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Abstract: Lipid metabolism is clearly associated to Parkinson’s disease (PD). Although lipid home-
ostasis has been widely studied in multiple animal and cellular models, as well as in blood de-
rived from PD individuals, the cerebrospinal fluid (CSF) lipidomic profile in PD remains largely
unexplored. In this study, we characterized the post-mortem CSF lipidomic imbalance between
neurologically intact controls (n = 10) and PD subjects (n = 20). The combination of dual extraction
with ultra-performance liquid chromatography-electrospray ionization quadrupole-time-of-flight
mass spectrometry (UPLC-ESI-qToF-MS/MS) allowed for the monitoring of 257 lipid species across
all samples. Complementary multivariate and univariate data analysis identified that glycerolipids
(mono-, di-, and triacylglycerides), saturated and mono/polyunsaturated fatty acids, primary fatty
amides, glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines), sphingolipids
(ceramides, sphingomyelins), N-acylethanolamines and sterol lipids (cholesteryl esters, steroids)
were significantly increased in the CSF of PD compared to the control group. Interestingly, CSF
lipid dyshomeostasis differed depending on neuropathological staging and disease duration. These
results, despite the limitation of being obtained in a small population, suggest extensive CSF lipid
remodeling in PD, shedding new light on the deployment of CSF lipidomics as a promising tool
to identify potential lipid markers as well as discriminatory lipid species between PD and other
atypical parkinsonisms.
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1. Introduction

Due to the lipid heterogeneity, it has been estimated that the human lipidome may
be composed by 100,000 different lipid species [1,2]. Lipids play multiple roles in brain
function, affecting the elasticity and structural organization of synaptic membranes and
modulating protein activity involved in cellular signaling dynamics [3–5]. In the context
of PD, a genetic risk has been characterized between lipid/lipoproteins traits and the
disease [6]. Mutations in lipid-producing enzymes, such as GBA, associated with familial
PD and SNPs in multiple PD related-genes involved in lipid homeostasis [7–11] (SREBF1,
ASAH1, SMPD1, PLA2G6, amongst others) have been linked to PD. Moreover, lipids not
only influence in the aggregation potential of alpha-synuclein in vitro and in vivo [12],
but they are also present in high concentration as components of crowded membranes,
vesicle structures and dysmorphic organelles present in Lewy bodies (LB) [13]. All these
data evidence that lipid metabolism should be tightly regulated to counteract the appear-
ance and progression of PD. Systematic studies of cases with LB pathology have prompted
a staging classification of PD based on the putative progression with time of LB pathology
in the brain from the medulla oblongata and olfactory bulb to the neocortex.
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Lipidomics is emerging as a powerful approach that complements protein and gene-
centric workflows in the biomarker search to evaluate the neurodegenerative risk or the
neurodegenerative progression [14]. Although the scientific community is on a continuous
learning curve to obtain a comprehensive portrait of the human brain lipidome [15],
the deployment of different variants of chromatographic separations coupled to mass-
spectrometry is considered the gold standard approach to study lipid profiles in a high-
throughput manner. However, multiple efforts are needed to solve and standardize the
associated analytical challenges [16]. Several lipidomic platforms have recently been
used to characterize the lipid composition of biofluids in neurological disorders such as
amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (AD) [17–21]. In
this study, we applied a discovery workflow to determine the global lipidomic changes at
the CSF level between PD and controls using ultra-performance liquid chromatography-
electrospray ionization time-of-flight mass spectrometry (UPLC-ESI-ToF-MS), monitoring
more than 250 lipid species and detecting a new metabolic signature associated with the
disease that should be further validated in extensive sample cohorts in terms of biomarker
sensitivity and specificity.

2. Materials and Methods
2.1. Materials

Internal standard (IS) compounds, nonadecanoid acid, dehydrocholic acid and trypto-
phan-(indole-d5), were purchased from Sigma-Aldrich-Merck KGaA (Darmstadt, Ger-
many). 1-tridecanoyl-2-hydroxy-sn-glycero-3-phosphocholine (13:0 Lyso PC), N-hexanoyl-
D-erythro-sphingosylphosphorylcholine SM (d18:1/6:0), 1,2-diheptadecanoyl-sn-glycero-3-
phosphoethanolamine (17:0 PE), 1,2-dinonadecanoyl-sn-glycero-3-phosphocholine (19:0
PC) and N-heptadecanoyl-D-erythro-sphingosine Ceramide (d18:1/17:0) were purchased
from Avanti Polar Lipids (Merck KGaA, Darmstadt, Germany). Tritridecanoylglycerol
(13:0 TG), Triheptadecanoylglycerol (17:0 TG) and Cholesteryl Laurate ChoE (12:0) were
purchased from Larodan Fine Chemicals (Solna, Sweden). All chemicals and solvents
(acetonitrile, methanol, water, isopropanol, formic acid, ammonium formate) were of ana-
lytical, HPLC or HPLC-MS grade. See Appendix A for IS working solution preparations
(Tables A1 and A2).

2.2. Metabolite Extraction from CSF

Control (n = 10; mean age: 77.7 years; 4F/6M) and PD (n = 20; mean age: 79.9 years;
7F/13M) post-mortem CSF samples were obtained from the Parkinson’s UK Brain Bank
funded by Parkinson’s UK, a charity registered in England and Wales (258197) and in
Scotland (SC037554) (Table 1). During the post-mortem brain removal (PMI < 24 h.), the
CSF was obtained as follows. The tentorium cerebelli was cut close to its attachment
to the skull base (on the petrous bone). CSF was obtained anteriorly to the brainstem.
After a centrifugation step (3 min at 10,000 rpm), CSF aliquots were frozen at −80 ◦C.
Metabolite extraction was performed as previously described [22]. Briefly, 150 µL of
CSF was spiked with 600 µL and 570 µL of ice-cold IS working solution for lipidomics
platforms 1 and 2, respectively. Once spiked with the extraction solvents, samples were
mixed with 570 µL of ice-cold CHCl3, vortexed for 20 min at RT and incubated for 1
h at 4 ◦C. Then, a centrifugation step was carried out (18,000× g, 15 min, 4 ◦C) and
650 µL of supernatant were collected for each platform. Lipidomics platform 1:650 µL
of supernatant were dried at 40 ◦C in a vacuum concentrator and reconstituted in 50 µL
methanol with agitation for 20 min at RT. After centrifugation (18,000× g for 5 min at
4 ◦C) to precipitate any particles, supernatants were transferred to a plate for UPLC®-MS
analysis. Lipidomics platform 2:650 µL supernatant were mixed with 50 µL of H2O and
vortexed for a few seconds. After centrifugation (18,000× g for 5 min at 4 ◦C), 400 µL of
the lower organic phase were dried at 40 ◦C in a vacuum concentrator. Dried samples
were reconstituted in 50 µL of acetonitrile:isopropanol 1:1 and shaken vigorously at RT for
10 min. A centrifugation step (18,000× g for 5 min at 4 ◦C) was performed to precipitate
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any particles, and supernatants were transferred to a plate for ultra-performance liquid
chromatography UPLC®-MS analysis.

Table 1. Chromatographic and mass-spectrometric workflows used in this study.

Platform 1 Platform 2

Column type UPLC BEH C18, 1.0 × 100 mm, 1.7 µm UPLC BEH C18, 2.1 × 100 mm, 1.7 µm

Flow rate 0.140 mL/min 0.400 mL/min

Solvent A 0.05% Formic Acid in water Water:Acetronitrile (2:3) + 10 mM Ammonium
Formate

Solvent B 0.05% Formic Acid in acetonitrile Acetonitrile:Isopropanol (1:9) + 10 mM
Ammonium Formate

(%B), time 0%, 0 min 40%, 0 min

(%B), time 50%, 2 min 100%, 10 min

(%B), time 100%, 13 min 40%, 15 min

(%B), time 0%, 18 min 40%, 17 min

Column temperature 40 ◦C 60 ◦C

Injection volume 2 µL 3 µL

Autosampler temperature 10 ◦C 10 ◦C

Source temperature 120 ◦C 120 ◦C

Nebulisation N2 flow 600 L/hour 1000 L/hour

Nebulisation N2 temperature 350 ◦C 500 ◦C

Cone N2 flow 30 L/hour 30 L/hour

Ionization ESI −ve ESI +ve

Capillary voltage 2.8 kV 3.2 kV

Cone voltage 50 V 30 V

Type of data Centroid Centroid

Scan time 0.2 s 0.2 s

Acquisition range 50–1000 Da 50–1200 Da

Analysis of fatty acyls, bile acids, steroids and lysoglycerophospholipids was carried out with lipidomic platform 1, and analysis of
glycerolipids, cholesterol esters, sphingolipids and glycerophospholipids was performed with lipidomic platform 2. Abbreviation: ESI,
Electrospray ionization.

2.3. Chromatography and Mass-Spectrometry

Lipidomic profiling was carried out by OWL Metabolomics S.L. (Derio, Spain). Briefly,
chromatographic separation and mass spectrometric detection conditions employed for
each UHPLC-ToF-MS-based platform are indicated in Table 1. An Acquity-LCT Premier XE
system and an Acquity-Xevo G2QTOF (Waters Corp., Milford, MA) were used as platform
1 and 2, respectively.

2.4. Data Processing and Normalization

TargetLynx application manager for MassLynx 4.1 software (Waters Corp. Milford,
MA, USA) was used for data processing. A set of parameters associated to metabolites
included in the analysis (Rt m/z, mass-to-charge ratio pairs, retention time) were incorpo-
rated into the program. Using a mass tolerance window of 0.05 Da and after peak detection
and noise reduction (at LC and MS levels), only true metabolite related features were
processed by the software. For each sample injection, a list of chromatographic peak areas
was generated. Data normalization was performed following the procedure described
by Barr et al. [23], where the ion intensity corresponding to each peak present in each
CSF sample was normalized in respect to the sum of peak intensities in each CSF sample.
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There were no significant differences (t-test = 0.1031) between the total intensities used for
normalization of the sample groups compared in the study.

2.5. Data Analysis

Once normalized, the dimensionality of the complex data set was reduced to enable
easy visualization of any metabolic clustering of the different groups of samples. This was
achieved by multivariate data analysis, including the non-supervised principal components
analysis (PCA) and/or supervised orthogonal partial least-squares to latent structures
(OPLS) approaches. Univariate statistical analyses were also performed, calculating group
percentage changes and unpaired Student’s t-test p-value (or Welch’s t-test where unequal
variances were found) for the comparison between both experimental groups. To help in
the interpretation of lipid changes in a biologically meaningful context, OWLStatApp was
used (http://rstudio.owlmetabolomics.com:8031/OwlStatApp).

3. Results

During a neurodegenerative process, different types of molecules could be released
and finally diffused into the CSF circuit, being considered as potential cerebrospinal
fluid (CSF) biomarkers. Because cell membrane breakdown is a characteristic feature
of a neurodegenerative process in brain syndromes, the deep characterization of CSF
metabolomic profiles could reveal specific lipid molecules released by damaged neuronal or
glial cell populations, establishing novel molecular panels to help us in the characterization
of neurodegenerative diseases. In the current study, we have focused our attention on the
metabolic profile of CSF lipids in PD.

3.1. Categorization of the Detected CSF Lipidome

Due to the wide concentration range of lipids and their extensive chemical diversity [1],
it is not possible to analyze the full lipidomic profile in a single experiment. Therefore,
lipid extraction was carried out by fractionating the post-mortem CSF samples into groups
of species with similar physicochemical properties, using appropriate solutions of organic
solvents (methanol, chloroform/methanol) and then analyzing the different extracts in
specific analytical platforms [23]. In our case, two UHPLC-MS based platforms were used
(Figure 1) to maximize the analysis of CSF lipidomic profiles derived from neurologically
intact controls and PD subjects (Table 2), performing an optimal profiling of: (i) fatty acyls,
bile acids, steroids and lysoglycerophospholipids; and (ii) glycerolipids, glycerophospho-
lipids, sterol lipids and sphingolipids. Using this dual workflow, a total of 257 metabolic
features were detected in all human CSF samples, including 6 bile acids, 10 fatty amides,
3 acylcarnitines, 65 glycerolipids, 111 glycerophospholipids, 22 non-esterified fatty acids,
33 sphingolipids and 7 sterols (Table S1).

1 
 

1. Ortega, I.M.; Berger, M.I.; Flores, M. Manual de Técnica Microhistológica. In IBTA 113/Textos y Manuales 
04/Rumiantes Menores (SR-CRSP) 05/; IBTA: La Paz, Bolivia,1993; p. 48. 

 
Figure 1. Lipidomic workflow applied in our pilot study.
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Table 2. CSF samples included in the lipidomic study.

SAMPLE.ID Age Sex Onset Duration NPD

PD354 88 F 77 11 LBDE
PD423 66 F 53 13 LBDE
PD436 90 M 82 8 LBDE
PD520 80 M 56 24 LBDE
PD530 85 M 77 8 LBDE
PD357 71 M 37 34 LBDN
PD450 66 M 47 19 LBDN
PD495 88 F 78 10 LBDN
PD501 89 F 82 7 LBDN
PD537 84 M 74 9 LBDN
PD550 83 F 77 7 LBDN
PD562 79 M 72 7 LBDN
PD636 84 M 65 20 LBDN
PD295 83 M 67 16 LBDL
PD340 67 M 53 14 LBDL
PD356 86 F 75 9 LBDL
PD541 72 M 66 6 LBDL
PD546 84 F 71 13 LBDL
PD579 76 M 55 21 LBDL
PD591 77 M 68 9 LBDL

C022 65 M aging-related changes
C023 78 F aging-related changes
C030 77 M aging-related changes
C008 93 F aging-related changes
C015 82 M possible ischaemia
C026 78 F minimal leukostasis
C032 88 M aging-related changes
C054 66 M mild aging-related changes
C064 63 F microvascular pathology
C076 87 M aging-related changes

PD: Parkinson’s disease; C: controls. Duration (years). NPD: neuropathological diagnosis; LBDL: Lewy body dis-
ease limbic stage; LBDE: Lewy body disease early-neocortical stage; LBDN: Lewy body disease neocortical stage.

3.2. CSF Lipidomic Profiling in Parkinson’s Disease

The 257 detected lipid features were analyzed across all CSF samples. Once normal-
ized, the dimensionality of the complex dataset was reduced to enable easy visualisation of
any metabolic clustering of the PD and control CSFs. The quality of the global experiment
was assessed (see Appendix A).

3.2.1. Multivariate Analysis

A supervised OPLS model was also calculated in order to achieve the maximum
separation between both experimental groups. Figure 2 (left panel) shows the score scatter
plot of this model, in which a clear clustering of CSF samples according to the presence
or absence of PD was observed. Similar to what was found for the loadings scatter
plot displayed in Figure A4 (Appendix A), metabolites responsible for the differences
observed were mainly glycerolipids (MAG, DAG, TAG), fatty acids (SFA, MUFA), FAA,
glycerophospholipids (PC, PE) and sphingolipids (Cer, SM), which were increased in
the PD group (Figure 2, right panel). However, this model had a low predictive ability
(Q2X = 0.150), indicating it would be necessary to extend this pilot study to include
additional sample cohorts.
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3.2.2. Univariate Analysis

Univariate data analysis was also performed, calculating group percentage changes
and unpaired Student’s t-test p-value (or Welch’s t test where unequal variances were
found) for the PD vs. control comparison. As mentioned in Appendix A, a Shapiro–Wilk
test revealed that the majority of the CSF metabolites measured from PD were not following
a normal distribution. Then, in addition to the untransformed data analysis, a square root
(sqrt) transformation of the data was also applied. Raw intensity data, average group
intensities, fold changes and an unpaired Student’s t-test of each individual metabolite and
of each metabolic class for both untransformed and sqrt transformed data are included in
Table S1. In order to correlate the alteration in specific lipid classes with Lewy body disease
(LBD) staging, we classified the PD group according to the neuropathological staging:
Lewy body disease (LBD) limbic stage (LBDL), LBD early-neocortical stage (LBDE) and
LBD neocortical stage (LBDN) (Table 2). Moreover, to deepen our understanding of the
lipid-dependent effects on PD duration, an additional analysis was performed, evaluating
the correlation between the CSF lipidomic dysregulation and the disease duration in our
sample cohort. To obtained balanced subgroups, we divided our PD cohort using a cutoff
point of 10 years, generating two groups: (i) <10 years (9 subjects) and (ii) ≥10 years
(11 subjects). The raw data per metabolic class was calculated as the sum of the normalized
areas of all the metabolites with the same chemical characteristics. In order to help in the
visualization of the results, a heatmap was generated. The heatmap in Figure 3 displays
the log2 (fold-change) of the 257 metabolites included in all comparative analyses together
with the unpaired Student’s t-test obtained using the square root (Sqrt) transformation of
the data.

According to disease duration, the deregulated lipid classes were highly similar be-
tween both groups, except for the phosphatidylcholines and sphingomyelins profiles that
were most significantly deregulated in PD subjects with a disease duration of ≥10 years
(Tables S2 and S3). According to the neuropathological classification and CSF lipidomic
profiles (Tables S2 and S3), primary fatty amides (FAA), cholesteryl esters (ChoE) and
sphingomyelins (SM) were most significantly increased in LBDL. A similar phosphatidyl-
choline profile was significantly elevated in CSF from LBDL and LBDE. However, the CSF
lipid profile was reversed in LBDN, where a significant increment was mostly observed at
the level of polyunsaturated fatty acids (PUFA) and triacylglycerols (TAG) (Figure 3).

A volcano plot was generated highlighting the most significant metabolites considered
individually for the PD vs. control comparison (Figure 4).
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log2 (fold change) and unpaired Student’s t-test p-values are indicated at the bottom of the heatmap. Metabolite order is
supplied in the “Heatmap datasheet” in Tables S1–S3.
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Figure 4. Volcano plot [−log10(p-value) vs. log2(fold-change)] for the PD vs. control subjects comparison. This volcano plot
highlights the significance p-value < 0.01 for glycerolipids and, more specifically, triacylglycerols (TAG).
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Lipid classes were also calculated as the sum of the normalized areas of all the lipid
metabolites with the same chemical characteristics (Table S1). Interestingly, all lipid classes
significantly altered in PD subjects were increased. Changes in some of the most relevant
metabolite classes are depicted in the boxplots shown in Figure 5.
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Figure 5. Boxplots of glycerolipids (monoacylglycerols (MAG), diacylglycerols (DAG), triacylglycerols (TAG)), phos-
phatidylcholines (PC) and sphingolipids (ceramides (Cer), sphingomyelins (SM)) (left). Boxplots of non-esterified fatty
acids (NEFA) (saturated fatty acids (SFA), monounsaturated fatty acids (MUFA)), primary fatty amides (FAA) and sterol
lipids (cholesteryl esters (ChoE), steroids (ST)) (right). significances (*; p < 0.05 and **; p < 0.01).

In order to help in the interpretation of the potential origin of the lipidomic changes
in a biologically meaningful context, pathway analysis was performed, mapping the dereg-
ulated lipid species as well as the lipid metabolic enzymes involved in lipid biosynthetic
routes (Figure 6).
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Figure 6. Pathway localization of deregulated lipid species detected in post-mortem CSF in PD. (A) Biosynthetic pathway
of n-3 and n-6 fatty acids, (B) de novo lipogenesis and (C) lipid biosynthesis. Delta-6 desaturase (∆6D), Delta-5 desaturase
(∆5D), elongase (ELOVL), beta-oxidation (β-ox), cyclooxygenase-2 (COX-2), phospholipases (PL). Fatty acid synthase (FAS),
long-chain elongase (LCE), stearoyl-CoA desaturase (SCD), Glycerol 3-phosphate (G3P), phosphatidic acids (PA), phos-
phatidylinositols (PI), lysophosphatidylinositols (LPI), acyl carnitines (AC), unesterified cholesterol (UC), cholesterol sulfate
(CS), cholesteryl esters (CE), steroids (ST), phodphatidylserines (PS), phosphatidylglycerols (PG), lysophosphatidylglycerols
(LPG), cardiolipins (CL), S-adenosylmethionine (SAMe). Red arrows indicate significant increments in CSF lipid levels
(p < 0.05). Grey arrows indicate non-significant increments in CSF lipid levels (p > 0.05). Orange areas represent routes
carried out at the mitochondrial level.
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4. Discussion

Brain lipids act as the major source of energy, provide insulation to cells and struc-
tural integrity to membranes and can be rapidly converted to signaling molecules or to
inflammatory intermediates [24]. Thus, changes in lipid metabolism and its reflection on
CSF lipid content might have a significant impact on brain function, contributing to PD
pathogenesis [11,25]. Although the exact role of lipids in PD is not totally understood,
the effects and/or levels of a subset of the lipidome have been partially characterized in
plasma as well as in animal/cellular PD models [26]. However, brain levels of lipids may
not correlate with plasma levels, so additional CSF measurements are needed to address
the gap in knowledge about the potential pathological or compensatory composition of the
brain lipidome in PD. In our case, all the lipid species which were found to be significantly
increased in parkinsonian post-mortem CSF were: (i) several non-esterified fatty acids
(NEFA), including the complete profile of saturated fatty acids (SFA), some monounsat-
urated fatty acids (MUFA) and a few polyunsaturated fatty acids (PUFA); (ii) various
primary fatty amides (FAA) and N-acyl ethanolamines (NAE); (iii) almost the complete
profile of glycerolipids, including monoacylglycerols (MAG), diacylglycerols (DAG) and
triacylglycerols (TAG), (iv) several cholesteryl esters (ChoE) and steroids (ST), (v) almost
the complete profile of phosphatidylcholines (PC) and (vi) the majority of ceramides (Cer)
and sphingomyelins (SM). Moreover, our study demonstrated that CSF lipid homeostasis
is differentially disrupted depending on neuropathological staging and disease duration.
Several reasons may explain the over-representation of the characterized CSF lipidome
in PD subjects. Lipid dyshomeostasis may be due to extensive synaptic dysfunction, se-
vere lipid raft rearrangements and neuronal death, accompanied by membrane instability
and tangled breakdown, contributing to an increment in lipid products in the CSF from
PD subjects. Moreover, blood-brain-barrier (BBB) dysfunction is present in PD [27]. The
opening of the BBB and the concomitant serum molecular infiltration inside the brain may
trigger a multifactorial metabolic imbalance, leading to synaptic and neuronal dysfunction
and adverse neuroinflammatory changes. One of these events may be the increment in
lipid exchanges between CSF and the blood. However, bearing in mind that our workflow
has allowed us to exclusively monitor around 250 lipid species, we cannot exclude the
possibility that multiple lipid species not detected in this study may be underrepresented
in parkinsonian CSFs. In fact, levels of some bile acids and multiple glycerophospholipids
present a non-significant tendency to be lower in PD in respect to the control group (Ta-
ble S1). Additional studies applying complementary lipidomic strategies in additional
patient cohorts will facilitate the global interpretation about the lipid dyshomeostasis across
biofluids in PD.

It has been speculated that SFA could exacerbate PD pathology [28]. Moreover,
higher SFA levels are present in frontal cortical lipid rafts from PD subjects in respect to
controls [29]. Using Drosophila mutant models, it has been shown that alpha-synuclein
aggregation is facilitated by phospholipids with shorter acyl chains [30]. Interestingly,
saturated phospholipids have been reported to improve alpha-synuclein aggregation
and PD-like symptoms [31,32]. Although different CSF MUFA levels have been detected
between several PD phenotypes, MUFA levels remain unchanged in the temporal cortex
from PD subjects [33,34]. PUFA levels in the anterior cingulate cortex are increased in
PD, although their CSF levels depend on the disease etiology [34,35]. At the molecular
level, PUFA and alpha-synuclein are involved in the synaptic vesicle cycle [36]. Moreover,
it has been evidenced that PUFA increase alpha synuclein oligomerization through the
interaction with the N-terminal region [37,38]. With respect to glycerolipids, the exact
function of MAG is unknown. While DAG is a secondary lipid messenger that plays a role
in the synaptic vesicle cycle [39,40], TAG is directly involved in energy storage [41]. In the
context of PD, plasma DAG and TAG tend to be diminished in PD, and higher serum TAG
have been linked to a reduced risk of PD [42–44]. Alpha-synuclein overexpression has been
directly related with intracellular TAG deposition [45,46].
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In spite of CSF alterations in several cholesteryl esters (ChoE) and steroids (ST), little
is known about the impact of sterols in PD pathogenesis. In general, sterols are known to
play a role in immunity, membrane fluidity and serve as signaling mediators [47,48]. In PD,
the cholesterol esterifying activity is reduced in fibroblasts and specific ChoE are reduced
in the visual cortex [49,50]. Based on data obtained using several PD-related biological
systems, it is not evident whether modulation of specific ChoE metabolic events may have
a protective or pathological impact [51,52]. Phosphatidylcholine (PC), the most abundant
glycerophospholipid in membranes, is involved in the control of inflammation, neuronal
differentiation and cholesterol homeostasis [53–55]. Our data identified an increment in
almost the complete profile of PCs at the level of CSF derived from PD subjects. However,
decreased levels in multiple PCs have been observed in plasma, the frontal cortex and
substantia nigra from PD patients [42,56,57]. This tendency has been also observed in sub-
stantia nigra and brain tissue derived from a mouse model of PD and from MPTP-treated
goldfish, respectively [58,59]. Moreover, specific alpha-synuclein isoforms differentially
interact with PC membranes [60–63].

Chronic neuroinflammation is a landmark of PD [64]. Sphingolipids, significantly
increased in our study, have been recently proposed as potential diagnostic and thera-
peutic targets in PD, due to their direct involvement in neuroinflammation [65]. They are
particularly relevant in immune-cell trafficking, cytokine signaling, production of pro-
inflammatory eicosanoids and the regulation of cellular mechanisms involved in multiple
inflammatory processes [66,67]. Specifically, an elevation in ceramide concentration can
trigger neuronal apoptosis as well as astrocyte activation, playing a pro-inflammatory
role [68,69]. However, the acyl chain length and the cell-type determine the functionality of
ceramides as being long-chain ceramide mediators of pro-inflammatory phenotypes in mi-
croglial cells, whereas short-chain ones trigger anti-inflammatory mechanisms [65]. It has
been proposed that different variations in ceramide (Cer) levels across brain areas may be
linked to alpha-synuclein accumulation [26]. However, controversial data exist about the
Cer plasma levels in PD patients [42,70,71]. In general, an increment in Cer levels is com-
monly observed in different studies performed in PD animal and cellular models [72–75].
However, the consequences associated with Cer increments are not fully understood, being
potentially detrimental or beneficial for different PD-related mechanisms. It is important
to note that CSF ceramides are also increased in other neurodegenerative diseases, such
as AD and ALS, indicating that lipid imbalance may be partially common across neuro-
logical disorders [18,76]. Sphingomyelin (SM), a major myelin component, is considered a
source of bioactive lipidic molecules which play a role in inflammation, autophagy and cell
death [77–80]. According to our data obtained in CSF, SM accumulation has also been ob-
served in: (i) LB aggregates [81], (ii) the primary visual cortex from PD subjects as well as in
substantia nigra from males with PD [49,57] and (iii) PD patients with sphingomyelinase-1
mutations (risk factor) [82,83]. Although multiple factors suggest a potential role of SM
accumulation in PD-associated neurodegeneration, more experimental evidence is needed
to further elucidate the concise function of SM, not only in alpha-synuclein aggregation,
but also in inflammatory balance.

In addition to the CSF Cer increment detected in PD, an increment in specific N-
acylethanolamines and primary fatty amides (FAA) were also observed. N-acylethanolamines
play an important role in various processes, from anti-inflammatory activities [84,85] to
neuroprotective actions in PD models [86,87]. Specific FAA are sleep-inducing factors that
may also affect memory processes, depress locomotor activity and are anti-inflammatory,
anxiolytic and neuroprotective [88–91]. Interestingly, increased plasma FAA is associated
with CSF beta-amyloids and clinical features [92]. The increment we observed in CSF FAA
in PD was probably due to a dysfunctional synthesis-degradation efflux or transport. The
major degradative step for FAA is the fatty acid amide hydrolase (FAAH) that degrades
FAA to fatty acids and ammonia and also hydrolases the endocannabinoids. Pharmaco-
logical inhibition of FAAH leads to the inhibition of dopamine neuron death and reduces
the immunoreactivity of microglial cells [93]. However, the precise role of FAA in alpha-
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synucleinopathies remains to be elucidated. Other lipid species with a pro-inflammatory
role, such as platelet activating factors (PAFs) [94] or specific glycosphingolipids related
to IL-1beta/IL-18 production, auto-antibody production and recruitment of peripheral
immune cells within the CNS [95], were detected in our study, suggesting that additional
workflows are needed to elucidate the full picture of inflammation-related CSF lipidome
involved in PD.

It is important to note that our data obtained at the level of CSF partially corroborate
previous associations between PD and the levels of fatty acyls, glycerolipids, glycerophos-
pholipids, sphingolipids and sterols. Moreover, our pilot study established novel links
between primary fatty amides (FAA) and N-acyl ethanolamines (NAE) with PD. How-
ever, although our untargeted lipidomic work has uncovered many intricacies in the CSF
lipidomic homeostasis in the context of PD, there are potential limitations of our study
that warrant discussion. First, due to the technological approach used, we failed to accu-
rately monitor many lipid species present at low levels that might also participate in PD
pathophysiology. Second, and based on the current knowledge, it is unclear whether the
CSF lipid imbalance observed reflected pathological or compensatory mechanisms. Third,
our study did not consider the effect of variables such as sex, age, PD etiology and/or
mutational profiles.

Comparing our data with previously published works using early clinical PD biofluid
samples, alteration of glycerophospholipid and sphingolipid metabolism was also observed at
the plasma level [96]. However, the specific phosphatidylcholine, phosphatidylethanolamine
and sphingomyelin profiles clearly differed with respect to our postmortem CSF data.
Moreover, several studies have also indicated that sphingolipids (ceramides and sphin-
gomyelins) are elevated in CSF derived from AD patients in respect to cognitively normal
individuals [76,97]. Wood PL et al. [98] performed a lipidomic analysis in post-mortem
CSF derived from AD subjects. In contrast, the differential lipidomic profile obtained was
clearly different with respect to the lipid alterations we observed in post-mortem CSF from
PD. Based on these data and taking into account the biomarker field, large cohorts of paired
antemortem CSF and plasma samples should be used, not only from PD patients, but also
from other synucleinopathies and tauopathies to obtain robust lipid-based conclusions in
terms of biomarker specificity and sensitivity.

5. Conclusions

A CSF lipidomic approach performed in PD and control subjects (n = 30) detected
257 metabolic features by ultra-high performance liquid chromatography-mass spectrome-
try (UHPLC-MS). A supervised OPLS model showed a clear separation between control
and PD subjects, indicating that the lipids responsible for this separation were mainly
glycerolipids (MAG, DAG, TAG), fatty acids (SFA, MUFA), primary fatty amides, glyc-
erophospholipids (PC, PE) and sphingolipids (Cer, SM), which were increased in the PD
group. Univariate data analysis also revealed a general increase in the CSF lipid metabolic
profile in PD. Overall, these results suggest that: (i) multiple CSF lipid species tend to
be increased in PD compared to control subjects and (ii) the dyshomeostasis observed
in the parkinsonian CSF lipid profile varies depending on the disease duration and the
neuropathological staging.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomedicines9050491/s1, Table S1: “Raw data per metabolite_1” and “Raw data per chemical
class_1” contain raw intensity data per metabolites and per metabolite class of the untransformed
data, respectively. “Raw data per metabolite_2” and “Raw data per chemical class_2” contain raw
intensity data per metabolites and per metabolite class of the data after square root transformation of
the data. These sheets also include: (i) “Individual notation”, referring to the confirmed identification
of the metabolites. Overlapping of two or more metabolites or non-confirmed identification is
indicated in “Individual composition (or probable ID)”, (ii) Average group intensities and standard
errors, (iii) Shapiro test: used for testing the normality of data (Shapiro test (p) row is marked in red if
the sample came from a normally distributed population), (iv) Fold-changes and unpaired Student’s

https://www.mdpi.com/article/10.3390/biomedicines9050491/s1
https://www.mdpi.com/article/10.3390/biomedicines9050491/s1
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t-test p-values (or Welch´s t test where unequal variances were found) for the comparison PD vs.
control and (v) “Heatmap” which contains the metabolites´ identification code, log2(fold-changes)
and unpaired Student’s t-test p-values illustrated in the heatmap. Table S2: “Raw data per metabolite”
and “Raw data per chemical class” contain raw intensity data per metabolites and per metabolite
class of the untransformed data, considering the neuropathological stage and the disease duration.
Table S3: “Raw data per metabolite” and “Raw data per chemical class” contain raw intensity data
per metabolites and per metabolite class after square root transformation of the data, considering the
neuropathological stage and the disease duration.
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Appendix A

Table A1. Internal Standard (IS) Solutions Platform 1.

IS IS Stock Solution
(µg/mL) IS Stock Solution

IS Intermediate
Solution in

CHCl3:MeOH (2:1)
(µg/mL)

IS Working
Solution in MeOH

(µg/mL)

13:0 Lyso PC 10,000 CHCl3 10 0.1

Dehydrocholic acid 5000 CHCl3:MeOH (1:1) 30 0.3

Nonadecanoic acid 10,000 CHCl3 500 5.0

Tryptophan-(indole-
d5) 5000 0.05% Formic acid in

water 200 2.0

Table A2. Internal Standard Solutions Platform 2.

IS IS Stock Solution (µg/mL) IS Stock Solution Working IS Solution
CHCl3:MeOH (2:1) (µg/mL)

SM (d18:1/6:0) 5000 CHCl3 5

PE (17:0/17:0) 10,000 CHCl3:MeOH:H2O 50

PC (19:0/19:0) 10,000 CHCl3 10

TG (13:0/13:0/13:0) 10,000 CHCl3 5

TG (17:0/17:0/17:0) 10,000 CHCl3 5

Cer(d18:1/17:0) 10,000 CHCl3 10

ChoE(12:0) 10,000 CHCl3 250

Multivariate data analysis of all CSF samples, pool samples and quality control (QC)
samples was initially performed. Score scatter plot corresponding to PCA analysis of these
samples is shown in Figure 2. Proximity and overlap of the Pool and QC injections provides
a good indication of the reproducibility and quality of the measurements.

Biomedicines 2021, 9, x FOR PEER REVIEW 14 of 20 
 

Nonadecanoic acid 10,000 CHCl3 500 5.0 
Tryptophan-(indole-d5) 5000 0.05% Formic acid in water 200 2.0 

Table A2. Internal Standard Solutions Platform 2. 

IS 
IS Stock 
Solution 
(µg/mL) 

IS Stock Solution Working IS Solution 
CHCl3:MeOH (2:1) (µg/mL) 

SM (d18:1/6:0) 5000 CHCl3 5 
PE (17:0/17:0) 10,000 CHCl3:MeOH:H2O 50 
PC (19:0/19:0) 10,000 CHCl3 10 

TG (13:0/13:0/13:0) 10,000 CHCl3 5 
TG (17:0/17:0/17:0) 10,000 CHCl3 5 

Cer(d18:1/17:0) 10,000 CHCl3 10 
ChoE(12:0) 10,000 CHCl3 250 

Multivariate data analysis of all CSF samples, pool samples and quality control (QC) 
samples was initially performed. Score scatter plot corresponding to PCA analysis of these 
samples is shown in Figure 2. Proximity and overlap of the Pool and QC injections pro-
vides a good indication of the reproducibility and quality of the measurements. 

 
Figure A1. Score scatter plot of the PCA model of CSF, Pool and QC samples. Pool: 15 μl of each 
CSF sample was collected and pooled together. Model diagnostics (A = 6, R2X = 0.829, Q2X = 0.496). 

After validating the quality of the experiment, the Pool and QC injections were re-
moved from the analysis and a score scatter plot of the PCA model of all cerebrospinal 
fluid samples was generated. 

Figure A1. Score scatter plot of the PCA model of CSF, Pool and QC samples. Pool: 15 µl of each CSF
sample was collected and pooled together. Model diagnostics (A = 6, R2X = 0.829, Q2X = 0.496).

After validating the quality of the experiment, the Pool and QC injections were
removed from the analysis and a score scatter plot of the PCA model of all cerebrospinal
fluid samples was generated.
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Figure A2. Score scatter plot of the PCA model of CSF samples. Model diagnostics (A = 6, R2X = 0.807,
Q2X = 0.401).

The Shapiro–Wilk test was used for testing the normality of data (results included
in Table S1), revealing that the majority of the metabolites measured in the CSF samples
from PD patients were not following a normal distribution. Then, the Box–Cox method
for correcting non-normally distributed data by variable transformations was applied,
identifying the square root transformation as optimal for most of the metabolites. This kind
of transformation is a common pre-treatment method in metabolomics for the conversion
of the data, which corrects aspects that hinder the biological interpretation of data sets
by emphasizing the biological information and thus, improving their physiological inter-
pretability. Score scatter plot corresponding to PCA analysis of CSF samples after square
root transformation of the data is shown in Figure A3.
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Figure A3. Score scatter plot of the PCA model of CSF samples after square root transformation of
the data. Model diagnostics (A = 4, R2X = 0.752, Q2X = 0.505).

This score scatter plot showed certain clustering of samples according to the presence
or absence of the disease and identified sample PD353 as a potential outlier, since it
appeared outside the Hotelling´s T2 ellipse. Following Chauvenet’s criterion, further
inspection of the data relating to this sample revealed that it presented elevated levels of
sphingolipids compared to the rest of the samples from the PD group. However, the levels
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of the majority of the metabolites in this sample were similar to those of the samples from
the same group and thus, it was not excluded from the multivariate and univariate analyses.
Metabolites responsible for this certain separation observed between CSF samples of PD
and control subjects can be observed in the loadings scatter plot (Figure A4), which is a
graph related to the score scatter plot shown in Figure A3.
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Lipids lying away from the plot origin have a stronger impact on the model; besides,
variables positively correlated are grouped together, while variables negatively corre-
lated are positioned in the opposite sides of the plot origin. In this case, the metabolites
responsible for the differences observed were mainly glycerolipids (monoacylglycerols
(MAG), diacylglycerols (DAG), triacylglycerols (TAG)), fatty acids (saturated fatty acids
(SFA), monounsaturated fatty acids (MUFA)), primary fatty amides (FAA), glycerophos-
pholipids (phosphatidylcholines (PC), phosphatidylethanolamines (PE)) and sphingolipids
(ceramides (Cer), sphingomyelins (SM)), which were increased in PD compared to the
control group; and lysoglycerophospholipids (lysophosphatidylcholines (LP), lysophos-
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seemed to be increased in controls compared to the PD group.
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