIR scan was acquired with the
following parameters: 11,000 ms TR, 2800 ms TE, 256 × 189
voxels in-plane resolution, 23.0 × 17.96 cm field of view (FOV),

TABLE 1 | Number, age, years of education, and IQ of the participant sample.

Participant sample

Age, mean ± STD, range 61.76 ± 9.34, 40–78

Total number, women, men 277, 142 W, 135 M

Self-identified race 67 African American,

6 Asian,

189 Caucasian,

2 Pacific Islander,

2 Mixed Race,

11 Other

Education in years, mean ± STD, range 16.31 ± 2.39, 12–22

IQ, mean ± STD, range 118.52 ± 8.99, 93.60–130.88

IQ was assessed with the National Adult Reading Test.

and 30 slices with slice-thickness/gap of 4/0.5 mm. This sequence
was used to quantify the WMHs volumes. A neuroradiologist
reviewed each scan individually to exclude any relevant findings.
In the case of a clinical positive finding, the subject’s primary care
physician was informed.

Each subject’s structural T1 scans were reconstructed using
FreeSurfer v5.12. The accuracy of FreeSurfer’s subcortical
segmentation and cortical parcelation (Fischl et al., 2002, 2004)
has been reported to be comparable to manual labeling. Each
subject’s white and gray matter boundaries, as well as gray matter
and cerebral spinal fluid boundaries, were visually inspected slice
by slice, and manual control points were added in the case of
any visible discrepancy. Reconstruction was repeated until we
reached satisfactory results within every subject. The subcortical
structure borders were plotted by freeview visualization tools and
compared against the actual brain regions. In case of discrepancy,
they were corrected manually. Finally, we obtained cortical
thickness for 68 regions of nterest (ROIs), and also read out the
main global-thickness value provided by FreeSurfer.

DTI data were processed with TRACULA (Tracts Constrained
by Underlying Anatomy) distributed as part of the FreeSurfer
v. 5.2 library (Yendiki et al., 2011) which produces 18
major White-Matter tracts. The software performs informed
automatic tractography by incorporating anatomical information
from a training data set, provided by the software, with the
anatomical segmentation of the T1 image of the current data
set, thus increasing the accuracy of the WM tract placement
for each participant. Standard DTI processing steps using
the FMRIB’s Diffusion Toolbox (FMRIB’s Software Library v.
4.1.5) including eddy current correction, tensor estimation,
and bedpostx were performed prior to tractography by the
TRACULA software (Yendiki et al., 2011). For each participant,
the means of fractional anisotropy (FA) for each of the 18
tracts, were entered into subsequent analyses. FA ranges from
0 to 1 with higher number representing more intact WM
integrity.

White-Matter-Hyperintensities (WMH) were obtained
through segmentation by the Lesion Segmentation Tool
algorithm (LST) (Schmidt et al., 2012) as implemented in the
LST toolbox version 2.0.15 (June 2017) for Statistical Parametric
Mapping (SPM)3. The algorithm first segments the T1 images
into the three main tissue classes – cerebral brain fluid, gray
matter and white matter. Then, this information is combined
with the co-registered FLAIR intensities in order to calculate
lesion belief maps. By thresholding these maps with a pre-chosen
initial threshold, an initial binary lesion map is obtained which
is subsequently grown along voxels that appear hyper intense
in the FLAIR image. The result is a lesion probability map.
Every FLAIR sequence that had a total WMH volume above
1000 mm3 was manually inspected to ensure that there were no
visible discrepancies. We counted the number of hyper-intense
voxels, N, that were classified as hyper intense and transformed
as log-WMH = log(N+ 1).

2http://surfer.nmr.mgh.harvard.edu/
3www.statistical-modelling.de/lst.html
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Data Analysis: Multimodal Brain Health
Computation
Structural brain health was computed as the multimodal
average of global cortical thickness (the total value provided
by FreeSurfer, not the average of the 68 ROIs), mean tract
integrity and the sign-reversed log-WMH measure. Since the
three constituents are incommensurate, they were first z-scored
and then averaged according to

brain health = [z(global thickness)+ z(mean tract integrity)

−z(log-WMH)]/3.

We note that our operationalization of this measure is
just an obvious starting point in terms of simplicity,
but other formulations are conceivable too. Other
modalities with differential contributions might be
added, optimized for considerations of construct validity
beyond this study. Supplementary regression models
were run where the brain-health variable was substituted
by individual cortical thicknesses. Results can be found
in Supplementary Table S2.

Data Analysis: Mass-Univariate Analysis
We first performed mass-univariate analysis by simultaneously
entering all covariates (brain health, education, IQ, gender, age,
and race) and performing a linear regression according to

occ(i) =
[
brain-health education IQ gender age race 1

]
β+ ε

i = 1 . . . 246.

with a False-Discovery Rate (FDR) of Q < 0.05 (Hochberg
and Benjamini, 1990). (1 denotes the intercept term.) Race was
coded as a categorical index array with values of 0 or 1, had 2
columns and 277 rows. Column 1 indicated the status of ‘African
American’ (N = 67), and column 2 combined the labels ‘Mixed
Race,’ ‘Asian,’ ‘Pacific Islander,’ and ‘Other’ (N = 21), and thus
could be labeled as ‘Neither African American nor Caucasian.’

RESULTS

We first ran our mass-univariate linear regression with the full
covariate set including the racial index array. However, we did
not identify any associations between occupation items and race
at Q < 0.05, and decided to drop the racial index array from
our analyses to increase statistical power. To arrival at our final
results, we re-ran the regression models with the reduced set of
five covariates: (1) brain health, (2) education, (3) gender, (4)
NART-IQ, and (5) age.

Collinearity of Covariates
To convey an impression of the collinearity of the covariates
we report all bivariate correlations at an uncorrected p-value of
p < 0.05. Age displays an expected strong negative correlation
with total brain health (R = −0.54, p < 0.0001) and positive
associations with education (R = 0.12, p = 0.04), NART-IQ

(R = 0.18, p = 0.0025). Lastly, as expected, NART-IQ and
education are highly correlated at R = 0.54, p < 0.0001.

Univariate Analysis With FDR Correction
We found significant associations at Q < 0.05 for all covariates
except age. We first turn our attention to the main objective of
this study: brain health. We list the 10 strongest associations in
Table 2, but give a full listing of the occupational profiles for all
covariates in Supplementary Table S1.

The items associated with brain health (above and beyond
the other covariates) contain a mixture of all domain labels
apart from ‘Interests.’ Inspection of all positively correlated items
shows work activities, styles and context show items that involve
processing of information, numerical reasoning and decision
making with the help of computers, facing responsibility and
having to show leadership with severe consequence of errors.
Numerical and critical-thinking skills and abilities were strongly
associated with better brain health too, as were work styles that
emphasizes persistence, initiative and leadership. The knowledge
item ‘Foreign Language’ showed the only negative association.

For the other covariates, education by far showed the most
numerous and significant associations with 180 items (see
Supplementary Table S1). We display an abbreviated listing in
Table 3, giving the first 10 items in both directions of association.

Table 3 and the full listing in Supplementary Table S1
show that items pertaining to work-context, -activities, skills
and abilities associated with manual labor show a negative
association with education, while items associated with white-
collar knowledge work are associated positively with education.

Gender shows similarly strong effects, probably expressing
stereotypical gender roles with occupation choice that –
over time- might reduce. Women choose occupations
that show more traditionally female attributes with little

TABLE 2 | Abbreviated listing of up to 10 associations for occupational items and
brain health at Q < 0.05.

Brain health – 39 items in total

Item Domain T p

Positive associations

AnalyticalThinking WorkStyles 4.0766 6.01E−05

InformationOrdering Abilities 3.9901 8.50E−05

AchievementEffort WorkStyles 3.9348 0.00010586

IdentifyingObjectsActionsandEvents WorkActivities 3.8641 0.00013957

Support WorkValues 3.7927 0.00018378

SystemsAnalysis Skills 3.6278 0.0003415

Mathematics Knowledge 3.5921 0.00038941

CriticalThinking Skills 3.5737 0.00041658

MonitorProcessesMaterialsor WorkActivities 3.4841 0.00057573

Surroundings

ComplexProblemSolving Skills 3.4362 0.00068262

Negative associations

ForeignLanguage Knowledge −2.7505 0.0063503

There was only a single negative association, but 38 positive associations in total.
The p-values listed are uncorrected.
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TABLE 3 | Abbreviated list of items displaying significant correlations with
education at Q < 0.05.

Education – 180 items in total

Item Domain T p

Positive associations

WrittenComprehension Abilities 7.5256 7.78E−13

ActiveLearning Skills 7.2708 3.84E−12

OralExpression Abilities 7.2525 4.30E−12

WrittenExpression Abilities 7.1636 7.43E−12

ReadingComprehension Skills 7.1374 8.73E−12

Writing Skills 7.0934 1.14E−11

Speaking Skills 6.9272 3.12E−11

JudgmentandDecisionMaking Skills 6.6831 1.33E−10

OralComprehension Abilities 6.618 1.94E−10

DeductiveReasoning Abilities 6.4681 4.61E−10

Negative associations

SpendTimeKneelingCrouching WorkContext −5.9534 8.11E−09

StoopingorCrawling

StaticStrength Abilities −5.7125 2.93E−08

MultilimbCoordination Abilities −5.5934 5.44E−08

SpendTimeBendingorTwistingtheBody WorkContext −5.5346 7.36E−08

CrampedWorkSpaceAwkwardPositions WorkContext −5.4708 1.02E−07

HandlingandMovingObjects WorkActivities −5.4265 1.28E−07

ManualDexterity Abilities −5.3087 2.30E−07

SpeedofLimbMovement Abilities −5.2865 2.57E−07

ExtentFlexibility Abilities −5.2267 3.45E−07

GrossBodyCoordination Abilities −5.0671 7.49E−07

The p-values listed are uncorrected.

constraint by work context, whereas men preferentially have
occupations that involve technical expertise, sensory-perception
demands and manual labor. We give the abbreviated listing
in Table 4.

Lastly, we list the items associated with crystallized
intelligence, i.e., NART-IQ, in Table 5 in full. There were
only eight items in total.

After deriving the occupational profiles of all covariates,
we decided to inspect the similarity between the brain-
health occupational profile and all remaining profiles with
simple bivariate scatter plots (see Figure 1). This second-order
correlation can at least visualize the similarity of the occupation-
covariate relationships in relative terms. Interestingly, the brain-
health profile shows the greatest similarity to the profiles of
education and age (although no individual occupational item
showed an association with age at Q < 0.05). This similarity
is present although the covariates brain health and education
showed no relationship, while brain health and age showed
a strong negative relationship. In our sample at least, older
participants chose occupations that are also associated with better
brain health and higher education.

The gender-associated occupational profile showed no
relationship to the brain-health profile, while the NART-
IQ-related profile showed a weak negative relationship. At
the level of covariates, brain health was unrelated to either
gender or NART-IQ.

TABLE 4 | Abbreviated list of items displaying significant correlations with gender
at Q < 0.05.

Gender – 57 items in total

Item Domain T p

Positive associations (i.e., associations with being female)

Artistic Interests 3.5895 0.00039319

Independence WorkStyles 3.5324 0.00048385

SocialOrientation WorkStyles 3.5204 0.00050533

Innovation WorkStyles 3.4141 0.00073776

FineArts Knowledge 3.3917 0.00079826

SociologyandAnthropology Knowledge 3.3478 0.00092996

CommunicationsandMedia Knowledge 3.3209 0.0010205

PhilosophyandTheology Knowledge 3.3119 0.0010524

Clerical Knowledge 3.3113 0.0010547

Dependability WorkStyles 3.2894 0.0011368

Negative associations (i.e., associations with being male)

SoundLocalization Abilities −4.3912 1.62E−05

SpatialOrientation Abilities −4.2588 2.84E−05

InanOpenVehicleorEquipment WorkContext −4.2431 3.03E−05

NightVision Abilities −4.1894 3.79E−05

SpendTimeClimbingLaddersScaffoldsor WorkContext −4.101 5.44E−05

Poles

Mechanical Knowledge −4.0904 5.68E−05

PeripheralVision Abilities −4.0362 7.07E−05

OperatingVehiclesMechanizedDevicesor WorkActivities −3.9368 0.00010506

Equipment

GlareSensitivity Abilities −3.8362 0.00015547

Realistic Interests −3.7558 0.00021151

Because gender is coded as Female = 2, Male = 1, positive correlations pertain
to items associated with female gender, negative correlations pertain to items
associated with male gender. The p-values listed are uncorrected.

DISCUSSION

The main purpose of this study was to clarify the fine-grained
relationship between structural brain health and occupation,
adjusted for education, gender, age, and IQ. We emphasize again
that the results are correlational, and that no inference regarding
causal directionality can be made.

The occupational profiles of education, sex, and NART-
IQ were somewhat in line with common-sense expectations
which would attribute manual-labor and sensory-perception
skills and abilities predominantly to male or lower educated
participants, while items associated with social orientation,
higher knowledge, fine arts and communication were
differentially and independently associated with being female
and more educated.

For our main association of interest, we mainly found
positive associations between items pertaining to processing of
information, numerical reasoning, problem-solving and decision
making with the help of computers, facing responsibility and
having to show leadership with severe consequence of errors.
Further correlations were shown with numerical and critical-
thinking skills and abilities, and with work styles that emphasize
persistence, responsibility, initiative and leadership. Brain health
in our operationalization did not show any confounding
correlations with education and gender; further, when we
ran supplementary analyses leaving out gender and education,
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TABLE 5 | Full listing of items associated with NART-IQ at Q < 0.05.

NART-IQ – 8 items in total

Item Domain T p

Positive associations

Artistic Interests 5.1803 4.33E-07

FineArts Knowledge 4.5252 9.04E-06

Innovation WorkStyles 4.1979 3.66E-05

ThinkingCreatively WorkActivities 3.6928 0.00026824

Originality Abilities 3.5274 0.0004928

Negative associations

Telephone WorkContext −3.6853 0.00027582

Integrity WorkStyles −3.4688 0.00060787

The p-values listed are uncorrected.

FIGURE 1 | Bivariate plots and correlations between the occupational profile
(= T-statistic) of brain health and the occupational profiles of all other
covariates.

the items that were recovered with significant associations
were very similar and – in fact-fewer in number. Thus,
our results indicate robust relationships between occupation
and brain health that are not fully mediated by education,
intelligence, or gender.

Furthermore, higher-order correlation of the occupational
profiles (= T-statistic) across all 246 items revealed that the brain-
health profile was similar (in the sense of being significantly
correlated) to the education profile, despite both covariates
sharing no significant relationship. There was a likewise similarity
between the brain-health occupational profile and the age-related
occupational profile, even though brain health and age are
strongly negatively associated (and no individual item in the age
profile reached statistical significance at Q < 0.05).

Several caveats must be mentioned in our study design:
(1) important information about parental socio-economics and
upbringing were missing, although these factors are certain to
influence brain development (Noble et al., 2015) beyond the
duration of early-life education. To arrive at a relationship
between occupation and brain health, this confounder would

have to be taken into account. (2) While education and
occupation are not contemporaneous with, and predate, the
brain-health assessment, it is tempting to speculate about causal
relationships. It could be that some occupational demands serve
as cognitive training regimens that result in better brain health,
while some job aspects (particularly environmental exposures)
could be detrimental to brain health. However, even for cross-
sectional correlations, long-lasting influences of other factors
(such as parenting style and early-life socio-economics) would
have to be taken into account. To reduce the possibility of reverse
causation, i.e., brain health at an early age leading to particular
educational and occupational choices, brain health at a young
age ideally should also be considered. (3) We only recorded the
occupation with the longest tenure in our participants’ lives,
and no more detailed information about occupation sequences
were queried.

We close our report with some suggestions for future
extensions, sparked by the study limitations: a more complete
record of occupational history and parental socio-economics
is indispensable for a refinement of the relationship between
occupation and brain health. Further, while interventional
studies for occupation are hard to conceive, prospective cohort
studies could record more complete and dynamic occupational
information and establish relationships to future brain structural
measures, thus getting closer to true a causal account. As
mentioned in the introductory remarks, the large amount of time
that work represents in the daily routine for most people suggests
that occupational choices and demands would be reflected in
the brain, similar to other lifestyle features such as exercise, diet,
sleep, and leisure activities. To clarify the role of occupation for
better brain maintenance and cognitive reserve will be an exciting
endeavor in brain research for the foreseeable future.

Our study also hopes to introduce the O∗NET database
to a broader audience and convey some of the benefits of
the fine-grained quantitative assessment of occupation. We
only performed simple univariate analyses, which is a natural
starting point. O∗NET enables more sophisticated frameworks
of course, and gives the opportunity of operationalizing
similarity and ‘distance’ between occupations, with multivariate
decompositions of occupational profiles that capture dimensions
other than education, gender, and intelligence. Occupational
data might provide a fertile ground for identifying factors
with predictive utility for prognosis and diagnosis of cognitive
dysfunction in addition to structural brain markers and age.
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