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Abstract: Sustainable utilization of agri-food wastes and by-products for producing value-added
products (for cosmetic, pharmaceutical or food industrial applications) provides an opportunity
for earning additional income for the dependent industrial sector. Besides, effective valorisation of
wastes/by-products can efficiently help in reducing environmental stress by decreasing unwarranted
pollution. The major focus of this review is to provide comprehensive information on valorisation of
agri-food wastes and by-products with focus laid on bioactive compounds and bioactivity. The review
covers the bioactives identified from wastes and by-products of plants (fruits, exotic fruits, vegetables
and seeds), animals (dairy and meat) and marine (fish, shellfish seaweeds) resources. Further, insights
on the present status and future challenges of sustainably utilizing agri-food wastes/by-products for
value addition will be highlighted.
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1. Introduction

Environmental stress created by agriculture-based food wastes and by-products are enormous.
In today’s global scenario, sustainable utilization of agri-food waste and/or by-products to produce
value-added products for potential applications in cosmetic, pharmaceutical or food industrial uses can
provide considerable opportunities for earning additional income for the dependent industry. Besides,
valorisation of agri-food wastes and by-products can ensure regional food security and thereby assure
sustainable food production [1]. Globally, massive amounts of agri-food wastes and by-products
are generated in the agri-food industrial sector. These can occur both at the ‘on farm’ and ‘off farm’
levels. Agricultural wastes (almost reaching up to 50%) not only create safe disposal issues, but also
contributes to negative environmental impacts. As per the Food and Agriculture Organization of the
United Nations (FAO) report, vegetable wastes have created a significantly higher ‘carbon footprint’
while fruit wastage occurs as the major ‘blue water hotspot’, especially in the industrialized countries
covering Europe and Asia [2]. Further, FAO has estimated that globally one third of all the food
produced is either wasted or lost, among which the major share goes to fruit, vegetables, and seafood
industry. Annually, on a global scale, total value of food lost or wasted is estimated to be US$1
trillion [3]. Also, as per the FAO, to achieve and to ensure the success of ‘Sustainable Development
Goals’ it is important that appropriate steps are taken to minimize the wastes generated in the agri-food
sector [3].

To date, most agri-food wastes have been utilized as a source of fuel or livestock feeds or
as organic fertilizers. Today, with the availability of modern day technologies along with ‘Green
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Chemistry’ principles, new concepts have been established leading to effective utilization of wastes
and by-products of the agri-food sector towards producing value-added products. For instance,
advanced spectroscopic techniques such as Fourier Transform Infrared (FTIR) spectroscopy is an
valuable tool that can be used for the analysis of functional qualities of different products obtained
from food waste like fatty acids methyl esters and glycerin [4,5]. Moreover, eutectic solvents represent
a novel form of ‘green solvent’ produced via natural and renewable materials like that of glycerol and
salts of organic acids. These eutectic mixtures can be effectively used for the extraction of bioactive
compounds such as polyphenols from food industry by-products. Besides, these solvents have been
proposed to be an efficient, non-toxic and low cost alternative to organic solvents [6]. Some of the
value-added products includes bioethanol, organic acids, enzymes, bioactive functional phytonutrients,
prebiotics, etc. In Figures 1 and 2, valorisation of food waste based on its composition through
the concept of bio-refinery as well as an integrated biorefinery model for fruit processing waste is
shown, which is rather self-explanatory [7,8]. Likewise, to edible portions of an agri-food produce,
non-edible portions, which may be in the form of by-products or residues can also encompass high
amounts of phytonutrients or nutraceutically valued bioactive compounds exhibiting a wide range of
bioactivities. Bioactive compounds isolated from fruits and vegetables wastes or by-products mainly
include polyphenols, tannins, flavonoids, flavanols, vitamins (A and E), essential minerals, fatty acids,
volatiles, anthocyanins and pigments, whereas, animal-based ones include bioactive peptides and in
the dairy industry it is mainly those of whey and colostrum. In the marine sector, the review focuses
on the bioactives obtained via fish and shellfish processing industry as well as those of seaweeds.

Nevertheless, valorisation of wastes and by-products can contribute to minimal waste generation
or fulfil the widely popular ‘zero waste concept’ to meet the present day needs and demands of the
consumer and society. In the present review, we have aimed towards comprehensively collating some
of the vital information’s published on wastes and by-products incurred in the agri-food sector, and to
the authors knowledge this is the first comprehensive review detailing the potentiality of tapping
bioactive compounds from wastes and/or by-products in the entire agriculture based food sector.
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Figure 1. Graphical extract indicating valorisation of food waste based on the concept of biorefinery
(reproduced from [7] with permission from Elsevier License number; 4681870689768; dt. Oct 04, 2019)
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fruits such as peels or skin portion and twigs often contain higher amounts of bioactive compounds 
when compared to the edible parts [9,10]. For example, peels of apple, grapes, citrus fruits and seeds 
of jackfruit, avocado and mango, are reported to have more than 15% higher content of polyphenolic 
compounds than pulp [9,11]. 

Besides, fruits after the production of beverages (in the food industry) generates huge volume 
of wastes, which are in the form of pomace (a mixture of pulp, skin, seeds, and stem). Owing to high 
perishability of the pomace, severe technical and environmental problems are incurred [12]. To cope 
with this problem, it is recommended to use fruit pomace and other fruit processing wastes as 
livestock feed, or transformed them into bio-fertilizers via composting as well as a potential source 
of biomass in the production of biofuels [8]. In most instances, fruit processing waste occurring as 
pomace contains much higher amounts of valuable bioactive compounds than the fruit juice itself 
[12]. Hence, fruit pomace occurring in larger volumes can represent an interesting natural bio-
resource, owed to their chemical richness and heterogeneity [13–15]. A wide array of studies have 
been conducted on valorisation of fruit processing wastes into value-added products. Fruit pomace 
like those of apple and berries have been proposed as additive in the formulation of bakery and dairy 
products to enhance their contents in natural antioxidants and dietary fibres. In addition, the presence 

Figure 2. An integrated biorefinery model for fruit processing waste (FPW). As per the authors,
this model is based on ‘fractionation strategy’ to improve the cost-efficiency of FPW valorization.
Recovery of lipids from fruit kernels can be followed by extraction of proteins and polyphenols. Peels
and pomace can be used for the recovery of soluble dietary fibers like pectin and polyphenols in one
step extraction followed by alcoholic precipitation (reproduced from [8] with permission from Elsevier
License number 4681860844753; dt. Oct 04, 2019).

2. Bioactive Compounds from Fruit Processing Wastes and By-Products

From the available research data, it is evident that much of the wastes and by-products of fruit
industry arises after pressing the juice or after producing value-added products. Non-edible parts of
fruits such as peels or skin portion and twigs often contain higher amounts of bioactive compounds
when compared to the edible parts [9,10]. For example, peels of apple, grapes, citrus fruits and seeds
of jackfruit, avocado and mango, are reported to have more than 15% higher content of polyphenolic
compounds than pulp [9,11].

Besides, fruits after the production of beverages (in the food industry) generates huge volume
of wastes, which are in the form of pomace (a mixture of pulp, skin, seeds, and stem). Owing to
high perishability of the pomace, severe technical and environmental problems are incurred [12].
To cope with this problem, it is recommended to use fruit pomace and other fruit processing wastes as
livestock feed, or transformed them into bio-fertilizers via composting as well as a potential source of
biomass in the production of biofuels [8]. In most instances, fruit processing waste occurring as pomace
contains much higher amounts of valuable bioactive compounds than the fruit juice itself [12]. Hence,
fruit pomace occurring in larger volumes can represent an interesting natural bio-resource, owed to
their chemical richness and heterogeneity [13–15]. A wide array of studies have been conducted on
valorisation of fruit processing wastes into value-added products. Fruit pomace like those of apple and
berries have been proposed as additive in the formulation of bakery and dairy products to enhance
their contents in natural antioxidants and dietary fibres. In addition, the presence of natural pigments
and volatile compounds can ameliorate the sensory quality of the final product [12].

Further, in Tables 1 and 2, we have summarized some of the important fruit processing wastes,
bioactive compounds isolated and their potential functions, especially those of popular and exotic fruits.
In the preceding text, some examples of wastes generated via processing of fruits at the food industrial
levels are discussed.
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Table 1. Bioactive compounds from popular fruits processing wastes and by-products.

Fruit Type of Waste
Bioactive Compounds

Bioactivity Reference
Class Concentration

(mg/kg *) Major Compounds

Apple Pomace

Carbohydrates n.a. ** Pectin and pectin
oligosaccha-rides

Dietary fibre, prebiotic,
Hypo-cholesterolemic [16]

Phenolic acids 523–1542

Chlorogenic acid
Caffeic acid
Ferulic acid

p-coumaric acid Sinapic acid
p-coumaroyl-quinic acid Antioxidant, anti-microbial,

anti-inflammatory, anti-tumour,
cardio-protective

[17–19]

Flavonoids 2153–3734

Isorhamnetin
Kaempferol Quercetin

Rhamnetin glycoconju-gates
Procyanidin B2
(−)-Epicatechin

Anthocyanins 50–130 Cyanidin-3-O-galactoside

Dihydro-chalcones 688–2535 Phlorizin
Phloretein

Anti-diabetic.
Potential in treating obesity.

Promoting bone-forming
blastogenesis.

[20–22]

Triterpenoids n.a. Ursolic acid,
Oleanolic acid

Anti-microbial,
anti-inflammatory [17,23]
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Table 1. Cont.

Fruit Type of Waste
Bioactive Compounds

Bioactivity Reference
Class Concentration

(mg/kg *) Major Compounds

Citrus fruits Peel Carbohydrates Pectin

Dietary fibre, lowering blood
pressure, improving blood

glucose control, prebiotic effect.
Immuno-modulatory.

[24–27]

Modified citrus pectin Anti-cancer agent

Peel and pulp

Phenolic acids 276 (Lemon)
560 (Orange)

Hydroxybenzoic acid
Caffeic acid

Antioxidant, anti-inflammatory,
anti-cancer properties. [28–30]Flavones 1659 (Lemon)

55 (Orange)
Apigenin-glucoside
Diosmetin-glucoside

Flavanones 10646 (Lemon)
22298 (Orange)

Eriocitrin
Hesperidin Narirutin

Seeds Limonoids 375 (Lemon)
114 (Orange)

Limonin
Nomilin

Obacunone
Ichangin

Anti-inflammatory, anti-cancer,
anti-bacteria, antioxidant

activities.
[31]

Plum

Pomace

Phenolic acids 95.7 Neochlorogenic acid
Chlorogenic acid

Antioxidants, anti-microbial,
prevention of chronic diseases. [32]Flavonols 40.3 Quercetin glycosides Kaempferol

Rutinoside

Anthocyanins 6.5 Cyanidin glycosides
Peonidin glycosides

Seeds
Lipids 53% *** Oil rich in sterol esters and n-3

PUFA [33]

Peptides n.a. Bioactive peptides from protein
hydrolysate

antioxidant activity,
ACE inhibitory activity [34]



Molecules 2020, 25, 510 6 of 34

Table 1. Cont.

Fruit Type of Waste
Bioactive Compounds

Bioactivity Reference
Class Concentration

(mg/kg *) Major Compounds

Mango Kernel seed

Phenolic acids n.a. Gallic acid and its derivatives

Antioxidant
anti-tumour,
anti-bacterial,

anti-viral, immune-modulatory
effect.

[35–37]

Flavonoids 7200–13000 Quercetin Isoquercetin
Fisetin

Catechins n.a. Epicatechin Epigallocatechin
Epicatechin gallate

Hydrolysable tannins n.a.

Xanthanoids 13600 Mangiferin

Carotenoids 7.9

Peel Carotenoids 1900 β-cryptoxanthin Lutein
β-carotene

Antioxidant, prevention of
age-related macular eye disease,
regulation of bone homeostasis.

[38,39]

Banana Peel

Phenolic acids 99.5

Ferulic acid
p-Coumaric acid

Caffeic acid
Sinapic acids Antioxidant, anti-bacterial,

anti-fungal activity, reducing
blood sugar,

lowering cholesterol,
anti-angiogenic activity,
neuroprotective effect.

[40]Flavonols 1019.6
Rutin,

Quercetin Kaempferol Myricitin
Laricitrin

Catechins n.a. Catechin
Epicatechin Gallocatechin

Catecholamines 4720 Dopamine, L-dopa
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Table 1. Cont.

Fruit Type of Waste
Bioactive Compounds

Bioactivity Reference
Class Concentration

(mg/kg *) Major Compounds

Berries

Vaccinum
genus berries

(bilberries,
blueberries,

lingon-berries,
cranberries)

Berries press residue Anthocyanins

284,950
(bilberries)

84,120
(blueberries)

43,530
(cranberries)

27,890
(lingon-berries)

Glycoconjugates of delphinidin
cyaniding petunidin malvidin

Prevention of various chronic
diseases such as artherosclerosis,

cancer, and cardiovascular
disease.

[41]

Elderberry Branche waste
Phenolic acids 45,600 Chlorogenic acid antioxidant, anti-inflammatory,

anti-cancer properties. [42]
Flavonols 468,200 Quercetin and its

glycoconjugates

Anthocyanins 2530 Cyanidin and its glycoconjugates

Wild and
cultivated

berries
Seeds Lipids 14.61–18.19%

Oil rich in α-linoleic acid with a
high content of α- and

γ-tocopherols

Balancing diet fatty acid
composition,

Antioxidant, skin regeneration.
[43,44]

* Values are expressed as mg/kg of dry weight. ** n.a. concentration data not available in the literature. *** concentration is expressed as percentage of oil w/w.
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Table 2. Bioactive compounds from exotic/ unconventional fruits.

Fruits/English Name Scientific Name
Bioactive Compounds Origin/ Countries

Encountered
Reference

Class Compound

Aguaje fruit or Moriche
palm tree fruit Mauritia flexuosa L.f.

Phenolic compounds Carotenoids Tocopherols
Vitamin C

Dietary fibre
Phytosterols

Mono- and poly-unsaturated fatty acids

Native of Peru, Amazon
regions of Brazil [45]

Araticum Annona crassiflora Mart.

Phenolic compounds Alkaloids Annonaceous acetogenins
Tocols

Carotenoids Phytosterols
Dietary fibre Vitamins

Minerals
Essential oils

Native of Brazil [46]

Black Sapote or Zapote
Blanco or Mamey Sapote

Diospyros digyna Jacq.

Polyphenolics
Flavonoids

Anthocyanins Native of central Mexico [47,48]
Carotenoids β-carotene Lutein
Tocopherols
Vitamin C

Cherimoya or custard
apple Annona squamosa L. Annonaceous Acetogenins Diterpenes

Alkaloids Cyclopeptides

Native of South America,
but grown in Southern

parts of Asia and Europe,
and Africa

[49]

Conkerberry or
Bush currant

Carissa spinarum L.

Coumarin
Cardiac glycosides

Native of Australia [50,51]

Lignans
(−)-Carinol,

(−)-Carissanol
(−)-Nortra-chelogenin,

Terpenoids
Alkaloids
Tannins

Saponins
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Table 2. Cont.

Fruits/English Name Scientific Name
Bioactive Compounds Origin/ Countries

Encountered
Reference

Class Compound

Pepino Fruit or
sweet cucumber

Solanum muricatum Ait.
Phenolic acids

Hydroxy-cinnamic
acid derivatives

Chlorogenic acids and
derivatives

Native of Peru and Chile,
but widely grown in

South and Central
American countries and in

New Zealand

[52,53]

Pigments β-Carotene,
Chlorophyll

Rambutan Nephelium lappaceum L. Polyphenolic compounds
Geraniin Corilagin
Gallic acids Ellagic
acid Ellagitannins

Native of Indonesian but
widely grown in
Southeast Asia

[54]

Durian Durio zibethinus L. Polyphenols Flavonoids Flavanols Anthocyanins Vitamin C
Carotenoids

Native to Malaysia and
Indonesia. Grown in
Thailand, Indian and

other South East Asian
countries

[55,56]

Kiwano or horned melon Cucumis metuliferus E.Mey.

Triterpenoids Alkaloids
Lutein

myristol, palmitol and dipalmitol
phenylpropanoids, flavonoids and terpenoids

Native of south and
central Africa [57]

Kumquats
(or cumquat) Citrus japonica Thunb. Essential oils Volatile compounds Limonene Germacrene D Native to South Asia and

Asia-Pacific region. [58]

Madroño Garcinia madruno
(Kunth) Hammel.

Phenolic hydroxyl
Groups

β-Diketone bioflavonoids Polyisoprenylated benzophenones

Native to Central and
South America [59]

Prickly pear Opuntia ficusindica L. Mill.

Betalain
Phenolic compounds

Native of the New world,
grown widely in Mexico,
South Africa, Southern
and Central America,

Egypt, Tunisia, Algeria,
Morocco, Turkey, Spain

and Greece

[60]

Flavonoids
Isorhamnetin

Quercetin
Kaempferol

Glycosides
Piscidic acid

Cupuaçu
Theobroma grandiflorum

(Wild. ex Spring)
Schumann

Dietary fibre Polyphenols Flavonoids
Methyl-xanthines Proanthocyanidins Vitamin C

Native to South America
countries, Colombia,

Bolivia, Brazil, Pará, Peru
[61]
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Table 2. Cont.

Fruits/English Name Scientific Name
Bioactive Compounds Origin/ Countries

Encountered
Reference

Class Compound

Miracle Fruit
Synsepalum dulcificum
(Schumach. & Thonn.)

Daniell

Epicatechin
Lutein

α-Tocopherol
Saponin

Flavonoids
Tannin

Alkaloids
Cyanogenic glycosides

Kaempferol Native of West Africa [62,63]

Starfruit Averrhoa carambola L. Vitamin C Polyphenolics Flavonoids Carotenoids

Native to Asia, widely
cultivated in Malaysia,

Indonesia, Singapore and
Hong Kong

[64,65]

Dragon fruit or pitaya
fruit

Hylocereus undatus
(Haworth) Britton & Rose

Phytosterols Native to Central America
but widely grown in

Southeast Asia
[66,67]

Betacyanins
Betanin Isobetanin

Phyllocactin
Hylocerenin

Acetic acid Polyphenols
Flavonoids

Feijoa or the pineapple
guava or guavasteen

Acca sellowiana
(O. Berg) Burret

Polyphenols
Carotenoids
Fatty acids

Native to South America.
Also cultivated in New

Zealand
[68]

Jaboticaba

Myrciaria cauliflora
(Mart.) O.Berg

or
Plinia cauliflora (Mart.)

Kausel
(Branca, Sabara, Paulista,

rajada var.)

Anthocyanins Polyphenols Native to South-eastern
Brazil [69]

Araçá-pera Psidium acutangulum DC.

Trihydroxy-cinnamic acid glucopyranosyl Tannin digalloyl
glucopyranosyl

Triterpenoid acids
Vitamin C

Native of Brazilian
Amazon region [70]
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Table 2. Cont.

Fruits/English Name Scientific Name
Bioactive Compounds Origin/ Countries

Encountered
Reference

Class Compound

Langsat
Lansium domesticum

and
Lansium parasiticum

(Osbeck) Sahni & Bennet

Polyephenols Native to South East Asia,
widely grown in Malaysia,

Thailand and Indonesia

[71]

Onoceranoid-type triterpenoids

Lamesticumin A
LamesticuminsLAnsic

acid 3-ethyl ester
Ethyl-lansiolate

Longan or
dragon’s eye

Dimocarpus longan Lour.
Phenolic acids

Ellagic acid
4-O-methyl-Gallic

acid.
Native of Myanmar and
Southern China, widely

grown in Thailand,
Cambodia and Vietnam

[72]

Flavonoids Quercetin glycosides,
Kaempferol glycosides

Ellagitannin Corilagin

Mora de Castilla Rubus glaucus Benth. Anthocyanins Phenolic acids
Ellagitannins

Sanguiin H-6
Lambertianin C

Native of Latin and South
America [73,74]

Snake fruit Salacca zalacca (Gaertn.)
Voss

Phenolics
Flavonoids

Tannins Monoterpenoids

Native to Indonesia (Java
and Sumatra) [75]

Buddha’s hand or
fingered citron

Citrus medica L. var.
sarcodactylis

Phenolic Acids Flavonones Native of India.
Cultivated and popular in

China, Korea, Vietnam
[76]

Terpenoids

Iso-limonene
Citral

limonene linalool,
decanal
nonanal

Vitamin C
Pectin

Soursop or graviola Annona muricata L. Acetogenins

Native of tropical forests
in America, but widely

grown in Southeast Asia
and Asia Pacific regions

[77]
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Table 2. Cont.

Fruits/English Name Scientific Name
Bioactive Compounds Origin/ Countries

Encountered
Reference

Class Compound

White sapote Casimiroa edulis Llave
Phenolic acids

Flavonoids
Tannins

Native of central Mexico,
but widely grown in El
Salvador, Guatemala,
Costa Rica, Bahamas,

South Africa New
Zealand, West Indies and

India

[78]

Wolfberry fruit Symphoricarpos occidentalis
Hook.

Phenolic acids
Flavonoids
Carotenoids

Native of South China [79]
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2.1. Popular Fruits

2.1.1. Apple

Apple (Malus domestica Borkh.) is a widely consumed and well admired fruit for its pleasant taste
and aroma as well as for the proven health benefits. The global production of apple exceeded 83 million
tons (in 2017) as per the FAO statistics [80]. A major portion of apple production is either consumed raw
or converted into value-added products like processed juice or cider which results in the production
of huge volumes (~ 25% of the fresh fruit weight) of pomace as a by-product [17]. In addition to
its traditional use as animal feed and fertilizer, apple pomace forms an important source of pectin
(nearly 14% of the world’s pectin production is extracted from apple pomace). Apple pectin finds wide
applications in food, cosmetics and pharmaceutical industries as a thickener, gelling agent, and/or as a
food stabilizer. Since the early 2000s, the role of pectin as dietary fibre and prebiotic is well established.
Moreover, pectin is recognized to be a good source of nutritional supplement, which contributes towards
reduction in blood cholesterol level, post-prandial glycaemic response as well as enhancing satiety [81].
Recently, Wang et al. [16] proposed a new enzymatic process to produce pectin oligosaccharides from
apple pomace, which can have better prebiotic properties than pectin. Apple pomace contains ample
amounts of health promoting phytochemicals, including those of phenolic acids, flavanols, flavonols,
anthocyanins, and dihydrochalcones [18,19]. The major components of pomace such as phenolics
are recognised for their potential radical scavenging activity, ability to inhibit protein glycation and
anti-tumor activities. Apple-derived by-products contain significant amounts of phlorizin, which is
well-established for its role as an anti-diabetic agent. This phlorizin is capable of inhibiting glucose
transport effectively via binding of glucose moiety to Na+/glucose co-transporter SGLT2 [19,82]. In a
recent study by Antika et al., [22] in cell-based and aged mouse models, the potential of dietary
phlorizin and phloretin as a therapeutic agent for inhibiting senile osteoporosis has been ascertained.

2.1.2. Banana

Banana (Musa L. sp.) is a widely consumed popular tropical fruit with over 113 million tons
produced in 2017 [80]. The peel, which forms a part of the non-edible portion, (accounting for ~ 35%
of the whole fruit weight), is discarded as a waste. Peel has been traditionally used as a remedy for
treating common ailments like cough, burns and inflammation, as well as for managing anaemia and
diabetes [83,84]. Banana peel is considered to be a promising raw material source for the isolation
of nutraceuticals related to its healing properties. Banana peel is a good source of dietary fibre,
potassium, polyphenolic compounds, and essential amino acids. Polyphenolic compounds in peel
are three times much higher in concentration than fruit flesh [85]. Phenolic acids, flavonols, flavanols,
and catecholamines have been isolated from banana peel [83,86].

With regard to bioactivity, banana peel extract is reported to exhibit strong antioxidant,
anti-bacterial, and anti-fungal activities, in addition to providing other health benefits like reducing
blood sugar, lowering cholesterol, anti-angiogenic activity, neuroprotective effect, and others [40].
Further, Vu et al. [84] reported ripening stages and processes to impart significant effects on polyphenolic
composition and antioxidant capacity of banana peel extracts. Antioxidant capacity of peel extracts
was linked with banana ripening stages wherein the activity increased in ripe fruits while it decreased
in overripe fruits. Gurumallesh et al. [87] isolated a novel metalloprotease from banana peel which
had high potential to be used as a therapeutic for anti-cancer activity (its mechanism involves breaking
down of collagen peptide bonds).

2.1.3. Berries

Different types of berries have been consumed since time immemorial for their rich nutraceutical
values. Fruit berries are either consumed fresh, frozen or as processed value added products like juice,
jam, etc. Owing to the positive effects imparted, berries and their extracts are gaining much importance
in the health and food sector. They are used as an added ingredient in dietary supplements and in
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functional food formulations [88]. Berry press residues, obtained after juice extraction, are excellent
source of phenolic compounds. Klavins et al. [41] reported that berries press residues from Vaccinum
L. genus berries (bilberries, blueberries, lingonberries, cranberries) to be an excellent source of
anthocyanins which are helpful for the prevention of various chronic diseases such as artherosclerosis,
cancer and cardiovascular disease. Kitrytė et al. [89] via use of enzyme-assisted extraction recovered
phenolic compounds from chokeberry press residues. This extracts contained mainly phenolic acids
and flavonols which are well established for their bioactivities. Another interesting source of bioactive
compounds from berries processing waste is the branches from berries that grow in clusters like
elderberry. Silva et al. [42] reported the potential use of branches obtained from elderberry processing
waste to recover high-value nutraceuticals like anthocyanins.

2.1.4. Citrus fruits

Citrus fruits (Rutaceae Juss. family) production exceeded 132.9 million tons in 2017 on a global
scale. Oranges are the most produced, consumed and processed citrus fruits (73.3 million tons
produced in 2017) followed by tangerines, mandarins, and clementines (33.4 million tons), lemons
and limes (17.2 million tons), grapefruits and pomelo (9 million tons) [80]. Nearly 40–50% of citrus
fruit production is destined for industrial processing, mainly juice, jam, and marmalade. Citrus fruits
processing generates huge amount of waste ranging approximately 50–70% of the wet weight of the
processed fruit (this depends on the cultivar and processing technology used) [90]. The processing
waste generated is traditionally used as animal feed or directly discarded as a waste without further
treatments leading to serious environmental problems. Besides, owing to strong anti-microbial activity
(owed to essential oils), there might be issues related to inhibition of natural soil microflora [91].

Considering the economic and environmental burden, studies have been conducted on valorisation
of citrus processing wastes. One of the most important uses of citrus peel waste is the production of
pectin. Almost 85% of pectin production originates from citrus peels (56% from lemons, 30% from
limes, and 13% from oranges). Pectin obtained from citrus peels (citrus pectin) is appreciated for its
functional properties and is routinely used as gelling agent, food thickener and stabilizer. Besides,
it finds wide applications in cosmetic and pharmaceutical industries too [81]. Several studies have also
showed the importance of citrus pectin as a nutraceutically valued compound. Citrus pectin has a
beneficial role as a dietary fibre imparting prebiotic effects as well as has a positive role in cholesterol
metabolism, lowering of blood pressure and controlling of blood glucose [24,25]. Several studies have
also reported that citrus pectin directly affects immune cells to regulate inflammatory responses. Citrus
pectin is linked with alleviation in the endotoxin-induced pro-inflammatory responses, shown via
in vitro and in vivo studies [26,92].

Modified citrus pectin (MCP) is obtained by chemical (acid or alkali treatment), enzymatic or
thermal modification of commercial citrus pectin generating oligomers of polygalacturonic acid and
rhamnogalacturonan (RGI) regions. In the United States, MCP is registered as a dietary supplement.
In addition, several clinical trials conducted have confirmed its potential as mammalian anti-cancer
agent [27]. MCP’s anti-cancer effect is mediated by specific molecular interactions with galectin-3,
a β-galactoside-binding lectin with varied biological functions. Extracellular galectin-3 is reported to
play a vital role in tumour progression and metastasis [93,94].

Citrus fruits processing wastes are also a valuable source of phytochemicals. The phenolic
compounds from citrus wastes have antioxidant, anti-inflammatory, and anti-cancer properties,
demonstrated via in vitro and in vivo studies [28]. In addition to phenolic acids and flavonoids, citrus
wastes especially the seeds contain limonoids a unique class of bioactive compounds [95]. Among
these, limonin, a triterpenoid possesses anti-inflammatory, anti-cancer, anti-bacterial, and antioxidant
activities [31]. Russo et al. [29,30] analysed samples of lemon and orange juice, seeds, peel, and pulp
derived from the industrial transformation process. Results of these studies confirmed that all
by-products contain variety of phytochemicals with potential role as nutraceuticals. Lemon peel
and pulp had flavones (apigenin-glucoside and diosmetin-glucoside), flavanones (eriocitrin and
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hesperidin), and a relatively lower amount of limonoids (ichangin). While orange solid waste (pulp
and peel) contained high amounts of phenolic acids (hydroxybenzoic and caffeic acids) and flavanones
(hesperidin and narirutin).

2.1.5. Mango

Over 50.6 million tons of mango (Mangifera indica L.), a popular tropical fruit crop, were estimated
to be produced in 2017 [80]. Mango fruits are mainly consumed fresh or used for cooking, but are also
canned, frozen, mashed, dehydrated, or prepared as juice or jam [35]. The industrial processing of mango
fruit generates about 40–60% of waste: 12–15% of peels and 15–20% of kernel seeds [36]. The mango
kernel is a promising source of nutraceuticals and is characterised by its high content of phytochemicals
such as phenolic acids, flavonoids, catechins, hydrolysable tannins, and xanthanoids [35,36]. Mangiferin,
an important bioactive compound isolated from mango seed and peel shows strong antioxidant
capacity and exhibits anti-tumour, anti-bacterial, anti-viral, and immunomodulatory effects [37].
Mango peel contains significant amounts of dietary fibre (45–78%), phenolic acids, flavonoids,
xanthones, carotenoids, vitamin C and tocopherol [38,96].

2.1.6. Plum

Plums (Prunus domestica L.) global production extended up to 11.7 million tons in 2017 [80].
Plums are widely used for the production of dried fruits, jams, and juices. During their processing,
fruits are first pitted, generating an important amount of plum stones consisting of a hull covering a
seed inside. Plum pomace, a mixture of peel and pulp is also produced after juice extraction [34,97].
Plum pomace is an important source of phenolic acids, flavonols and anthocyanins, which are all well
established for their bioactivities as antioxidants and antimicrobial compounds [32]. Dulf et al. [33]
reported that solid state fermentation with filamentous fungi such as (Aspergillus niger and Rhizopus
oligosporus) of plum pomace enhance the extraction yield of total phenolic compounds and flavonoids.
The same fermentation of plum seeds resulted in an enhanced oil extraction yield and ameliorated the
lipids quality attributes by increasing the content of sterol esters and n-3 polyunsaturated fatty acids
(PUFA).

2.2. Exotic Fruits

The biological meaning of exotic fruit refers to those fruits that are not native to a given
area/region/country. These fruits are either intentionally transplanted from another region (non-native)
or introduced purposely or accidentally. In the preceding section, we have shortlisted some of the
interesting research works that focuses on some of the selected fruits which remains as unconventional
fruits and in certain case the reporting researchers consider them as exotic.

A wealth of traditional knowledge and scientific database are available on the potential health
benefits of consuming exotic fruits. Just as an example: in miracle fruit, bioactive compound ‘miraculin’
is identified to impart artificial sweetening effects and can be used by people suffering from diabetes [62].
Further, there are ‘kiwano’ and ‘aguaje’ fruits, which are a good source of vital minerals like potassium
and magnesium and vitamins (vitamin A and C). Genovese et al. [98] characterized exotic fruits
from Brazil and found ‘Coquinho’ and ‘Camu-camu’ (Butia capitata Becc. and Myrciaria dubia (Kunth)
McVaugh) to have high levels of vitamin C (39.7 and 43%, respectively). Exotic fruit like that of durian
is reported to have high amounts of bioactive compounds like polyphenols, flavonoids, anthocyanins,
carotenoids, etc [56]. High levels of anthocyanin, quercetin glycoside and carotenoids in exotic fruits
like hog plum (Spondia dulcis L.), peanut butter fruit (Bunchosia armeniaca (Cav.) DC.), chupa-chupa
(Martisia cordata Humb. & Bompl.) and kwai muk (Artocarpus hypargyreus Hance ex Benth.) grown in
North Queensland are reported [99]. Colombian cultivar of Physalis peruviana L. (an exotic fruit) oil is
reported to be a rich source of essential fatty acids [100]. In Table 2, a list of exotic fruits, their botanical
classification and countries encountered is provided. However, scientific literature are scarce on
effective waste utilization and finding potential nutraceutical applications on most exotic fruits.
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Fruits and by-products like that of peel, seeds and leaves of exotic Brazilian fruit Araticum (Annona
crassiflora) is reported to be rich in bioactive compounds such as alkaloids, annonaceous acetogenins,
phytosterols, polyphenolic compounds, carotenoids, tocols, dietary fiber essential minerals, vitamins
and oil. These compounds are reported to contribute towards a range of bioactivity like that of
anti-inflammatory, antitumor, antidiabetic, antioxidant, anti-diarrhoeic, antimicrobial, anti-parasitic
and hepatoprotective activities [46]. Durian skin waste is reported to exhibit high therapeutic
value, owed to higher amounts of bioactive compounds benefits such as: possessing anti-microbial,
anti-proliferative, anti-hyperlipidemic and anti-diabetic activities [56]. Devalaraja et al. [101] reported
for the presence of bioactive proanthocyanidin isolated from persimmon (Diospyros kaki L.) fruit
peel which exhibited anti-obesity and anti-diabetic effects. Xanthones (α- and β-mangostin) isolated
from the skin of mangosteen fruits are well established for their anti-cancer, anti-microbial and
anti-cholesterol activities. The peels of exotic mango cultivars (chonsa and langsra) is reported to
have high polyphenolic and flavonoid contents [102]. Moriwaki et al. [103] have reported procyanidin
extracted from litchi pericarp to be effective in treating hyperuricemia and gout. Rambutan, another
exotic fruit of Southeast Asia has been evaluated for bioactive contents in the peel and skin. Accordingly,
dried peel had high amounts of vitamin C, dietary fibre and polyphenols (tannins, flavonoids) and
polyphenolic acids such as caffeic, coumaric, gallic, syringic, ellagic acids. Industrially valued volatile
flavouring compounds such as trans-isoeugenol and eugenol have been isolated from the peel of
ripened exotic fruit Strychnos spinosa Lam. [104]. It is clear from the available database that waste
portions of exotic/unconventional fruits contain rich amounts of bioactive compounds and research
undertaken on this is rather scarce in the introduced region, a gap that is expected to be filled in the
near future.

3. Bioactive Compounds from Vegetable Processing Wastes and By-Products

Vegetables are an important source of phytonutrients that possess health promoting and disease
preventive properties. By-products and wastes generated mainly from the inedible parts of the
vegetables constitute a valuable source of these phytonutrients and remains under valorised. Vegetables
wastes are usually generated at the on farm (during the harvesting) or post-harvesting stages.
This includes, left over harvest, inedible parts like leaves, twigs or stems. Popular vegetables like
potato, tomato and carrot have long been used in food industry (to produce processed products (like
juice, canning, etc), generating enormous quantities of wastes. These wastes generated have extensively
studied for their potential usage as natural compost or livestock feed and much more. The emerging
trends of ready to eat salads and meals, pre-cut and canned vegetables in the past decade has also led
to generation of wastes and by-products which can be valorised [105]. Table 3 summarizes examples
of vegetable processing wastes, the isolated bioactive compounds, and their potential health benefits.
Some of the popular vegetables wastes, their by-products and bioactives present is discussed in the
following section.
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Table 3. Bioactive compounds from vegetables processing wastes and by-products.

Vegetable Type of Waste
Bioactive Compounds

Bioactivity Reference
Class Concentration

(mg/kg *) Major Compounds

Potato

Pulp and peel Carbohydrate n.a. ** Pectin
Dietary fibre,
anti-obesity,

hypo-cholesterolemic.
[106]

Peel

Phenolic acids 1839–9130 Chlorogenic acid
Caffeic acid

Antioxidant,
anti-microbial,

Anti-inflammatory. [107,108]

Glycoalkaloid 639–3580 α-Chaconine
α-Solanine

Anti-carcinogenic (induced
apoptosis in cancer cells)

Peel Carotenoids 205.6
β-Carotene

α-Carotene Lycopene
Lutein

Antioxidant,
prevention of age-related

macular eye disease,
pro-vitamin A.

[109,110]

Carrot Discarded carrots

Carotenoids 1384
β-Carotene
α-Carotene

Lutein

Tocopherol 71 γ-Tocopherol

Carbohydrate n.a. Pectin
Dietary fibre
Anti-obesity

Hypo-cholesterolemic

Beetroot Pomace

Phenolic acids 1513

Ferulic acid
Vanillic acid

Caffeic acid Protocatechuic acid
p-Hydroxy-benzoic acid

Antioxidant,
hepatoprotective activity. [111]

Flavonoids 386 Catechin epicatechin, rutin

Betalains 558.8 Betacyanins (betanin and isobetanin)
Betaxanthins (vulgaxanthin I)

Aerial parts (stems
and leaves) Phenolic compounds 99 mg GAE/g *** (not identified) Antioxidant. [112]
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Table 3. Cont.

Vegetable Type of Waste
Bioactive Compounds

Bioactivity Reference
Class Concentration

(mg/kg *) Major Compounds

Broccoli

Industrial residues:
stalks and florets

Phenolic acids 74.6 (Stalks)
193.8 (Florets)

Chlorogenic acid
Neochlorogenic acid

Sinapic acid
Antioxidant, prevention of

cancer, cardiovascular disease,
and other age-related diseases.

[113]Flavonoids n.d. (Stalks)
56.6 (Florets) Kaempferol Quercetin

Glucosinolates 1836.6 (Stalks)
5775.6 (Florets)

Glucoiberin Glucoerucin
Glucoraphanin

Gluconapin Glucoalyssin
Glucobrassicin Neoglucobrassin

Agricultural waste:
leaves Glucosinolates 1332–1594

Glucoiberin Glucoraphanin
Gluconasturtiin Glucobrassicin

4-Methoxy-glucobrassicin
Neoglucobrassin

Chemo-preventive effect. [114]

Cauliflower Stems and leaves

Phenolic acids n.a. Ferulic acid Sinapic acid Antioxidant,
anti-hypertensive,

anti-obesity.

[115]
Flavonoids n.a. Kaempferol Quercetin glycosides

Isothiocyanate n.a. Chemo-preventive [116]

Proteins n.a. Bioactive peptides from protein
hydrolysate

Anti-hypertensive (ACE
inhibition). [117]

* Values are expressed as mg/kg of dry weight. ** n.a. concentration data not available in literature. *** Total phenolic content expressed as mg Gallic Acid Equivalent/g of extract.
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3.1. Vegetable Sources

3.1.1. Potato

Globally, potato (Solanum tuberosum L.) is the fourth main crop produced after rice, wheat and
corn, with over 388 million tons produced in 2017 [80]. This tuber crop plays an important role in
human diet as a staple food in most households. Large-scale peeling of potatoes for the production of
fries, chips, and other potato-based snacks generate huge quantities of peel wastes, which are generally
used for the production of biofuels or organic biofertilizers. Potato peel is reported to be a valuable
source of bioactive compounds, mainly phenolic acids and glycoalkaloids [108,118]. In fact, potato peel
contains much higher amount of phenolic compounds than the flesh. Phenolic acids in potato peel are
well established for their antioxidant and antibacterial activities [107]. Moreover, intake of chlorogenic
acid, the major phenolic acid extracted from potato peel, has been associated with decreased risk of
cardiovascular disease and type 2 diabetes [119]. Glycoalkaloids from potato peel are also gaining
importance owed to their anti-carcinogenic properties via induction of cytotoxicity and apoptosis in
different cancer cell lines [120]. Potato starch extraction residue can also be explored as a good source
of pectin. Oguta and Mu [106] extracted pectin from sweet potato residues which also exhibited good
antioxidant activity.

3.1.2. Carrot

Carrot (Daucus carota L.) is a widely consumed vegetable and is a rich source of dietary fibres,
phenolic compounds, carotenoids, vitamins and essential minerals [110]. In food industry, carrots
are used for the production of juice, jams, and in the preparation of ready to eat salads generating
waste in the form of peels that accounts for around 11% of the initial weight. This industrial waste is a
valuable source of carotenoids and can be sustainably extracted using green extraction techniques like
supercritical CO2 extraction [109]. In addition, about 25–35% of carrot harvest are discarded owed to
irregular size, form or colour. This is generally used as animal feed or even thrown as waste. Discarded
carrots can also be used for the extraction of value-added bioactives. Idrovo Encalada et al. [110,121]
recently reported that pectin-enriched fraction is obtained using high-power ultrasound extraction
with high antioxidant capacity associated to the presence of α- and β-carotenes, lutein, and tocopherols.

3.1.3. Beetroot

Beetroot (Beta vulgaris L.) is another widely consumed root vegetable rich in nitrates, flavonoids,
carotenoids, betalains, vitamins and minerals [122]. Betalains are water-soluble nitrogen-containing
pigments including betacyanins (violet to red colour) and betaxanthins (orang to yellow colour).
Betalains is established to be good antioxidant possessing anti-inflammatory, anti-carcinogenic,
and anti-microbial properties [123].

Beetroots are used for the preparation of processed foods such as juice, pickles, and prepared
meals. The generated waste in form of peels and pomace can be valorised to recover the high-value
nutraceuticals or bioactive compounds. Vulić et al. [111] reported beetroot pomace extract to contain
phenolic acids, flavonoids and betalains, which exhibited good antioxidant activity (in vitro) and
hepatoprotective effects (in vivo). The aerial parts of the beetroot, comprising of leaves and stems
are generally discarded after harvest or before processing of the root. Unlike peel and pomace,
less attention was placed on this waste despite of its high potentiality. Recently, Lasta et al. [112]
reported that extracts from beetroot aerial parts exhibit high antioxidant activities. Further works are
warranted to identify the bioactive compounds in these extracts for better utilisation of the waste.

3.1.4. Broccoli and Cauliflower

Broccoli (Brassica oleracea L. Italica) is a highly valued vegetable, the consumption of which has
increased tremendously over the past few years. Recent reports indicate global production of broccoli
and cauliflower to have increased from 8.1 million ton during 1987 to nearly 26 million ton in 2017 [80].
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The increased interest in this vegetable is associated with reduced indices of different types of cancers.
The chemopreventive effect is mainly attributed to the presence of glucosinolates, sulphur-containing
plant secondary metabolites, and their degradation products [113,114].

Generally, the florets representing 10–15% of the total plant mass are consumed, or are used in
large-scale preparation of pre-cut and frozen vegetables [124]. The wastes are in the form of leaves and
stalk which are usually discarded despite of its similar composition to the florets [114]. Nevertheless,
florets that are overripe or have some yellowish spots are also discarded. These residues generated
after processing and packaging of broccoli florets can be effectively valorised to obtain bioactive
compounds of interest. Thomas et al. [113] highlighted the potential use of broccoli by-products for the
extraction of glucosinolates and polyphenolic compounds. Formica-Oliveira et al. [125] reported single
or combined UV-B and UV-C irradiation treatments to significantly increase phenolic compounds
and glucosinolates contents of broccoli leaves and stalks, thus enhancing its value as a source of
bioactives. In addition, broccoli by-products are reported to have high content of proteins (23–25%)
and carbohydrates (32–37%) which renders them vital raw material to be used as carrier for stabilizing
and delivering bioactive compounds such as epigallocatechin gallate [124].

On the other note, cauliflower (Brassica oleracea L. Botrytis) is also a popular vegetable belonging
to the Brassicaceae family, encompassing higher level of bioactive compounds linked with providing
positive health benefits. The non-edible parts: outer leaves, stems and pods that account for about 36%
of the total mass are usually discarded as waste. Cauliflower waste extracts were characterized by high
content of flavonoid glycosides which were mainly derived from kaempferol and quercetin. Further,
sinapic and ferulic acids were the major phenolic acids detected in cauliflower waste extracts [115].
Huynh et al. [126] reported solid state fermentation of cauliflower by-products (via use of filamentous
fungi) to significantly enhance the extraction yield of phenolic compounds wherein an improved release
of kaempferol glucosides was observed. Kaempferol is a well-studied natural flavonoid imparting
anti-inflammatory and anti-carcinogenic properties [127]. Cauliflower waste is also reported to be
an important source of isothyiocynates, the product of glucosinolates hydrolysis, which are linked
with anti-carcinogenic properties [116]. Further, cauliflower by-products also contains proteins that
can be valorised. For instance, Xu et al. [117] isolated bioactive peptides with ACE inhibitory effect
from cauliflower leaves protein enzymatic hydrolysate. The authors highlighted that the protein
obtained from cauliflower by-products can be a cheap source of functional foods raw material (to treat
hypertension related disorders).

3.1.5. Underexplored Vegetable Wastes

Apart from the extensively studied vegetables wastes for recovery of bioactive compounds, there are
still a wide group of vegetable wastes that remains underexplored. Some of the wastes includes those
generated from mushroom, garlic, eggplant, spinach and other green leafy vegetables, cabbage and other
Brassicaceae family, and other traditional vegetables with shorter shelf life. One of the most recently
studied material being evaluated is that of onion and garlic skin/peel, which generates huge amount
of wastes. The skin portion is reported to be rich in total phenolics, flavonoid, flavonol, quercetin,
aglycone, fructans, alk(en)yl cystein sulphoxides and dietary fibre, exhibiting bioactivities like antioxidant,
antimicrobial, antispasmodic, and antidiabetic activity [128–130]. Similarly, garlic husk has been reported
to be a potential source for cellulose (41%), hemicellulose, lignin, and polyphenolic compounds [131].

4. Bioactive Compounds from Seeds

Seeds from fruits and vegetables remain underexplored for their potential bioactivity or for
presence of nutraceutically-valued bioactive compounds. Many of the literature available indicates the
presence of higher amount polyphenolic compounds in fruits seeds (longan, jackfruit, mango, avocados,
grapes) when compared to the edible pulp portion. Seeds of avocado and jackfruit are reported to
contain high amounts of polyphenols (5160 and 2770 mg/100g, respectively) and carotenoids (630
and 1910 µg/100 g) [132–134]. With regard to citrus family, reports are available on lemon and orange
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seeds. Russo et al. [29] reported lemon seeds to be rich in bioactive phenolic acids (mainly gallic and
caffeic acids) and limonoids (ichangin, deacetylnomilin, limonin, nomilin and obacunone). In another
study, orange seeds was reported to be an important source of limonoids (limonin, nomilin, obacunone,
and ichangin) which also had high content of flavanones (hesperidin and narirutin) [30].

Seeds obtained as a by-product of berry processing is reported to be a valuable source of oil
with a unique fatty acid composition occurring in combination with higher content of lipid-soluble
antioxidants (mainly tocopherols) [43,44]. Plum (Prunus domestica) stones consisting of seed is
proposed to be a good source of oil (yielding up to 50% w/w). Plum seed oil is mainly composed
of oleic and linoleic acids with a high ratio of unsaturated/saturated fatty acids (UFA/SFA) which is
considered favourable for biodiesel production [97]. However, there is wide gap of research works
undertaken on the potential use of this oil for food or pharmaceutical applications. Plum seeds are also
reported to be a good source of protein and bioactive peptides. Gonzalez-Garcia et al. [34] proposed
enzymatic extraction of bioactive peptides from defatted plum seeds. These bioactive peptides showed
antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities that can be related to
potential anti-hypertensive capacity.

Mango seeds/kernel which is a major waste after processing holds promise as a potential
therapeutic source with numerous bioactive compounds being isolated such as polyphenols, flavonols,
alkylresorcinol, xanthones and gallotannins, phytosterols (stigma-sterol, campe-sterol), sito-sterol
(b-sito-sterols) and tocopherol [135–137]. Further mango kernel/seed is a valuable source of proteins
and lipids. Protein extracts from mango seeds is reported to have high essential amino acids index
and protein quality index. Mango seeds lipid (5–13%) or the oil has comparable characteristics to that
of vegetable butter with high levels of saturated fatty acids (mainly palmitic, oleic and stearic acids),
which provides a good stability and a relatively high melting temperature. Hence, mango seed oil can
be a potential source to be used in food and cosmetic industries [35,36].

Seeds of Annona squamosa or custard apple fruits are poisonous, but they contain acetogenins,
which possess phytochemical values as these group of polyketides can be potent inhibitors of
mitochondrial complex I, as well as exhibit anti-cancer and pesticidal activities [138]. Further,
with regard to pomegranate seed waste (obtained after processing from juice industry), oil extracted
is reported to contain high amounts of conjugated fatty acids and dietary fibres [139]. Seeds and
seed oil of avocado fruit (Persea Americana Mill.) contains high amounts of polyphenols, flavonoids,
flavonols, procyanidins, tannins, phenolic acids, hydroxycinnamic acids, and essential fatty acids.
Seeds of avocado have been used for treating hypertension, hypercholesterolemia, inflammation and
diabetes [140,141]. Seeds of rambutan, an exotic fruit has high amounts of bioactive alkaloids, saponin
and tannins [142]. Seeds of the exotic fruit ‘red pitaya’ (Hylocereus polyrhizus (F.A.C.Weber) Britton &
Rose) is reported to have high amounts of phenolic compound with catechin being the major flavonoid
and ascorbic acid content exhibiting good antioxidant activities [143]. Further, grape seed which is
one of the much studied raw material is reported to contain bioactive components such as phenols,
tannin, resveratrol, quercetin, flavonoids and anthocyanins, exhibiting antimicrobial, antioxidant and
anticancer properties along with providing cardiovascular protective effects [144–147]. Date (Phoenix
dactylifera L.) seeds wastes are also valued for their bioactive contents such as that polyphenolic
compounds, flavonoids, flavonols, anthocyanins, proanthocyanidins and ascorbic acid [148].

On the other hand, there are also the seeds from oil-yielding plants. Rapeseed (Brassica napus L.)
oil is reported to contain bioactive components such as sterols, tocopherols, polyphenols, flavonoids,
tannins and phospholipids which are linked with associated with lowering risks associated with
cardiovascular problems, cancer and stroke [145,149].

Camelina (Camelina sativa L.) seed oil is reported to be rich in bioactive compounds including those
of vital unsaturated fatty acids like omega 3- and -6 fatty acids (linoleic and linolenic acids), phenolic
acids, flavonoid aglycons and carotenoids [150]. Further, underutilized legumes and seeds belonging to
species of Canavalia, Entada scandens G.Forst., Mucuna, Nelumbo, and Sesbania is reported to have high
amount of bioactive compounds including those of polyphenols, flavonoids, vitamins, etc [151–154].
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Seeds of Theobroma grandiflorum (Willd. ex Spreng.) K.Schum. (cupuaçu) is reported to contain bioactive
phytochemicals such as sulfated flavonoid glycosides (theograndins I and II), flavonoid antioxidants,
catechin, epicatechin, kaempferol, quercetin, quercetin 3-O-β-D-glucuronide, isoscutellarein hypolaetin
8-O-β-D-glucuronide, and isoscutellarein 8-O-β-D-glucuronide 6′′-methyl ester [155].

5. Bioactive Compounds from Animal Products Processing Waste

Animal product processing mainly involves the milk and meat processing industries.
Both industries generate various by-products that remain significantly undervalorised. In the
European Union, animal by-products generated exceeds to 20 million tons annually, originated
from slaughterhouses, the meat processing and dairy industries [156]. Disposal and treatment of the
generated waste is expensive and can present serious health and environmental problems. Therefore,
industries and researchers have focused on converting these by-products into useful sources of value
added non-edible products such as fertilizers and biodiesel, and edible products including bioactive
compounds like peptides and oligosaccharides. In Table 4, we have summarized examples of bioactive
compounds recovered from animal and marine products processing wastes.

Table 4. Bioactive compounds from animal and marine products waste.

Industry Type of Waste Bioactive Compounds Bioactivity Reference

Dairy products

Whey

Bioactive peptides from
protein hydrolysate

Antioxidant,
ACE inhibitor [157]

Bioactive milk
oligosaccharides

Neutral oligosaccharides
Acidic sialylated
oligosaccharides

Bifidogenic,
anti-inflammatory,

adherence inhibition of
enteric pathogens.

[158]

Galactooligosaccharides Prebiotic. [159]

Colostrum
Lactoferrin

Antioxidant,
anti-inflammatory,

anti-microbial,
neuroprotective.

[160]

Oligosaccharides Prebiotic (bifidogenic),
anti-inflammatory. [161]

Meat products

Blood:
Hemoglobin

Plasma

Bioactive peptides from
protein hydrolysate

Opioid,
Antimicrobial,
ACE inhibitor.

[162]

Trimmings and
cuttings

Bioactive peptides from
protein hydrolysate

Antioxidant,
ACE inhibitor. [163]

Bones
Horns
Skin

Collagen hydrolysate

Beneficial effect on bone
metabolism,
Antioxidant,

ACE inhibitor.

Marine products

Shrimp shells,
heads and tails

Chito-oligosaccharides Antioxidant. [164]

Astaxanthin

Antioxidant,
anti-cancer,

neuroprotective,
anti-aging.

[165]

Polyunsaturated fatty acids
Ω3

Beneficial effects on
cardiovascular disease,

autoimmune diseases and
mental health disorders.

[166]

Salmon nasal
cartilage Proteoglycans

Anti-angiogenesis,
relieving joint pain

discomfort,
promote wound healing.

[167–169]

Salmon skin and
trimmings

Bioactive peptides from
protein hydrolysate

Anti-diabetic, antioxidant,
ACE inhibitor,

enhancing learning and
memory in aged mice

[170–172]
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5.1. Dairy By-Products

Milk is a major source of protein and other nutrients in the human diet and is widely consumed
as a drink or in other processed forms. Whey is the major by-product from cheese production,
corresponding to the remaining aqueous fraction of milk after casein coagulation. Whey is generated in
huge volumes that can cause serious environmental problems, but, it is also recognized as an important
source of proteins with excellent nutritional and functional properties which are widely used in
various food product development. Whey proteins are also an important source of bioactive peptides
obtained by enzymatic hydrolysis exhibiting antioxidant and anti-hypertensive properties [157,173].
Whey protein fraction is recovered as retentate after microfiltration; and the generated permeate
is rich in carbohydrates including lactose and other oligosaccharides. This permeate can also be
valorised for the isolation of bioactive milk oligosaccharides that have important health benefits such as
anti-inflammatory, inhibition of enteric bacteria adhesion to intestinal cells, and promoting Bifidobacteria
growth [158]. Whey permeate can also be used for the production of galacto-oligosaccharides which
can perform the role of prebiotics, by transgalactosylation of lactose using β-galactosidase [159].

Colostrum, the first form of milk produced by mammals immediately after parturition is also
much valued for its rich health-promoting effects. The presence of colostrum in the raw milk
supply is undesirable due to its sensitivity to heat treatment and the production of off-flavour.
Colostrum is an important source of proteins containing 50% of immunoglobulins [174]. Colostrum
protein fraction contains lactoferrin, a low molecular weight glycoprotein, with various biological
functions including antioxidant, anti-inflammatory, anti-microbial and neuroprotective functions [160].
Colostrum permeate obtained after microfiltration is also an important source of bioactive milk
oligosaccharides [161]. As of today, most of the literatures available is on commonly consumed milk
from cow, buffalo, sheep and goat, but there is vast scope to explore for other underutilized resources
too (camel, donkey, etc).

5.2. Meat Processing By-Products

Meat processing industry by-products include blood, bones, horns, skin, fatty tissues, and viscera.
The treatment and disposal costs of these wastes can be balanced through innovation to generate value
added products. Thus, they have been mainly used for the production of feed and pet food, biodiesel
from fats, fertilizers, etc [162]. Meat by-products (meat trimmings, blood, bones and skin collagen)
are rich in proteins and can constitute a good substrate for proteolysis. The obtained protein lysate
is a valuable source of bioactive peptides with in vitro and in vivo antioxidant, anti-hypertensive,
and anti-microbial activities [163]. However, with the available research information, scientific research
works undertaken on effective valorisation of wastes and by-products from animal resources remains
in infancy stage when compared to fruits or vegetables, and hence detailed research is warranted on
this in the near future.

6. Bioactive Compounds from Marine Product Processing Wastes

6.1. Fish and Shellfish Waste

The fishing industry is a major contributor to the economy of numerous regions and it is opined
that this industry contributes to over 170 million tons of annual production as fish or shellfish from
fisheries and aquaculture [175]. By-products generated from fishing industry account for 40–50% of the
total fish weight. Fishing industry by-products such as anchovy (Engraulis encrasicolus), carp (Cyprinus
carpio), cuttlefish (Sepia officinalis), cod (Gadus morhua), tuna (Thunnus albacares), etc, can be used as
animal feed or as a source of value-added minerals such as calcium phosphates [176]. Fish and shellfish
by-products are also an important source of bioactive compounds imparting multiple health benefits.
For example, several bioactive compounds can be isolated from processing waste of shrimps, one of
the most widely consumed seafoods, including chito-oligosaccharides from chitin, astaxanthin a red
carotenoid with high antioxidant capacity, and Ω-3 polyunsaturated fatty acids [164–166]. Salmon
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nasal cartilage is a valuable source of bioactive proteoglycans reported for anti-angiogenic activity,
relieving joint pain discomfort in elderly people and promoting wound healing [167–169,177]. Fish skin
is also an important source of collagen that can be hydrolysed to bioactive peptides with multiple
health benefits with antioxidant, anti-hypertensive, and anti-diabetic activities, as well as enhancing
learning and memory [170–172].

6.2. Seaweeds

Edible seaweeds has been consumed since time immemorial in China, India, Japan, Korea, and other
parts of Southeast Asia. Seaweeds contain rich amount of nutraceutically value phytonutrients and
are well established for their role in disease prevention in humans. Antioxidant, anticoagulant,
anti-microbial, antidiabetic, anti-obesity, anticancer, anti-inflammatory activities are linked with
seaweeds. Most of the edible seaweeds harvest remains underutilized and goes as a waste. Seaweeds
belonging to Chlorophyta, Rhodophyta and Phaeophyta are reported to be rich in dietary fibre, sulfated
polysaccharides, omega-3-fatty acids, β-carotene, carrageenan, fucoidan, lycopene, polyphenolic
compounds, carotenoids gallic acid, quercetin, zeaxanthin, astaxanthin, vitamin C, phlorotannins and
phloroglucinol [178–181]. Available literatures clearly indicate the presence of bioactive compounds in
some of the popular and edible seaweeds such as those of Ulva spp., Sargassum polycystum, Caulerpa
lentillifera, Kappaphycus alvarezii, Laminaria japonica, Ascophyllum nodosum, Codium spp., Gracilaria spp.,
Porphyra umbilicalis, Undaria pinnatifida, and others. However, identification of bioactive compounds in
underutilized seaweeds, especially those harvested from the wild/sea and of those creating seaweed
blooms, still remains in infancy stage, a gap that needs to be filled in the near future.

7. Conclusions

It is evident from the available literature that agri-food wastes and by-products presents wide
opportunity for isolation of natural bioactive compounds with possible potential applications in the
food, pharma and cosmeceutical industries. In Figure 3, we have provided a schematic representation
summarizing key technical development factors and potential applications of agri-food wastes and
by-products valorization.

Most of the research works undertaken is concentrated on industrial wastes obtained
post-processing of the raw materials. However, still there are wide gaps and challenges that need to
be addressed in relation to underutilized resources like exotic fruits, vegetables, marine and dairy
by-products. Apart from isolation and identification of bioactive compounds, it will be worthwhile to
explore, evaluate and create a toxicological database on the extracts and understand their potential
bioavailability and metabolism. Potential application of the natural bioactives in cosmetic application
via support from in vitro and in vivo experiments are essential. Finding the value for isolated natural
bioactive compounds, pigments, vitamins, oil and others via fortification in food can open up a
new arena in food sector (development of novel functional foods). Fibre extracted from wastes and
by-products can find potential applications in food application as a low calorie bulking agent useful
as a flour or fat replacer or to improve water and oil absorption and other functional properties and
viscosity or as a natural ingredient to provide oxidative stability and enhance the shelf-life of foods.
Use of wastes as source of prebiotic oligosaccharides will be an interesting arena to be explored.
Oil obtained from underutilized seeds can be explored for their bioactivity as well as can be tried for
nano-encapsulation. Besides, husk and oil cake can also be explored for the presence of bioactive
compounds and bioactivity. Also, most of the works reported have focused more towards isolation
of bioactive compounds from single resources (e.g., apple pomace, grape waste, potato peel waste,
etc), thus creating a gap of information from a mixture of raw materials, especially those obtained
from food processing industries or those obtained as kitchen wastes in restaurants. Utilizing agri-food
wastes and by-products (rich in pectin, fibre, lignin, cellulose and hemi cellulose) for producing novel
biodegradable bioplastics is another arena that needs to be investigated. Finally, improving and
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optimization of the isolation, extraction, processing and production processes of agri-food wastes and
by-products via a sustainable approach is the need of the hour.
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