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The effects of acupuncture facilitating neural plasticity for treating diseases have been identified by clinical and experimental
studies. In the last two decades, the application of neuroimaging techniques in acupuncture research provided visualized
evidence for acupuncture promoting neuroplasticity. Recently, the integration of machine learning (ML) and neuroimaging
techniques becomes a focus in neuroscience and brings a new and promising approach to understand the facilitation of
acupuncture on neuroplasticity at the individual level. This review is aimed at providing an overview of this rapidly growing
field by introducing the commonly used ML algorithms in neuroimaging studies briefly and analyzing the characteristics of the
acupuncture studies based on ML and neuroimaging, so as to provide references for future research.

1. Introduction

Neuroplasticity usually refers to brain plasticity, which
means the ability of the brain to modify its organization to
the altered demands and environments [1, 2]. The cumula-
tive evidence from both animal and human studies demon-
strated that the adult mammalian brain was plastic and
could be remodeled by the environmental input continuously
[3–5]. The long-term noxious stimulus, such as pain and
depression, as well as regular exogenous interventions can
reorganize the structure and function of the brain [6–9]. As
the most widely used complementary therapy, acupuncture
is considered to treat diseases via facilitating neural plasticity
from multiple pathways, such as promoting endogenous
neurogenesis, modulating synaptic plasticity, and regulating
the secretion of neurotrophins and neurotransmitters, so
as to affect the structural and functional plasticity of the
brain [10–13].

In the past two decades, studies on acupuncture pro-
moting brain plasticity were greatly enhanced with the
development of neuroimaging techniques. Several studies
focused on investigating acupuncture-induced brain struc-
tural and functional plasticity by magnetic resonance imag-
ing (MRI), positron emission tomography (PET), and other
neuroimaging methods [14, 15]. People found that acu-
puncture could modulate the brain functional activities,
shape the gray matter structure, and remodel the white
matter fiber connection [16–18] and that the modulation
of acupuncture on neuroplasticity varied with the different
acupuncture modalities and different acupoint stimulations
[19, 20]. For instance, our previous study [21] found that
acupuncture could positively modulate the functional activ-
ity of the rostral ventromedial medulla in patients with
migraine and that the neural plasticity elicited by punctur-
ing at real acupoints was more pronounced than sham
acupoints.
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Currently, most neuroimaging findings of acupuncture
facilitating neuroplasticity were obtained by the standard
univariate analysis. It means the results were only significant
at the group level, which limited their clinical translation to a
certain extent. So, it is of great value to investigate how
acupuncture promotes neuroplasticity and how the specific
neuroplasticity affects the responses to acupuncture from
the individual level. The application of multivariate pattern
analysis (MVPA) and machine learning (ML) in neuroimag-
ing studies provides an attractive method to this issue [22].
Since 2010, over 2200 studies focusing on ML in neuroimag-
ing have been published in PubMed (pubmed. ncbi.nlm.nih.-
gov), and the number of these studies is increasing by 37%
per year (Figure 1). With the ML algorithms and the neuro-
imaging features, researchers established the diagnostic and
prognostic models of diseases. The interpretation of these
models complemented the deficiencies of univariate analysis.
They can not only assist in diagnosing diseases and in pre-
dicting individuals’ responses to intervention but also pro-
vide novel insights for understanding brain plasticity. For
example, Min et al. [23] found that schizophrenics who were
sensitive to electroconvulsive therapy (ECT responders) had
significantly higher whole-brain transfer entropy than the
ECT nonresponders and that the value of whole-brain trans-
fer entropy could be used as a reliable and plausible neuroim-
aging biomarker for random forest (RF) classifier to identify
the ECT responders from the nonresponders. In another
study, applying the baseline gray matter volume (GMV) of
the subgenual cingulate cortex as a feature, Redlich and col-
leagues [24] successfully predicted the continued improve-
ment of depression symptoms in patients with major
depressive disorder following ECT. Simultaneously, integrat-
ing ML and neuroimaging technologies to investigate the
facilitation of acupuncture on brain plasticity and using spe-
cific brain plasticity to predict acupuncture efficacy which
can promote precision treatment have been a new focus in
acupuncture research.

Therefore, we conducted this review by introducing the
most widely used ML algorithms in neuroimaging studies
briefly and analyzing these applications in the fieldof acu-
puncture promoting neural plasticity, aiming to provide an
overview of this rapidly growing field and new approaches
in future research.

2. Overview of Machine
Learning in Neuroimaging

ML is a subfield of artificial intelligence which is aimed at
investigating how computers can improve decisions and pre-
dictions based on data and ongoing experience [25, 26].
According to the criteria whether the training data is given
a label or not, ML is divided into supervised learning, unsu-
pervised learning, and semisupervised learning [27]. The
unsupervised learning and semisupervised learning are gen-
erally applied for data reduction and feature selection [28],
whereas the supervised learning is mainly used to construct
the classification or regression models, which can learn the
mappings between the input features and labels, to make
individual-level estimations for the previously unseen data.
The supervised learning includes many types, of which the
most commonly used in neuroimaging research include sup-
port vector machine (SVM), decision tree (DT), RF, and arti-
ficial neural network (ANN) [29].

2.1. Support Vector Machine. The SVM is so far the most
popular supervised learning algorithm in neuroimaging
studies and is widely utilized in classification and prediction
[30–33]. The principle of SVM is constructing a separating
hyperplane that classifies all inputs, and the goal is searching
for the optimal separating hyperplane that maximizes the
margin between the hyperplane and the support vectors
[34]. With different kernel functions, the distinct separating
hyperplanes in different dimensions were constructed to per-
form the classification or prediction analysis. Among the dif-
ferent kinds of kernel functions in SVM models, the linear
kernel and Gaussian kernel are most frequently used in neu-
roimaging studies [35–37]. The linear SVM is designed to
solve the linear separating problems, while the RBF SVM is
used primarily to seek nonlinear separating boundaries in
the high-dimensional space.

2.2. Decision Tree and Random Forest. DT is the rooted
directed tree that predicts the output based on a sequence
of splits in the input feature space. The nodes split at each
step by optimizing a metric, which indicates the consistency
between the estimates and truth values. When the node has
no subordinate to split, the traversal of this tree generates
the target outcome prediction. As a typical classification
algorithm with high interpretability, DT is applied predomi-
nantly for classification and disease diagnosis in neuroimag-
ing studies [38, 39].

RF is generally the ensembles of DTs [40]. The principle
of RF is consolidating multiple and diverse DTs together, and
the final prediction outcome of RF is determined by the votes
of each DT in the forest. As an integrated algorithm, RF can
potentially yield much better prediction performance than
learning with a single DT [41].

2.3. Artificial Neural Network. The concept of ANN is
derived from the biological neural network. Similar to the
synaptic connection in the brain, an ANN is composed of
several layers of interconnected artificial neurons that make
up the input layer, hidden layer, and output layer. As an
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Figure 1: Numbers of publication on neuroimaging and machine
learning in the last decade (from January 1, 2010, to June 1, 2020).
The data was obtained by searching at the PubMed database with
the items (Neuroimaging) AND (Machine Learning).
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ultracomplex ML algorithm, ANN establishes the computa-
tional units of multiple layers by simulating signal transmis-
sion and learning the architecture of synapse [42]. Due to the
flexibility of its structure, ANN has the ability to fit arbitrarily
complex functions given sufficient annotated data [27]. Tra-
ditionally, the utilization of ANN is extremely limited in neu-
roimaging for the small training samples, while in recent
years, with benefit from the open-access of the large-scale
neuroimaging data repositories, the application of ANN is
accelerating and has great potential to become one of the
most efficient algorithms in neuroimaging studies [43, 44].

The diagrams of the above algorithms are summarized in
Figure 2.

3. Application of Neuroimaging and Machine
Learning in Acupuncture
Promoting Neuroplasticity

In this review, we focused on the application of neuroimag-
ing and ML in acupuncture promoting neuroplasticity. For
a comprehensive summary of the field, we systematically
searched papers in PubMed (pubmed.ncbi.nlm.nih.gov),
Web of Science (https://www.webofknowledge.com), EBSCO
(search.ebscohost.com), and CNKI (https://www.cnki.net)
databases. According to the established inclusion and exclu-
sion criteria, a total of ten studies were finally included

[45–54]. The details of data acquisition and literature selec-
tion process can be found in the supplementary materials
(available here).

These ten studies were published from 2008 to 2020.
Generally, for participant selection, these studies were per-
formed on healthy subjects [45–47, 49, 54], patients with
migraine [48, 50, 51], patients with chronic low back pain
[53], and patients with functional dyspepsia [52], respec-
tively. The sample size of these studies ranged from 12 to
94, and the average sample size of healthy subjects was 28.
Except for one study that enrolled participants with a wide
age span [54], these studies mainly included participants
aged 20-45 years. For acupuncture intervention, nine studies
[45–53] applied manual acupuncture, and one study [54]
selected the electroacupuncture as the intervention method.
For scan design, six studies [45–49, 54] applied the on-off
block design to detect the real-time effects of acupuncture
on functional brain plasticity. For imaging parameters, seven
studies [45–47, 50–53] employed MRI to acquire neuroimag-
ing data and applied the blood oxygenation level-dependent
(BOLD) signal [45–47], functional connectivity [52, 53],
GMV [51], and diffusion measures of white matter fibers
[50] to reflect the structural and functional patterns of
the brain. For machine learning parameters, eight studies
[45–52] were aimed at solving the problems of pattern clas-
sification, and the other two studies [53, 54] were designed
to predict pain relief following acupuncture treatment.
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Figure 2: Diagrams of the commonly used machine learning algorithms in neuroimaging studies. SVM: support vector machine; DT:
decision tree; RF: random forest; ANN: artificial neural network.
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SVM, especially the linear SVM, was the most used ML algo-
rithm in classification [45–52], whereas support vector
regression [53] and fuzzy neural network [54] were applied
in predictions. Three studies [49, 53, 54] exploited a
hypothesis-based approach and selected the features of inter-
est as inputs, and the other three studies [45, 50, 51] inte-
grated multiple methods to find the optimal inputted
features. Cross-validation, particularly the leave-one-out-
cross-validation, was the popular validation strategy [45,
47–53], and only one study used independent samples as
the validation set in these ten studies [54].

The detailed characteristics of these included studies were
displayed in Table 1.

3.1. Concerns of Studies on Acupuncture Promoting
Neuroplasticity. According to aims and design, these studies
can be divided into three types. Among them, three studies
[45–47] focused on the acupoint specificity, two studies [48,
49] were concerned with the differences and similarities of
different acupuncture manipulations, and five studies [50–
54] paid their attention to the prediction of acupuncture
efficacy.

3.1.1. The Acupoint Specificity. Acupoint specificity refers
that acupoints have different therapeutic effects and biophys-
ical characteristics compared to sham acupoints and that dif-
ferent acupoints have relatively different therapeutic effects
and biophysical characteristics [55]. In this review, three
studies [45–47] focused on the acupoint specificity. One
study was aimed at exploring the differences in real-time
brain functional plasticity elicited by a verum acupoint and
a sham acupoint. The other two studies compared the differ-
ences between different acupoints (GB40 vs. KI3 [46] and
HT7 vs. PC6 [47]). These three studies had similar experi-
mental designs, including focusing on the different points
in the same nerve segments, using the multiple on-off block
design, choosing the BOLD signal as features, and adopting
the linear SVM algorithm to build models. For example, Li
et al. [45] applied MVPA and searchlight method to decode
spatial discrimination of acupuncture stimulation at GB37
and a nearby sham acupoint. The results indicated that the
occipital cortex, limbic-cerebellar areas, and somatosensory
cortex were the main regions with higher classification accu-
racy in the discrimination of the verum and sham acupoint
stimulation. These studies indicated that acupuncture stimu-
lation at different points induced distinct real-time brain
functional plasticity in different regions and that MVPA
could be used to investigate the real-time neuroplasticity
from the individual level. Interestingly, these three studies
utilized the general linear model (GLM) analysis to verify
the findings obtained in MVPA, while every GLM analysis
showed that the different points caused similar BOLD signal
changes. It suggested that the conventional univariate analy-
sis might not be sensitive enough to detect the neural plastic-
ity evoked by different acupoint stimulation. This is
consistent with the opinion that multivariate analysis was
more sensitive than univariate analysis in neuroimaging
studies [56].

Acupoint specificity is not only the core of acupuncture
theory and the base of clinical practice but also the focus of
acupuncture-neuroimaging research [57–59]. Our previous
review [15] indicated that more than 1/3 acupuncture-
neuroimaging studies focused on acupoint specificity and
these studies mainly concentrated on the differences of
verum acupoints and sham acupoints. From 1995 to 2016,
79 original neuroimaging articles on acupoint specificity
were published in PubMed, and 53 articles focused on the
difference between the verum acupoints and the sham acu-
points [19]. Given the importance of acupoint specificity in
acupuncture theory and clinical practice and the extensive-
ness in neuroimaging research, we hold that acupoint speci-
ficity is bound to become a hot spot in future ML and
neuroimaging studies.

3.1.2. Acupuncture Manipulation. Two [48, 49] of the ten
studies centered on the differences in brain functional plas-
ticity caused by the different acupuncture manipulations. In
one study [48], linear SVM was applied to classify the base-
line and post acupuncture blood perfusion patterns in both
verum and sham acupuncture groups. The results illustrated
that the SVM classifier performed better when the training
data was extracted from the verum acupuncture group.
Moreover, the temporal lobe and cerebellum contributed
important information for the discrimination in the verum
acupuncture group. Another study [49] proposed a classifica-
tion framework based on multiple ML algorithms for the two
traditional acupuncture manipulations: the twirling-rotating
manipulation and lifting-thrusting manipulation. The results
demonstrated that with all the six graph theory properties as
inputs, the SVM classifier got the highest accuracy of 92.14%.
Moreover, the post hoc analysis also found the significant
between-group differences of these six graph theory mea-
sures between two manipulations.

Acupuncture manipulation is the key in acupuncture
clinical practice and significantly affects acupuncture efficacy
[60]. In more than 2000 years of development, acupuncture
has formed a rich variety of modalities and manipulation
skills. The differences between acupuncture and moxibus-
tion, electroacupuncture and manual acupuncture, acupunc-
ture with deqi and acupuncture without deqi, and the
reinforcing manipulation and reducing manipulation are
always the key of clinical and experimental research in the
acupuncture field and could be the research direction in
future MVPA studies.

3.1.3. Prediction of Acupuncture Efficacy. The integration of
ML and neuroimaging features has been extensively
employed in predicting the clinical efficacy of drugs or other
interventions [33, 61]. In this review, five studies focused on
acupuncture efficacy prediction [50–54]. Among them, three
studies [50–52] adopted the classification algorithms to pre-
dict patients’ responses to acupuncture treatment. For exam-
ple, Liu et al. [50] utilized the diffusion measures of the
medial prefrontal cortex- (mPFC-) amygdala fiber as inputs
and established a linear SVM classifier to predict the
response of migraine patients to the 8-week sham acupunc-
ture treatment. The result showed that when using each
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single diffusion measure as input, the accuracy of the classifier
is lackluster, whereas when multiple measures were applied
the classifier could accurately discriminate responders from
nonresponders with an accuracy of 84.0%.Moreover, the most
discriminative white matter plasticity features that contributed
to the classification were located in the external capsule, ante-
rior cingulate gyrus, and mPFC. The other two studies [53, 54]
constructed the regression models to predict the continuous
improvement in symptoms after acupuncture treatment.
For example, Tu et al. [53] used the features of interest as
inputs to predict pain relief in patients with cLBP following
8-week verum or sham acupuncture treatment. The results
showed that multiple functional connections involving
mPFC could provide vital information for predicting the
improvement of symptoms after both verum and sham acu-
puncture treatment.

These five studies on acupuncture efficacy prediction
demonstrated that the specific neuroplasticity features
including morphology of gray matter and white matter and
cerebral functional activity patterns contained vital informa-
tion for predicting the response of patients to acupuncture
stimulation. The integration of ML and neuroimaging pro-
vides a new and promising approach for investigating mech-
anisms of acupuncture efficacy at the individual level, which
has great potential for clinical translation and will be the
important growth pole in acupuncture research.

In addition to the three aspects described above, there are
still some other concerns that should be focused in future
neuroimaging-based ML studies, for example, investigating
the influences of acupuncture with different acupoint combi-
nation or different stimulation intensity on neural plasticity
and predicting clinical efficacy of acupuncture with the neu-
roimaging features acquired under acupuncture stimulation.

3.2. Design of Machine Learning in Studies on Acupuncture
Promoting Neuroplasticity. The application of neuroimaging
techniques in acupuncture mechanism has produced
remarkable advance[57, 62, 63] and developed a series of
proven execution specifications [14, 19, 64]. In contrast, the
integration of ML and neuroimaging in acupuncture
research is still in its early stage, which inevitably brings
many challenges but also the future directions.

3.2.1. Sample Size. Due to difficulties in data acquisition,
the sample size of neuroimaging study is generally small
[65, 66]. By reviewing the studies which integrated ML
and neuroimaging technologies to investigate neuropsychiat-
ric disorders, Sakai and Yamada [29] found that 45.6% of the
studies from 2014 to 2018 had a sample size of fewer than 100
cases. In our review, the sample size of the included studies
ranged from 12 to 94 and six studies had a sample size of
fewer than 50 cases. A small sample size exacerbates the pos-
sibility of adaptive models to learn noise, which leads to the
high variability of estimates and overvaluation of prediction
accuracy [67]. Simulation experiments showed that even
when the sample size in the neuroimaging study reached
100 cases, the error bars were still around 10% [68]. Only
when the samples of the training set exceeded 200 cases did
the prediction model’s performance begin to plateau [69].

Therefore, when conducting an ML study to predict the
efficacy of acupuncture based on the neuroimaging proper-
ties, a sample size of 200 or more cases should be guaranteed
whenever possible.

3.2.2. The Appropriateness of Feature Selection. Considering
that there are generally more features than samples in neuro-
imaging data, it is beneficial to take appropriate manners to
eliminate the redundant features and reduce the dimension
of data. The ten studies included in this review indicated that
when using a single feature as input, the accuracy of the clas-
sifier is lackluster, whereas when multiple neuroimaging fea-
tures applied, the accuracy of the model was significantly
improved [49, 50]. This finding suggested that the properties
of neuroplasticity that influenced the efficacy of acupuncture
were multidimensional and complex. Moreover, another
interesting finding was that both GMV and diffusion mea-
sures of white matter fiber could accurately discriminate
between acupuncture-sensitive and acupuncture-insensitive
migraine patients [50, 51]. Does it mean that the prediction
model achieves better performance to discriminate the acu-
puncture responders and acupuncture nonresponders if both
gray matter and white matter features are applied as inputs?
In fact, the previous studies have illustrated that using multi-
modal rather than single-modal neuroimaging features as
inputs can induce higher classification accuracy and better
prediction performance [70, 71]. Therefore, future studies
could attempt to use multimodal neuroimaging features as
inputs to further explore the multidimensional features that
predict the efficacy of acupuncture accurately.

3.2.3. The Representativeness of Training Data. The current
ML studies generally favor seeking homogeneous subjects
to establish classification and prediction models [72–74]. It
reduces the underfitting of the model caused by data hetero-
geneity, but severely limits the generalizability of the model
to the real-world data [75]. The requirements for the repre-
sentativeness of training data depend on the purpose of the
study. For example, when a study is aimed at investigating
the effects of different acupuncture manipulations on brain
plasticity, the participants should be the homogeneous indi-
viduals from the same site. However, if the study is aimed
at creating a generalizable model to predict the clinical effi-
cacy of acupuncture, the participants should be enrolled from
multiple centers to represent the heterogeneous population
in real life.

3.2.4. The Validity of Labels. The goal of ML is establishing
mappings between training data and labels and then use the
mappings as benchmarks for predicting the labels of the
unseen data. Similar to other ML studies [76–78], the major-
ity of current studies on acupuncture efficacy prediction use
the subjective symptoms as the labels. These labels obtained
with self-evaluated symptoms are subject to individual cogni-
tive bias and have a high degree of variability. The heteroge-
neity yielded by subjective labels may hamper ML algorithms
to discover optimal neuroimaging biomarkers and establish
accurate mappings between data and labels. Therefore,
applying objective biological markers as labels to establish
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an objective-to-objective mapping between features and
labels should be taken into consideration in future studies
to reduce the influence of subjective factors on model
reliability.

4. Conclusion

In summary, we provided an overview of the literature on the
application of ML and neuroimaging in acupuncture pro-
moting neural plasticity. Studies published so far have pre-
liminarily demonstrated at the individual level that different
acupoint stimulation and different acupuncture manipula-
tions had significantly different real-time modulatory effects
on functional brain plasticity and that the specific structural
and functional neuroplasticity features at baseline could
accurately predict the improvement of symptoms following
acupuncture treatment. Although this research field is cur-
rently in its early stage and faces many challenges, we still
believe that integrating ML and neuroimaging techniques
will be a promising approach to understand the facilitation
of acupuncture on neuroplasticity in the future.
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