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Abstract
Nitric oxide (NO) is an imperative regulator of the cardiovascular system and is
a critical mechanism in preventing the pathogenesis and progression of the
diseased heart. The scenario of bioavailable NO in the myocardium is complex:
1) NO is derived from both endogenous NO synthases (endothelial, neuronal,
and/or inducible NOSs [eNOS, nNOS, and/or iNOS]) and exogenous sources
(entero-salivary NO pathway) and the amount of NO from exogenous sources
varies significantly; 2) NOSs are located at discrete compartments of cardiac
myocytes and are regulated by distinctive mechanisms under stress; 3) NO
regulates diverse target proteins through different modes of post-transcriptional
modification (soluble guanylate cyclase [sGC]/cyclic guanosine
monophosphate [cGMP]/protein kinase G [PKG]-dependent phosphorylation, S
-nitrosylation, and transnitrosylation); 4) the downstream effectors of NO are
multidimensional and vary from ion channels in the plasma membrane to
signalling proteins and enzymes in the mitochondria, cytosol, nucleus, and
myofilament; 5) NOS produces several radicals in addition to NO (e.g.
superoxide, hydrogen peroxide, peroxynitrite, and different NO-related
derivatives) and triggers redox-dependent responses. However, nNOS inhibits
cardiac oxidases to reduce the sources of oxidative stress in diseased hearts.
Recent consensus indicates the importance of nNOS protein in cardiac
protection under pathological stress. In addition, a dietary regime with high
nitrate intake from fruit and vegetables together with unsaturated fatty acids is
strongly associated with reduced cardiovascular events. Collectively,
NO-dependent mechanisms in healthy and diseased hearts are better
understood and shed light on the therapeutic prospects for NO and NOSs in
clinical applications for fatal human heart diseases.
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Introduction
Nitric oxide (NO) is an essential molecule that plays fundamen-
tal roles in maintaining cardiovascular functions in animals and 
humans1–5. The NO that exerts biological functions in the myocar-
dium can be acquired through exogenous sources or is produced 
from the endogenous endothelial and neuronal NO synthases (eNOS 
and nNOS, respectively, which are constitutively expressed in the  
myocytes) and from inducible NOS by inflammatory cytokines 
following infection4–6 (Figure 1). In the last few decades, our  
understanding of the detailed mechanisms, the effects of NO on 
myocardial functions, and the roles for NOSs in diseased hearts 
has improved. Comprehensive approaches have been undertaken 
to achieve this outcome, including manipulation of the upstream 
and downstream effectors of NOSs (pharmacologically or geneti-
cally modified NOS regulation and viral infections of specific  
NOS genes), supplementation of NO mimetics (for example, exog-
enous NO donors or NO substrates), and systematic detection of 
plasma and tissue NO4,5,7,8. Nevertheless, the practical implications 
of NO and its precursors or regulators in translational and thera-
peutic strategies in cardiovascular diseases are hampered because 

of the complex nature of NO and the array of downstream signal-
ling cascades and effectors in the myocardium. In the initial part 
of this review, I will provide a systematic overview of the sources 
and post-transcriptional modification of NO in the myocardium;  
the latter part of the review will focus on recent advances of 
nNOS-targeting proteins and responses in the heart under stress.  
Ultimately, I will delineate the prospect for using the therapeutic 
platform of nNOS and NO to target human heart diseases.

Exogenous sources of nitric oxide
It is generally acknowledged that NO is derived from the classic 
L-arginine–NOS–NO pathway. In fact, NO that exerts functions in 
the myocardium may also be acquired from the alternative source 
of NO, the nitrate–nitrite–NO pathway (Figure 1). Nitrate (NO

3
−) in 

various types of green leafy vegetables and food9–11 is taken up into 
the plasma to become a reliable reservoir and the stable precursor of 
NO (the half-life of nitrate in the plasma is 5–6 hours). Nitrate from 
this source is actively taken up by the salivary gland, is secreted in 
concentrated form in the saliva (about 10-fold that in the plasma), 
and is subsequently reduced to more active nitrite (NO

2
−) in the oral 

Figure 1. Schematic diagram demonstrating the sources of nitric oxide (NO) in the heart and mechanisms mediating the effects 
of NO and its derivatives. Both exogenous sources (nitrate-rich vegetables and food through the entero-salivary nitrate–nitrite–NO 
pathway and skeletal muscle nitrate  NO pathway) and endogenous sources (neuronal nitric oxide synthase [nNOS], endothelial 
NOS [eNOS], or inducible NOS [iNOS]) determine the bioavailable NO in the myocardium. NO regulates downstream targets through 
soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG)-dependent phosphorylation,  
S-nitrosylation, and transnitrosylation. Alternatively, NOS-derived radicals and NO-related derivatives (H2O2, O2

–, and peroxynitrite [ONOO–], 
etc.) affect downstream effectors through the oxidation and S-glutathionylation. As such, NO regulates membrane proteins, Ca2+-handling 
proteins, membrane proteins, and organelle effectors in the cardiac myocytes.
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cavity by nitrate reductases of commensal bacteria (entero-salivary 
NO pathway). Nitrite is reduced to NO in the acidic environment 
of the stomach and is absorbed into the blood in the upper gastroin-
testinal system (the half-life of nitrate in the plasma is about 30 
minutes), while the rest mixes with the nitrite formed from nitrate 
derived from endogenous NOS-produced NO. Various enzymes 
and proteins are known to be involved in the NO metabolite cycle 
and nitrite’s reduction to NO, including xanthine oxidase12,13, 
deoxyhaemoglobin and deoxymyoglobin14–16, neuroglobin17, res-
piratory chain enzymes18, cytochrome P45019, aldehyde oxidase20, 
carbonic anhydrase21, and NO synthase22. Overall, about 25% of 
nitrate undergoes re-uptake by the salivary gland and produces 
functional NO in the circulation; the rest of the nitrate is eventually 
excreted in the urine. The amount of NO from exogenous sources 
can be as high as the amount that is produced from NOSs in the 
tissues (with enough daily consumption of green leafy vegetables 
or food, nitrite intake varies from 0 to 20 mg/day23), indicating the 
importance of this pathway in supplementing local NO in the tissue. 
Notably, unlike NO from the L-arginine–NOS–NO pathway, food-
derived functional NO is oxygen independent10,11. Accordingly, NO 
from this source becomes more important in ischaemic or hypoxic 
conditions, such as myocardial infarction, hypertrophy, and heart 
failure.

NO or nitrite can undergo an oxidative process via oxyhaemoglobin 
or oxymyoglobin to produce stable nitrate, which can be reduced 
back to nitrite and NO by molybdopterin-containing mammalian 
nitrate reductases, such as xanthine oxidoreductase or aldehyde 
oxidase10,11. Therefore, there is a constant recycling of NO pre-
cursors, metabolites, and NO that maintains exogenous NO in the 
human body. The respective contributions of the endogenous versus 
exogenous NO to intracellular signalling and function in healthy 
and diseased hearts in vivo remain to be revealed.

A number of organs or tissues (for example, neurons, liver, heart, 
skeletal muscle, kidney, arteries such as the aorta, and endothelium) 
are the active sites for NO production from constitutive NOSs. 
Recently, it has been shown that skeletal muscle is a dynamic 
nitrate reservoir that increments plasma nitrate and nitrite because 
of the abundance of the tissue in the mammalian body24. nNOS in 
the skeletal muscle contributes to the supply because it is the only 
isoform in the skeletal muscle25. However, the proportions of NO 
from the specific sources that contribute to the bioavailable NO in 
the myocardium remain undetermined.

Endogenous sources of nitric oxide in the 
myocardium
Endothelial nitric oxide synthase
Classically, eNOS is the primary isoform of NOS that plays impor-
tant roles in NO regulation of physiological functions in the major-
ity of tissues, including the heart4,5,7,8. In the cardiac myocyte, eNOS 
is located in spatial microdomains of the plasma membrane (caveo-
lae and lipid rafts), Golgi apparatus, nucleus, and mitochondria8,26. 
eNOS displays the highest activity at the plasma membrane, fol-
lowed by outer membranes of the cis-Golgi and low activity in the 
cytosol, nucleus, and mitochondria26,27; therefore, localisation is the 
main determinant of eNOS activity for specific biological functions. 
Conversely, mis-localisation of eNOS has been shown to reduce 

its capacity to generate NO in intact cells26–28. Post-translational 
cysteine palmitoylation (Cys15 and Cys26) or N-myristoylation at 
Gly2 of eNOS, catalysed through Asp-His-His-Cys motif-containing  
palmitoyl acyltransferases, is critical in locating eNOS to the mem-
brane for optimising its activity28,29.

A number of alternatively spliced eNOS variants have been identi-
fied: specifically, eNOS lacking exons 20 and 2130 or three splice 
variants of eNOS containing novel 3’ splice sites within intron 1331. 
These alternative splicing variants produce truncated isoforms of 
eNOS with maintained30 or diminished31 NO-producing activity. 
Reduced eNOS activity has been shown in the heterodimer of eNOS 
(the splice variants with the full-length eNOS)31, although the exist-
ence of the splice variants of eNOS and their functional impact in 
the myocardium are unclear. In diseased hearts, the protein expres-
sion and the activity of eNOS are known to be downregulated32–34 or 
uncoupled35. These results suggest that maintaining eNOS protein 
and activity in its “coupled form” is beneficial by preventing the 
early stage of disease progression in the heart.

Neuronal nitric oxide synthase
Recent consensus is that nNOS is the isoform that plays the prin-
cipal role in cardiac physiology and pathology because nNOS is 
expressed in all parts of the heart, including the autonomic nervous 
system innervating the heart, aortic and pulmonary arteries, coro-
nary artery, and the atrial and ventricular myocardium7,8. As such, 
nNOS is well placed to fill essential roles in modifying sympathetic 
and parasympathetic tones, controlling heart rate, delivering essen-
tial nutrients through coronary arteries, and regulating myocardial 
contractility. In the myocardium, nNOS is predominantly localised 
in the sarcoplasmic reticulum (SR)6 and is involved in the Ca2+ 
handling processes of cardiac excitation-contraction coupling7,8. In 
addition, nNOS interacts with α-syntrophin through the scaffold-
ing protein postsynaptic density-95 (PSD95) via the PSD-95/Discs 
large/ZO-1 homology domain (PDZ domain) and forms a multi-
protein complex with the plasma membrane Ca2+ pump (PMCA) 
and voltage-gated Na+ channel (Nav1.5)36. In addition, nNOS binds 
to its PDZ-binding motif to direct nNOS to the subcellular compart-
ments, as is the case of nNOS in the nucleus37, which regulates the 
transcription and activation of the elements required for oxidative 
phosphorylation and mitochondrial biogenesis37. Recently, we have 
shown that nNOS is upregulated in the myocardium from the early 
stage of disease progression (e.g. hypertension34) and facilitates 
lusitropy through myofilament Ca2+ desensitisation34.

Until recently, most of the responses of nNOS were attributed to 
nNOSα or nNOSμ7,8. However, the existence of various splice vari-
ants of nNOS (nNOSβ, nNOSγ, and nNOS2) suggests that splice 
variants of nNOS may be involved in producing NO and regulating 
contractile function in the heart. Very recently, we have presented 
novel evidence to show that nNOSβ, which does not possess the 
PDZ domain, is expressed in the myofilament fraction of cardiac 
myocytes from the hearts of healthy and hypertensive rats38. These 
results indicate that nNOSβ may play important roles in cardiac 
myofilament. On the other hand, it has been documented in skeletal 
muscle that nNOSβ is functionally expressed in the Golgi appa-
ratus and mediates myofilament regulation during exercise25. A 
comprehensive understanding of nNOS and its splice variants in 

Page 4 of 12

F1000Research 2017, 6(F1000 Faculty Rev):742 Last updated: 23 MAY 2017



the organelles and their roles in cardiac function and protection in 
the healthy and diseased hearts remains to be explored.

Notably, the co-existence of eNOS and, nNOS and their splice 
variants in the myocardium and their translocation, transcription, 
and post-translational modifications underlie the complex scenario 
of NO in the heart7,8,39, more so under pathological stress. This is 
represented by a contrasting tendency in protein expression and 
activities of eNOS and nNOS in the failing myocardium or in the 
hypertensive heart; that is, eNOS protein expression is reduced 
significantly, whereas nNOS protein expression and activity are 
increased32–34,40. Furthermore, nNOS in the SR translocates to the 
caveolae to protect the myocardium from Ca2+ overload and oxida-
tive stress7,33,41. Intriguingly, both eNOS and nNOS affect intracellu-
lar Ca2+ handling in the myocytes, and eNOS mediates spontaneous 
Ca2+ sparks and enhanced Ca2+ transients in cardiac myocytes in 
response to increased preload (mechanical stretch)42. Conversely, 
nNOS (but not eNOS) mediates the afterload-induced spontaneous 
Ca2+ sparks43. Spatial redistribution of NOSs is associated with both 
the changes of their activity and the shifting of the primary targets 
that underlie the mechanisms of myocardial function under stress. 
In essence, the translocation of nNOS may be beneficial in main-
taining its activity to exert cardiac protection.

Multifaceted mechanisms mediating the effects of 
neuronal nitric oxide synthase
It is generally accepted that S-nitrosylation (or S-nitrosation) and 
soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate 
(cGMP)/protein kinase G (PKG)-dependent phosphorylation are 
the predominant mechanisms that mediate the effects of NO in 
biological systems (Figure 1). The former mechanism involves  
post-translational modification of a thiol group in proteins by 
NO (transferring NO to cysteine residues, -SNO), and the latter  
implicates PKG-dependent phosphorylation of serine residues of 
the target proteins. S-nitrosylation is explicitly initiated by NO, but 
dinitrogen trioxide (N

2
O

3
), the nitrosonium ion (NO+), peroxyni-

trite (ONOO−), and SNO proteins are also able to deliver NO to the 
cysteine residues of the target proteins44,45. Protein-protein transfer 
of NO (trans-S-nitrosylation) is now known to represent one of the 
most important mechanisms of NO46 (Figure 1). In this process, 
the SNO “donor” proteins are referred to as nitrosylases. Trans-
S-nitrosylation possesses advantages for effective interactions  
between proteins47. Furthermore, transnitrosylation is important 
when NO bioavailability is limited in an oxidative and/or nitro-
sative stress environment, such as during ischaemic reperfusion. 
S-nitrosylation can be terminated by the action of denitrosylases 
(for example, S-nitrosoglutathione reductase and thioredoxin), 
with NADH and NADPH serving as electron donors to regenerate  
glutathione and thioredoxin48,49.

Various types of proteins are targeted by NO, which in turn trig-
gers an array of signalling cascades depending on the properties 
of the target proteins, e.g. inhibition of protein phosphatase 2A/
protein phosphatase 1 by NO leads to protein kinase A (PKA) and 
Ca2+-calmodulin-dependent kinase II-dependent phosphorylation 
of downstream effector proteins such as phospholamban (PLN)50, 
whereas sGC activation by NO in the myocardium of hyperten-
sive rats causes cGMP/PKG-dependent phosphorylation of cTnI 

and cMyBPC34. Conversely, phosphodiesterase 5 (PDE5) activa-
tion by NO/sGC/cGMP/PKG limits cytosolic cGMP, a negative 
feedback mechanism of NO regulation of cGMP in cardiac myo-
cytes51. In addition, by targeting cardiac oxidases, such as xanthine  
oxidoreductase52, NADPH oxidase53,54, and mitochondrial reac-
tive oxygen species (ROS) production55, nNOS-derived NO  
controls intracellular oxidative status and ROS-dependent  
downstream effects in the myocardium. Cysteine residues are the 
targets of ROS to cause S-glutathionylation in the proteins56,57; there-
fore, S-nitrosylation by NO may “block” critical cysteine residues 
from irreversible oxidation under the conditions, such as increased 
oxidative stress. Consequently, post-transcriptional modifications 
downstream of NO change the effector proteins, altering their local-
isation, binding partners, activity, and, ultimately, function.

nNOS has also been demonstrated to produce H
2
O

2
 in the 

endothelium of large arteries, such as the aorta, and H
2
O

2
 medi-

ates endothelium-dependent vascular relaxation58,59. Conversely, 
impairment of endothelial nNOS-derived H

2
O

2
 has been shown 

to worsen endothelial dysfunction in both atherosclerosis60,61 
and hypertension62, indicating a protective role of nNOS-derived 
H

2
O

2
 in the vasculature. Similarly, both eNOS-derived NO and 

nNOS-derived H
2
O

2
 contribute to acetylcholine stimulation of  

vasodilatation59 by regulating similar downstream protein kinases 
and phosphatases63–65. In contrast, uncoupling of eNOS and nNOS 
(secondary to the deficiency of L-arginine, tetrahydrobiopterin 
[BH4] oxidation, or S-glutathionylation52,66–68) results in the pro-
duction of superoxide (O

2
−) instead of NO; under such condi-

tions, eNOS and nNOS become the sources of oxidative stress for  
pathological progression in the myocardium.

Taken together, the mechanisms mediating the effect of NO  
are complex. S-nitrosylation, transnitrosylation, and sGC/cGMP/
PKG-dependent phosphorylation provide major post-transcrip-
tional modifications of NO. By producing H

2
O

2
, O

2
−, and the  

NO derivatives, NOSs also function as the upstream regulators of 
redox-dependent signalling.

Effector targets of neuronal nitric oxide synthase 
maintaining cardiac contraction and relaxation 
during disease progression in the heart
(I) Proteins involved in nitric oxide regulation of cardiac 
electrophysiology and intracellular Ca2+ homeostasis
nNOS exerts its cardiac protection through the regulation of ion 
channels, modulating abnormal Ca2+ homeostasis, mitochondrial 
function, and signalling pathways during pathological progression7,8  
(Figure 1). To fulfil the effects on cardiac electrophysiology and 
intracellular Ca2+ homeostasis, nNOS regulates key ion channels 
and Ca2+-handling proteins that participate in the process of elec-
trical activity and excitation-contraction coupling of cardiac myo-
cytes. In particular, nNOS has consistently been shown to reduce 
Ca2+ influx through the L-type Ca2+ channel (LTCC)69, and its 
effect is potentiated in cardiac myocytes of female mice following 
post-ischaemia/reperfusion and significantly reduces ischaemia/ 
reperfusion injury41. In support of this, nNOS increases the vul-
nerability of the LTCC for Ca2+-dependent inactivation in hyper-
tensive cardiac myocytes70 where intracellular Ca2+ transient 
is increased secondary to nNOS-dependent myofilament Ca2+  
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desensitisation34. The effect of nNOS on the LTCC can be 
mediated by both S-nitrosylation and cGMP/PKG-dependent  
phosphorylation41,71,72. Modulation of the LTCC by nNOS may pre-
vent excessive intracellular Ca2+ loading in cardiac myocytes under 
pathological threat. S-nitrosylation of the ryanodine receptor (RyR) 
by nNOS has been implicated in reducing diastolic Ca2+ leak73, 
increasing RyR open probability, and increasing contraction in car-
diac myocytes74. Therefore, nNOS protects against arrhythmogen-
esis by modulating Ca2+ transients75,76. On the other hand, greater 
nNOS activity at the plasma membrane (subsequent to dissociation 
from the PMCA-containing complex) induces greater Na+ influx 
through voltage-gated sodium channels (Nav1.5) via S-nitrosylation  
and enhances the susceptibility of the myocardium for long QT 
and arrhythmias38. Potassium channels are also potential targets of 
nNOS through S-nitrosylation and/or cGMP/PKG-dependent phos-
phorylation77–79, which may play important roles in the regulation of 
cardiac electrophysiology and mechanical function in both healthy 
and diseased hearts.

nNOS-derived NO, or the formation of ONOO−, can induce  
S-nitrosylation of the SR calcium ATPase (SERCA) both under 
basal conditions and with stimulation76,80 (for example, myocardial 
infarction). Inhibition of nNOS reduces S-nitrosylation of SERCA 
at basal level, and this is associated with reduced Ca2+ uptake in 
the SR and decreased relaxation80. However, the functional sig-
nificance of this regulation under disease conditions remains to 
be determined. Alternatively, SERCA activity can be increased by 
nNOS via PKA-dependent phosphorylation of PLN secondary to 
nNOS-dependent inhibition of protein phosphatase 2A activity in 
left ventricular (LV) myocytes from normal mice50. A recent report 
has shown that beta-adrenergic stimulation induces S-nitrosylation  
of PLN and increases its pentamerisation and the activation 
of SERCA. Whether the source of NO for the S-nitrosylation 
is from nNOS is not revealed in the study. However, nNOS- 
dependent PLN pentamerisation following beta-adrenergic  
stimulation are shown not to affect basal and beta-adrenergic phos-
phorylation of PLN. This is important because the results con-
firm that nNOS, either through S-nitrosylation under β-adrenergic 
stimulation or through phosphorylation secondary to the inhibition  
of protein phosphatases, promotes SERCA activity and exerts  
positive lusitropy in the myocardium. In addition, these results 
emphasise that S-nitrosylation and phosphorylation work in concert  
to mediate the effects of nNOS on cardiac function.

On the other hand, phosphorylation of PLN (Ser16) is increased by 
nNOS through a cGMP/PKG-dependent mechanism independent 
of scavengers of ONOO−, O

2
−, or PKA in cardiac myocytes stimu-

lated by angiotensin II (Ang II) where nNOS is upregulated53. 
Furthermore, phosphorylation of PLN (Ser16) is increased in Ang 
II-induced hypertensive rat ventricular myocytes, but this response 
is independent of nNOS or cGMP/PKG signalling and exerts little 
effect on nNOS facilitation of myocyte relaxation34. These results 
suggest that the modes of post-transcriptional modification that 
underlie the specific effects of nNOS are highly dynamic, and this 
may optimise its regulation of the downstream target proteins under 
various stimuli, including pressure overload.

(II) Myofilament proteins are targeted by nitric oxide 
through S-nitrosylation and phosphorylation
A recent study from our own group has shown that nNOS-derived 
NO increases cGMP/PKG-dependent phosphorylation of car-
diac troponin I (cTnI-Ser23/24) and cardiac myosin binding pro-
tein C (cMyBPC-Ser273) and promotes myocyte relaxation in the 
hypertensive heart through cGMP/PKG-dependent myofilament  
Ca2+ desensitisation34, indicating the involvement of myofilament 
proteins in nNOS-dependent responses in hypertensive myocar-
dium. In fact, isobaric tag for relative and absolute quantitation 
(iTRAQ)-based quantitative proteomic analysis shows that nNOS 
affects the phosphorylation of almost 20 myofilament proteins in 
LV myocytes from the healthy heart and a similar number of dis-
tinct proteins in the hypertensive heart38. These results indicate that 
myofilament proteins are the potential targets of nNOS that medi-
ate faster relaxation in cardiac myocytes to reduce the mechanical 
load of the myocardium in hypertension. This is consistent with 
previous findings that exogenous NO donors facilitate myocardial 
relaxation via sGC and cGMP/PKG-dependent phosphorylation 
of cTnI and myofilament Ca2+ desensitisation81. A recent report 
has demonstrated that NO mimetics (S-nitrosocysteine) reduce  
myofilament Ca2+ sensitivity and myocardial contractility by 
inducing the S-nitrosylation of a number of myofilament proteins 
including actin, myosin, cMyBPC, and troponin C (cTnC)82. More 
directly, both TnC-Cys35 and TnC-Cys84 are S-nitrosylated by 
beta-adrenergic stimulation and TnC-Cys84 is shown to be respon-
sible for reduced myocardial Ca2+ sensitivity in normal hearts.  
In contrast, S-glutathionylation of myofilament proteins in the 
hypertrophic myocardium increases myofilament Ca2+ sen-
sitivity and impairs relaxation83,84. These results strongly 
indicate that phosphorylation and S-nitrosylation (as well 
as oxidation) of myofilament proteins are the fundamental-
mechanisms that mediate the effects of nNOS in normal and  
diseased hearts.

(III) Mitochondrial activity and biogenesis are dynamically 
regulated by nitric oxide
nNOS is regarded as the potential isoform that is expressed in the 
mitochondria to actively regulate cardiac metabolism85. NO inhibits 
cytochrome c oxidase (complex IV) activity by competing with O

2
 

and inhibits electron transfer of complex III (between cytochrome 
b and c) or NADH-dehydrogenase function at the level of complex 
I and increases mitochondrial production of O

2
−. Consequently, NO 

inhibits the mitochondrial respiration chain and reduces mitochon-
drial oxygen consumption86–91. As such, NO has generally been 
acknowledged as the negative regulator of mitochondrial activity 
and energy metabolism. This is seemingly counterintuitive to the 
cardiac protection of nNOS in the diseased heart or in the heart 
under stress because of the consensus that nNOS exerts protec-
tive roles. Nevertheless, conditional overexpression of nNOS in 
the myocardium has been associated with increased nNOS in the 
mitochondria and attenuation of mitochondrial ROS production and 
a reduction in oxidative stress following myocardial infarction55. 
Although it remains to be confirmed, the modulation of oxidative 
stress by endogenous nNOS in diseased hearts can be a potential 
protective mechanism.
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Emerging evidence shows that nNOS-derived NO plays essential 
roles in mitochondrial biogenesis92,93 to maintain or increase mito-
chondrial integrity and activity. For example, nNOS has been shown 
to be redistributed to the nucleus via α-syntrophin through its PDZ 
domain in a variety of cells, including myocytes37,94. Increased  
S-nitrosylation of nuclear proteins, including cAMP response  
element-binding protein (CREB), in turn, interacts with the pro-
moter of the gene encoding peroxisome proliferator-activated 
receptor γ co-activator (PGC)-1α promoter, an essential component 
for mitochondrial biogenesis and nuclear respiratory factor 1 and 
mitochondrial transcription factor A37. S-nitrosylation of nuclear 
proteins has also been ascribed to the trans-S-nitrosylation activity 
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH)95.

Additionally, NO has been implicated in cardiac energetics by 
affecting carbohydrate metabolism both within and outside of 
mitochondria. For example, NO stimulates glucose transport by 
activating upstream signalling pathways that result in increased 
amounts of the glucose transporter GLUT4 at the cell surface96. 
Accordingly, inhibition of NOSs reduces the uptake of glucose and 
ATP production in skeletal muscle, both under basal conditions and 
during physical activity96–99. Moreover, NO has been implicated 
in the inhibition of the glycolytic enzyme GAPDH by means of  
S-nitrosylation100,101.

It should be noted that both nNOS and eNOS are required for mito-
chondrial activity, including biogenesis in many types of cells, such 
as myocytes92,102,103. A typical example is that bradykinin inhib-
its mitochondrial oxygen consumption via eNOS in myocardial  
tissue104 and that nNOS-derived NO remains unaffected. However, 
in the absence of nNOS, reduced NO bioavailability secondary to 
increased xanthine oxidase-derived O

2
− limits the effect of eNOS 

in controlling mitochondrial oxygen consumption105, indicating the 
interplay between eNOS and nNOS in the regulation of mitochon-
drial activity and cardiac metabolism. Detailed mechanisms of the 
interaction between eNOS and nNOS in mitochondria and its func-
tional relevance in healthy and diseased hearts, however, remain to 
be determined.

Nitric oxide, nitric oxide synthase, and cardiovascular 
therapy
Because of the importance of NO and its significance in the car-
diovascular system, approaches that manipulate the bioavailability 
of NO in the myocardium are essential therapeutic strategies for 
the better treatment of cardiovascular diseases (CVDs). In fact, 
nitroglycerin, an organic nitrate that releases NO, has been used 
clinically in the treatment of CVD for more than 150 years (despite 
the fact that the effective molecule for the response, NO, was 
identified in the late 1970s1). Enhanced acknowledgement of the  
mechanistic insights into NO signalling, exogenous versus endog-
enous NO sources, the maintenance and the degradation of NO, 
and the properties of NOSs as well as modern technology enables 
novel approaches to increase NO bioavailability in target tissues 
for the desired responses. In principle, enhancement of NO and its 
signalling can be achieved through three routes: increase exogenous 
and endogenous sources to promote NO production, reduce NO  
metabolism/degradation, and stimulate downstream signalling of 
NO.

A number of strategies are used to promote NO formation. For 
example, inhaled NO is registered to be applied to newborn babies 
with persistent pulmonary artery hypertension106,107 to support ven-
tilation-perfusion match and to prevent systemic ischaemia. Nitrite 
can be similarly applied; in fact, the effectiveness of oral, inhaled, 
and intravenous nitrite on a number of CVDs (such as pulmonary 
artery hypertension [PAH], peripheral vascular diseases, myocar-
dial infarction, and cerebral vasospasm after subarachnoid haem-
orrhage) are under study with promising prospects on some occa-
sions108–110. Delivering organic and inorganic nitrate and nitrite to 
amplify systematic or local NO through nitrate–nitrite–NO and the 
nitrate–nitrite–NO–fatty acid pathways are probably the most active 
area under investigation experimentally and in the clinic10. So far, a 
number of putative precursors of NO (nitroxyl [HNO], S-nitrosothi-
ols, sodium nitrite, sodium nitrate, nitrated fatty acids, and nitrate 
from beetroot juice and green leaves, such as spinach, etc.) have 
been identified and are under development. Dietary consumption of 
NO precursors is a cheap, safe, and effective way of nitrate delivery; 
programming of a suitable diet regime for vulnerable populations 
will be important to reduce the cardiovascular risks as well as the 
economic burden on national healthcare systems. The relationship 
between the daily consumption of nitrate and cardiovascular events 
is noticeable. For example, high fruit and green vegetable intake in 
a Japanese population historically known to have low rates of CVD 
(daily consumption of nitrate >1,100 mg/60 kg) is associated with 
greater circulating nitrate and nitrite111 compared to those in the US 
and Europe, where average daily nitrate consumption ranges from 
40–100 mg and 30–180 mg, respectively, and the rates of CVD are 
high112,113. Moreover, the consumption of “healthy” fats, as in the 
Mediterranean diet, in the form of unsaturated fatty acids such as 
oleic and linoleic acid (to form nitrated fatty acids), is beneficial in 
preventing the development of CVD and reduces the risk factors114. 
Notably, nitrite reduction to NO preferentially occurs in the pres-
ence of hypoxia and acidosis, during physical exercise, at the time 
when cardiac muscle needs NO the most.

Alternatively, supplementation of NO substrates, e.g. arginine,  
L-citrulline, and BH4 (a co-factor of NOS), and inhibition of 
arginase and asymmetric dimethylarginine (an endogenous NOS  
inhibitor) are the necessary strategies to increase NO through 
promoting NOS activity11. Statins and nebivolol or carvedilol  
(new-generation beta1-adrenergic receptor blockers) exert anti-
adrenergic responses via the stimulation of the beta3-adrenergic 
receptor and increasing NOS production of NO115–118. Targeting 
NOS is advantageous in mediating the specific downstream signal-
ling of NOSs in the compartments.

Attempts to prevent NO reduction and inhibition of NOS uncou-
pling are also important in maintaining or increasing cytosolic NO. 
Decreasing the formation of ROS using blockers of angiotensin-
converting enzyme (ACE), angiotensin I type 1 receptor (AT1R), 
or NADPH oxidases (NOXs) or reducing ROS by using antioxi-
dants and scavengers are the putative mechanisms to reduce NO 
“sink” and therefore maintain or increase NO level11. However, the 
complex NOX isoforms and the redox–nitrosol network weaken 
the effectiveness of the developed drugs in clinical use. Indeed, our 
recent results indicate that NOX and ROS are upstream regulators 
of cardiac nNOS protein and activity downstream of Ang II and 
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AT1R119. Furthermore, Ang II type 2 receptor (AT2R) mediates 
Ang II enhancement of nNOS protein expression via ROS acti-
vation of eNOS activity119. As such, it is wrong to simply assume 
that NO level can be increased by using ACE and AT1R inhibitors. 
The development of selective NOX inhibitors and specific ROS- 
manipulating drugs that do not affect NOS protein should be pur-
sued, and the effect of NOX and ROS on nNOS protein expression 
in the myocardium should be taken into consideration.

Stimulation of the downstream signalling pathway of NO is an 
improved strategy to target the effector proteins directly, bypass-
ing the complex scenario of NOSs and the redox–nitrosol network. 
Synthetic benzyl indazole compound YC-1, the oral sGC stimula-
tors riociguat and vericiguat, and atrial, brain, and C-type natriu-
retic peptides are in use to increase cellular cGMP11. Inhibition of a 
negative regulator of cGMP, PDE5 (e.g. using sildenafil), is another 
therapeutic approach to stimulate cGMP/PKG signaling120–122.  
Stimulation of the PKG-dependent pathway has been shown to  
exert potent protective effects in a wide array of cardiovascu-
lar disease models, including hypertension, PAH, heart failure, 
haemolytic anaemia, and infarct-reperfusion injury120–124. However,  
the application of the drugs in a large cohort of patients with  
CVD show minor responses to the treatment, suggesting further 
investigation on cGMP enhancers is still needed.

Primary S-nitrosothiols (RSNOs) are the endogenous NO carriers  
and donors and have emerged as platforms for the local-
ised delivery of NO, which mediates S-nitrosation-dependent  
mechanisms125. S-nitrosoglutathione (GSNO) is one of the main  
RSNOs and is a central intermediate in the formation and deg-
radation of cellular S-nitrosothiols with potential therapeutic  
applications125. So far, GSNO has not been implied in pharmaceuti-
cal composition owing to the fast decomposition in aqueous solu-
tions. To sustain the bio-available NO donors and optimise their 
kinetics and to control the delivery of NO to targeted tissues or 
proteins, various biomaterial-based carriers (microparticles and  
nanoparticles) are under development126.

Taken together, a number of validated ways have been developed to 
increase systemic and local NO levels and are promising in mediat-
ing the beneficial effects in CVD. However, in order to translate 
the research innovations into the application to a large population, 
more research is necessary, with special attention to the specificity 
and effectiveness, i.e. nitrate/nitrite regime in the diet and strategies 
of increasing nNOS (as well as eNOS) and improving NO-effector 
interactions in CVD settings. NO-dependent therapy holds promise 
as a therapeutic platform for CVD in humans.

Future perspectives
Our understandings of the NO and NOSs that regulate myocardial 
contraction, relaxation, and pathological signalling are advanced, 

but the dynamic paradigm in the myocardium under stress is not 
clearly presented. NO from both exogenous and endogenous 
sources supply the bioavailable NO in the myocardium, and the 
level and effectiveness of NO is determined by multiple regula-
tion mechanisms including daily consumption of NO precursors, 
nitrate from skeletal muscles, NO production through the entero-
salivary NO pathway (oral and gut microbiome function as essen-
tial regulators) and from NOSs as well as redox environment and 
the nature and the abundance of target proteins. In general, NO 
regulates downstream effector proteins through three mechanisms 
(sGC/cGMP/PKG-dependent phosphorylation, S-nitrosylation, and 
transnitrosylation) and the numbers and types of effectors regulated 
by NO are diverse. As such, modification of these effectors by NO 
subsequently triggers an array of signalling cascades that lead to 
different physiological and pathological consequences. By and 
large, NO and its downstream signalling pathway exert potent car-
diovascular protection; however, translational research of NO and 
NOS that are applicable for CVD and therapeutic efficiency using 
an NO-dependent regime are still far from satisfactory11. Further 
research needs to be carried out aiming to increase the specificity of 
NO-effector interaction at the site of relevant proteins. Better design 
of a dietary program and the promotion and targeting of nNOS and 
eNOS in specific locations with the effector target(s) of importance 
will maximise the effectiveness of NO application in cardiovascular 
physiology and pathology.
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