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Abstract – This study aimed to identify trypanosomes infecting cattle in Malawi in order to understand the impor-
tance of cattle in the transmission dynamics of Human African Trypanosomiasis (HAT) and Animal African
Trypanosomosis (AAT). A total of 446 DNA samples from cattle blood from three regions of Malawi were screened
for African trypanosomes by ITS1 PCR. The obtained amplicons were sequenced using a portable next-generation
sequencer, MinION, for validation. Comparison of the results from ITS1 PCR and MinION sequencing showed that
combining the two methods provided more accurate species identification than ITS1 PCR alone. Further PCR screen-
ing targeting the serum resistance-associated (SRA) gene was conducted to detect Trypanosoma brucei rhodesiense.
Trypanosoma congolense was the most prevalent Trypanosoma sp., which was found in Nkhotakota (10.8%; 20 of
185), followed by Kasungu (2.5%; 5 of 199). Of note, the prevalence of T. b. rhodesiense detected by SRA PCR
was high in Kasungu and Nkhotakota showing 9.5% (19 of 199) and 2.7% (5 of 185), respectively. We report the
presence of animal African trypanosomes and T. b. rhodesiense from cattle at the human–livestock–wildlife interface
for the first time in Malawi. Our results confirmed that animal trypanosomes are important causes of anemia in cattle
and that cattle are potential reservoirs for human African trypanosomiasis in Malawi.
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Résumé – Identification moléculaire des trypanosomes chez les bovins du Malawi, à l’aide de méthodes de PCR
et du séquençage par nanopores : implication épidémiologique pour le contrôle des trypanosomiases humaines
et animales. Cette étude visait à identifier les trypanosomes infectant les bovins au Malawi afin de comprendre
l’importance des bovins dans la dynamique de transmission de la trypanosomiase humaine africaine (THA) et de la
trypanosomose animale africaine (TAA). Au total, 446 échantillons d’ADN de sang de bovins provenant de trois
régions du Malawi ont été soumis à un dépistage des trypanosomes africains par PCR de l’ITS1. Les amplicons
obtenus ont été séquencés à l’aide d’un séquenceur portable de nouvelle génération, MinION, pour validation. La
comparaison des résultats de la PCR de l’ITS1 et de la séquence MinION a montré que la combinaison des deux
méthodes permettait une identification plus précise des espèces que la seule PCR de l’ITS1. Un autre dépistage par
PCR ciblant le gène SRA (associé à la résistance du sérum) a été effectué pour détecter Trypanosoma brucei
rhodesiense. Trypanosoma congolense était l’espèce de trypanosome la plus répandue, trouvée à Nkhotakota
(10,8 % ; 20 sur 185), suivi de Kasungu (2,5 % ; 5 sur 199). Notamment, la prévalence de T. b. rhodesiense
détectée par PCR de SRA était élevée à Kasungu et Nkhotakota, avec respectivement 9,5 % (19 sur 199) et 2,7 %
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(5 sur 185). Nous rapportons la présence de trypanosomes animaux africains et de T. b. rhodesiense de bovins à
l’interface homme-bétail-faune sauvage, pour la première fois au Malawi. Nos résultats confirment que les
trypanosomes animaux sont des causes importantes d’anémie chez les bovins et que les bovins sont des réservoirs
potentiels pour la trypanosomiase humaine africaine au Malawi.

Introduction

African trypanosomiasis is caused by protozoan parasites of
Trypanosoma spp. and is mainly transmitted by tsetse flies [52].
This disease is a major concern in sub-Saharan Africa, with
detrimental effects on both human and animal health and
causing significant losses to affected countries [52]. Animal
African trypanosomiasis (AAT) is caused by T. congolense,
T. vivax, and T. brucei brucei [50]. Infection in domestic ani-
mals is usually severe, unlike in wildlife, where it is usually
nonpathogenic [13]. AAT affects domestic animals, including
cattle, goats, sheep, and pigs, and its pathogenicity differs
according to the host species [13, 50]. Clinical symptoms
include fever, anemia, loss of weight and productivity, abortion,
decreased fertility, edema, paralysis, and even death [6]. AAT
remains a major threat to animal health and stock farming
within the tsetse belt [13]. Unlike T. congolense and T. brucei,
which are transmitted by tsetse flies, T. vivax can also be trans-
mitted mechanically by other hematophagous flies; as a result, it
has a broader geographical distribution [44].

Human African trypanosomiasis (HAT) or sleeping sick-
ness occurs in two forms with different features, due to T. b.
gambiense and T. b. rhodesiense infections, respectively [8].
Gambiense HAT caused by T. b. gambiense is an anthroponotic
disease that depends primarily on human-to-human transmis-
sion; humans act as the main reservoir, while animal reservoirs
play a minor role [17]. It is distributed mostly in western and
central Africa, an area that currently has 98% of reported cases
of HAT [64]. Gambiense HAT is a chronic infection, during
which a person can be infected for a long period of time without
demonstrating major clinical signs of the disease. Symptoms
often appear at the late stage of the disease, when the central
nervous system is already affected [7]. In contrast, rhodesiense
HAT caused by T. b. rhodesiense is a zoonotic disease that
affects mainly animals (wildlife and livestock); humans are
considered accidental hosts [17]. It is found in 13 countries in
eastern and southern Africa, representing under 2% of reported
cases of HAT, and it causes an acute infection [64]. The disease
is known to progress quickly and invades the central nervous
system right after onset of symptoms, a few months or weeks
after infection [7].

Control of rhodesiense HAT is challenging because animals
act as reservoirs for disease transmission [17, 63]. Although they
do not show any clinical symptoms, animal reservoirs harbor
parasites, and tsetse flies can acquire the infection [7]. Necessary
control measures face obstacles because animal infections are
difficult to monitor, unlike in humans, where they can be easily
tracked. Wildlife have long been known to be the major reser-
voir of T. b. rhodesiense [41]. Livestock can also act as potent
reservoir hosts for T. b. rhodesiense due to high exposure of
humans to agriculture [61]. In Uganda, cattle were implicated
as the principal domestic reservoirs of T. b. rhodesiense

[60, 62], and they were also documented as reservoirs of T. b.
rhodesiense in Kenya [59] and Tanzania [25].

In Malawi, rhodesiense HAT has been a burden for decades
[18]. Unlike typical T. b. rhodesiense infections, HAT in
Malawi is characterized by the distinct clinical sign of chronic
hemolymphatic stage infection without the formation of a chan-
cre; this makes diagnosis difficult [12, 29]. Endemic foci of
HAT in the country are the Nkhotakota, Kasungu, and Rumphi
districts [11, 30], where large national parks exist. Cattle are
one of the most economically important livestock animals in
Malawi [10, 48]. A previous study was conducted to update
the distribution and clarify the epidemiology of bovine try-
panosomiasis caused by T. congolense, T. vivax, and T. brucei
in Malawi using an indirect AbELISA serological detection
method [58]. However, the specificity of the IgG ELISA was
questionable, and as in other serological assays, false positives
may have been present [22, 58]. In contrast, PCR of the internal
transcribed spacer (ITS) 1 region of ribosomal RNA (rRNA),
which can distinguish species by product size, has been widely
used to identify trypanosome species [19, 43]. Because the
ITS1 region cannot resolve Trypanozoon species to the sub-
species level (T. brucei brucei, T. brucei rhodesiense, T. brucei
gambiense, T. evansi, and T. equiperdum) [19, 43], detection of
T. b. rhodesiense by PCR has been widely conducted by target-
ing the human serum resistance-associated (SRA) gene [47].
Identifying species by ITS1 PCR is sometimes difficult due
to ambiguous and nonspecific signals, which may result in
false-positive annotations because of subjective human deci-
sions. In addition, it is impossible to differentiate between
T. godfreyi and T. vivax because they share overlapping ampli-
con size ranges.

MinION, developed by Oxford Nanopore Technologies, is
a portable next-generation sequencer (NGS) that connects to a
laptop computer through a USB cable [28, 36]. MinION is
unique among sequencing tools because it identifies nucleotides
in a nanoscale ion channel (nanopore) by detecting specific
changes in the electric current when DNA passes through the
nanopore [28]. DNA sequencing is a definitive diagnostic
method for detecting pathogenic species, and several studies
have reported application of MinION for pathogen identifica-
tion [4, 21, 46, 53]. Unlike conventional sequencers, MinION
is economically affordable, allowing sequence analysis without
preinstallation of expensive equipment, and not requiring a sep-
arate electric supply after connecting to a laptop computer [53].
Further, operating MinION does not require sophisticated skills
in biological research [53]. Given these features, genotyping of
pathogens on-site with MinION is now feasible [53].

In this study, MinION NGS was combined to PCR-based
methods to determine the prevalence of human and animal
trypanosomes in cattle and to understand their epidemiological
importance for HAT and AAT in Malawi.
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Materials and methods

Ethics approval

The ethical clearance for animal sampling was obtained
from the Ministry of Agriculture, Irrigation and Water Develop-
ment in Malawi through the Department of Animal Health and
Livestock Development with reference number 10/15/32/D.

Sample collection

This is a descriptive, cross-sectional study of trypanosome
infection in cattle, conducted by analyzing DNA material from
446 bovine blood samples. Samples were collected from cattle
in three districts in Malawi: Kasungu, Nkhotakota, and
Lilongwe, in February and March 2018 during the rainy season.
Information on farmers and cattle populations was obtained
from the District Agriculture Development Office (DADO)
for each district through their District Animal Health and
Livestock Development Officer (DAHLDO). The sampling
map (Fig. 1) was constructed using the free and open-source
geographic information system QGIS [45].

Villages located in the vicinity of Kasungu National Park
and Nkhotakota Wildlife Reserve were deliberately selected as
sampling sites because these areas are locations of human–live-
stock–wildlife interface and are endemic for tsetse flies carrying
T. b. rhodesiense. Both clinically healthy animals and animals
with clinical signs were randomly selected within farms. In
Kasungu and Nkhotakota districts, a total of 199 and 185 cattle
blood samples were collected from 29 and 26 farms, respec-
tively. These farms were selected on purpose from a farmer
registry list (Supplementary Table 1), since the selected areas
are situated in the human–livestock–wildlife interface area in
the vicinity of Kasungu National Park and Nkhotakota Wildlife
Reserve (Fig. 1). Both Kasungu National Park and Nkhotakota
Wildlife Reserve are tsetse-infested areas and the major
HAT/AAT foci in the country [11, 38, 58]. Glossina morsitans
morsitans andG. pallidipes are the dominant tsetse fly species in
these areas, while G. brevipalpis is also known to exist to some
extent [58]. The major cattle breed in these areas is Malawi
Zebu, a local breed in the country also known as Angoni cattle
(Small East African Zebu) in Eastern Zambia [39]. This breed is
known to be susceptible to trypanosomiasis [57]. Cattle are kept
in a free-range management system where animals are released
during the day to graze freely and return home at dusk. Tsetse
flies are often found at the sampling sites; thus, the frequencies
of tsetse bite in the cattle in these areas are expected to be high.
The other biting flies, tabanids, or Stomoxys spp. are also com-
monly found in these areas [9, 24].

In Lilongwe district, there are only two commercial farms,
and 62 blood samples were collected from one of these farms.
Holstein Friesian cattle are maintained with a semi-intensive
farm management system, where animals are kept in paddocks.
Tsetse flies are not found in this area, and no HAT/AAT
cases have been reported in the past from this area [12, 58].
However, the other hematophagous flies including tabanids
and Stomoxys spp. are commonly found in Lilongwe, which
might facilitate the mechanical transmission of trypanosome,
especially T. vivax [44].

Before sampling, the venipuncture site was disinfected with
a methylated spirit swab. Then, 5 mL of blood were drawn by
venipuncture of the external jugular vein into vacutainer EDTA
tubes. Packed cell volume (PCV) counting was conducted to
determine anemia; animals with a PCV < 24% were considered
anemic. For molecular detection purposes, approximately
200 lL of blood were subjected to DNA extraction using a
KURABO QuickGene DNA whole blood kit (Kurabo Indus-
tries Ltd.), following the manufacturer’s protocol.

Detection of trypanosomes by ITS1 PCR

DNA samples were subjected to PCR amplification of the
rRNA ITS1 region to identify all the pathogenic African try-
panosome species/subspecies. ITS1 PCR was carried out using
the primers described by Gaithuma et al. [19] (Supplementary
Table 2). PCR was performed in a final volume of 25 lL, com-
prising 12.5 lL Ampdirect plus (Shimadzu, Japan), 0.125 lL
BIOTAQ HS DNA Polymerase (5 U/lL) (Bioline, UK),
0.625 lL of each 10 mM primer, 0.5 lL of 2% DMSO,
8.625 lL RNase-free water, and 2 lL extracted DNA. The
temperature and cycling profile included initial denaturation at
95 �C for 10 min followed by 37 cycles of denaturation at
94 �C for 30 s, annealing at 53 �C for 90 s, extension at 72 �C
for 2 min, and final extension at 72 �C for 7 min. PCR
products were examined by electrophoresis in 1.5% agarose
S (Nippongene, Japan) in Tris-acetate EDTA (TAE) buffer
and stained using GelRed (Biotium, USA) dye before being
visualized under ultraviolet light in a transilluminator.

Signals on gel were judged by three investigators indepen-
dently. They were classified as follows: positive (clear band),
negative, and ambiguous (faint band or smearing). Try-
panosome species were identified based on the size differences
for members of the subgenus Trypanozoon (T. b. brucei,
T. evansi, T. b. rhodesiense, and T. b. gambiense), a constant
product of approximately 415–431 bp; for T. congolense,
560–705 bp; for T. simiae, 331–343 bp; for T. godfreyi,
220 bp; for T. theileri, 269–350 bp; and for T. vivax,
226–238 bp [19]. The plasmids that contain the TA-cloned
ITS1 fragment of T. congolense, T. brucei, T. vivax, T. godfreyi,
and T. simiae [40] were combined and used as a positive control
for PCR and gel analysis.

MinION library preparation for sequencing

To prepare a MinION sequencing library, amplicons of the
ITS1 PCR were used as template then indexes were added by
additional PCR. The indexed amplicons were further ligated
with adapter DNA provided by Oxford nanopore; then, a
sequence-ready library was obtained. Positive, ambiguous sam-
ples, and a positive control from ITS1 PCR were sequenced as
follows. For the indexing, reagents comprised 5 lL Ampdirect
plus (Shimadzu, Japan), 0.05 lL BIOTAQ HS DNA Poly-
merase (5 U/lL) (Bioline, UK), 0.2 lL of each 10 mM ITS1-
index primers (Supplementary Table 2), 0.5 lL DMSO 2%,
2.55 lL RNase-free water, and 2 lL extracted DNA. PCR
conditions were as follows: an initial hold at 95 �C for
10 min, followed by 10 cycles of 94 �C for 30 s, 60 �C for
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1 min, 72 �C for 2 min, and a final extension at 72 �C for 5 min.
Amplicon of the index PCR was prepared for MinION-
compatible DNA libraries using a Ligation Sequencing Kit 1D
SQK-LSK109 and Native Barcoding Kit EXP-NBD103
(Oxford Nanopore Technologies, UK) as per their instruction
manuals. The indexed amplicons were purified by AMPure
XP (Beckman Coulter, USA), and equal concentrations of each
sample were pooled together to obtain 12 for each pool. End
repair and dA-tailing were performed to the pooled, barcoded
amplicons using the NEBNext UltraII End Repair/dA-Tailing
module (New England Biolabs, UK) per the Oxford Nanopore
1D Native barcoding genomic DNA sequencing protocol.
Subsequently, the purified, end-prepped DNA was ligated with
the Adapter Mix (AMX) using the NEBNext Quick T4 DNA
Ligase (New England Biolabs, UK). Final adapted DNA
libraries were purified, and the pre-sequencing mix was eluted
and quantified. The flowcell, FLO-MIN107 (Oxford Nanopore

Technologies, UK), was primed for loading and sequencing of
the library. Before sequencing, MinION and flowcell were
assembled and connected to a computer. Platform QC was
run using MinKNOW software.

Detection of trypanosome species using MinION
sequencing

Base-calling and de-barcoding were conducted using
Guppy (Oxford Nanopore Technologies). De-indexing was
performed using custom scripts. In brief, indexed primer
sequences were aligned on each MinION read using LAST
[26], and the best hit indexes at both terminals were subse-
quently assigned. De-multiplexed reads were aligned with the
nucleotide dataset using BLASTn [3]. We kept the best hit
for each read and counted the species name that appeared in
the output, i.e., T. vivax, T. godfreyi, T. evansi, T. brucei,
T. equiperdum, T. congolense, T. simiae, and T. theileri. The
counts for T. brucei, T. evansi, and T. equiperdum were
summed up and regarded together as Trypanozoon. Each taxon
was programmatically assigned on the basis of the population
of the read counts if it shared more than 20% of the total and
more than 50 read counts. The prevalence of trypanosomes
was determined according to the results of MinION sequencing.
A schematic workflow of the MinION sequencing and bioinfor-
matic analysis is illustrated in Supplementary Figure.

Detection of T. b. rhodesiense by SRA PCR

SRA PCR was employed to identify T. b. rhodesiense using
the primers described by Radwanska et al. [47] (Supplementary
Table 2). Reagents used for each reaction included 5 lL
Ampdirect plus (Shimadzu, Japan), 0.05 lL BIOTAQ HS
DNA Polymerase (5 U/lL) (Bioline, UK), 0.2 lL of each
10 mM primer, 2.55 lL RNase-free water, and 2 lL extracted
DNA. The temperature and cycling profile included an initial
hold for 10 min at 95 �C, followed by 40 cycles at 94 �C for
30 s, 60 �C for 1 min, 72 �C for 1 min, and a final extension
at 72 �C for 5 min. PCR products were examined by elec-
trophoresis in 2% agarose S (Nippongene, Japan) in TAE buffer
and stained using GelRed (Biotium, USA) dye before being
visualized under ultraviolet light.

Statistical analysis

The chi-square test was used to analyze the relationship
between the infection rates by animals, region, and anemic sta-
tus (p < 0.05).

Results

Trypanosome infections inferred from ITS1 PCR

Forty-four positive, 8 ambiguous, and 394 negative samples
were obtained by ITS1 PCR. For positive samples, we identi-
fied 21 amplicons with a single band size of 620–700 bp, indi-
cating a single T. congolense infection; 9 amplicons with a
single band size of 480 bp, indicating a single Trypanozoon

Figure 1. Map of Malawi showing sampling locations. Black
arrows point to Kasungu National Park and Nkhotakota Wildlife
Reserve. Sampling points in Nkhotakota and Kasungu districts were
located outside the nature reserves in <1 km proximity.
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infection; 9 amplicons with a single band size of 250 bp, indi-
cating a single T. vivax or T. godfreyi infection; and 2 ampli-
cons with a single band size of 350 bp, indicating a single
T. theileri infection. Three amplicons showed clear multiple
bands, indicating two mixed infections of T. congolense and
Trypanozoon (A35 and A37; Fig. 2, Supplementary Table 3)
and one mixed infection with T. congolense and T. vivax
(D66; Fig. 2, Supplementary Table 3).

Trypanosome infections inferred from MinION
sequencing

In total, 503,039 reads were obtained from 53 multiplexed
ITS1 amplicons, including one positive control. Taxonomic
identity was determined for 369,673 reads using a BLAST
homology search. For T. congolense, 24 samples (including
single and mixed infections) were positive by ITS1 PCR, and
T. congolense sequences were detected in the same 24 samples
and one additional sample, A17, by the MinION system (Fig. 2,
Supplementary Table 3). For T. vivax, 10 samples were posi-
tive, and the same 10 samples were confirmed by sequencing,
as well as two additional samples, D07 and E60. E60 was a
mixed T. congolense and T. vivax infection. For T. theileri,
two samples were positive in both ITS1 PCR and the MinION
system.

In contrast, 11 samples positive for Trypanozoon were
identified by ITS1 PCR. However, using the MinION system,
Trypanozoon sequences were detected in only 3 of these
11 products (Supplementary Table 3). Most cases, with the
exception of A37, produced reads for Trypanozoon that were
much lower than our threshold (50 reads minimum). For
A37, 172 reads for Trypanozoon out of 2965 reads were
obtained, but reads were below our criteria, with a minimum
of 50 reads and more than 20% of total reads; therefore, this
sample was negative even though we could not eliminate the
possibility of actual Trypanozoon infection.

Three confirmed cases of mixed infections were observed
(A35, D66, and E60; Fig. 2, Supplementary Table 3). E60
showed a clear signal for Trypanozoon and a faint signal for
T. godfreyi or T. vivax. However, the MinION system provided
substantial numbers of sequences to show that the sample was a
mixed infection of T. congolense and T. vivax (Supplementary
Table 3). Another case, A37, appeared to be a mixed infection
of T. congolense and Trypanozoon by ITS1 PCR; however,
MinION results did not support Trypanozoon infection as
described above.

Prevalence of African trypanosomes determined
by ITS1-MinION and SRA-PCR

In addition to ITS1-MinION, SRA PCR was conducted to
differentiate T. b. rhodesiense from Trypanozoon. The samples
of ITS1-MinION positive for Trypanozoon and SRA-PCR neg-
ative were assigned as T. b. brucei. The samples of SRA-PCR
positive and ITS1-MinION negative were assigned as T. b.
rhodesiense, since SRA PCR has higher sensitivity as discussed
later. Trypanosoma congolense was the most prevalent try-
panosome detected in Nkhotakota (10.8%; 20 of 185) and
Kasungu (2.5%; 5 of 199). Trypanosoma vivax was found in

Nkhotakota (6.5%; 12 of 185). Non-pathogenic Trypanosoma
species T. theileri (1.1%; 2 of 185) was also detected in Nkho-
takota. There were three mixed infections: one T. congolense
with T. b. brucei, and two T. congolensewith T. vivax (Table 1).

Trypanosoma brucei rhodesiense was detected in cattle in
both HAT-active foci by SRA PCR. A higher prevalence of
T. b. rhodesiense was found in samples from Kasungu (9.5%;
19 of 199), followed by Nkhotakota (2.7%; 5 of 185) (Table 1).
The detected number of T. b. rhodesiense was much higher
than the detected number of Trypanozoon as indicated by the
ITS1-MinION detection system. Out of 24 SRA PCR-positive
samples, only 1 sample (B23) was positive when analyzed by
the ITS1-MinION detection system (Supplementary Table 3).

These trypanosome parasites were all detected in two dis-
tricts, with the highest prevalence being in Nkhotakota
(18.9%; 35 of 185), followed by Kasungu (12.6%; 25 of
199) (Table 1), while no parasites were detected in Lilongwe
samples. There was a significant difference in prevalence
between the study sites (p < 0.05).

Correlation between infection by African
trypanosomes and the anemic status of cattle

There was a significant difference in the anemic status
(PCV < 24%) between cattle with trypanosome infection and
without infection (p < 0.05) (Table 2). Of 16 anemic cattle,
11 heads (68.7%) were positive for either T. congolense,
T. vivax or Trypanozoon (T. b. brucei and T. b. rhodesiense)
infections. In contrast, of 430 non-anemic cattle, only 49 heads
(11.4%) were positive for trypanosome infection. In particular,
infection with T. congolense showed a significant difference in
anemia status compared to other species (p < 0.05). A signifi-
cant difference in the anemic status of T. congolense-infected
cattle was observed in both single-infected cattle and mixed-
infected cattle (Table 2).

Discussion

In this study, we applied next-generation sequencing (NGS)
technologies, particularly MinION, a field-friendly, portable,
rapid, and affordable NGS device. ITS1 amplicons, including
ambiguous signals, were subjected to sequencing analysis.
Identification of Trypanosoma sp. by ITS1 PCR and sequenc-
ing analysis was largely consistent for T. congolense, T. theileri,
and T. vivax. This suggests that MinION sequencing can detect
and differentiate trypanosome species. In addition, MinION
sequencing appreciably remedied four downsides of ITS1
PCR: ambiguous signals, similar amplicon sizes, nonspecific
signals, and multiple infections. We successfully detected a
substantial number of reads from samples with ambiguous
ITS1 PCR amplicons. T. godfreyi and T. vivax were differenti-
ated. On the other hand, nonspecific amplification hampers
correct identification and can lead to false positives. We
observed 11 signals of approximately 450 bp corresponding
to Trypanozoon; however, most were not supported by
sequencing. These could be annotated as false positives without
sequencing validation. Apart from nonspecific signals, all sam-
ples definitively annotated by the ITS1 PCR had more sequence
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reads than the threshold of 50. Since we detected enough reads
for other trypanosome species from ITS1 PCR, the discrepancy
presumably derived from nonspecific PCR amplification of
fragments of the same size as the Trypanozoon amplicon. Thus,
in several cases, disagreement between ITS1-PCR gel analysis
and ITS1-MinION sequence analysis was observed, likely due
to nonspecific amplification and misjudgement of the ITS1-
PCR gel analysis. Multiple infections were also successfully
confirmed by sequencing. All these observations support the
assertion that ITS1 PCR validated by sequencing analysis using
MinION increases the reliability of parasite detection. Con-
versely, we obtained only tentative annotation in some samples,
even though substantial sequence reads were acquired. Annota-
tion depends on the threshold, and we applied a conservative
value to eliminate false positives rather than allow false nega-
tives. BLAST homology search and de-indexing steps were
possible sources of error owing to the low accuracy of MinION
sequencing. The effective range of ratios and absolute numbers
of parasites in mixed infections should also be determined.
These points should be clarified and optimized in future studies.
The combined approach of ITS1 PCR and MinION has the
potential to exclude false positives by nonspecific amplifica-
tion and less-objective human decisions. Sequencing itself
became cost-effective because of the multiplex sequencing
system using MinION indexes and barcodes. The quality of

field samples is occasionally poor and leads to unexpected
nonspecific amplification, as observed in our cases. MinION
provides sequence information that can exclude nonspecific
amplification and thus improve specificity [65]. Therefore,
utilization of MinION-based sequencing in this study will help
increase the reliability of PCR-based epidemiology.

ITS1 PCR in combination with MinION sequencing
provides sequence information to identify a broad range of
trypanosome species in a more reliable manner compared to
the conventional ITS1 PCR with gel analysis only [19].
However, this method has a limitation in characterizing Try-
panozoon subspecies owing to the highly conserved sequence
of the species [14]. In addition, ITS1 PCR is known to have less
sensitivity compared to other published primer sets targeting
repeat sequences [1, 34, 49], or SRA PCR [51]. In our study,
most of the SRA-PCR-positive samples were negative for
ITS1 PCR, suggesting that ITS1 PCR alone is of low sensitivity
and cannot used to investigate the prevalence of Trypanozoon
especially for T. b. rhodesiense as reported before [49].
However, as species-specific primers cannot identify other
trypanosomes, the ITS1 PCR system offers value for detecting
the parasites broadly in the same reaction with less time and
cost. To make the ITS1-MinION system more useful for
epidemiological studies, future studies should be required to
develop new primers targeting ITS1 or other regions, as a

Figure 2. Gel images of the ITS1 PCR results for positive and ambiguous samples (n = 53, including one positive control). The combination
of number and letter referred to the sample identity. M and PC represent the abbreviation of 1 kb marker and positive control, respectively. The
letter below explains the interpretation of the gel (Gel) and the analysis of MinION sequencing (Seq). C, T. congolense; T, Trypanozoon; V/G,
T. vivax or T. godfreyi; S, T. simiae; Th, T. theileri; N, no result; and “?”, ambiguous result.”

Table 1. Detection of pathogenic trypanosome species by analysis of SRA PCR and MinION sequencing of ITS1 PCR products.

Sampling sites Total number
of samples

Number of positive samples

T. congolense T. vivax Trypanozoon Any trypanosome
speciesT. b. brucei T. b. rhodesiense

Kasungu 199 5 [1] (2.5%) 0 (0%) 2 [1] (0.4%) 19 (9.5%) 25 (12.6%)
Nkhotakota 185 20 [2] (10.8%) 12 [2] (6.5%) 0 (0%) 5 (2.7%) 35 (18.9%)*
Lilongwe 62 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Total 446 25 12 2 24 60
Prevalence 5.6% 2.7% 0.4% 5.4% 13.4%

Numbers in brackets [n] indicate samples with a coinfection involving multiple trypanosomes. Numbers in parentheses represent the
prevalence of each trypanosome, or infected cattle per district. Asterisk (*) indicates that the prevalence of in Nkhotakota is significantly higher
than in Lilongwe and Kasungu (p < 0.05). Samples with T. theileri are counted as negative in this table.
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simultaneous sensitive diagnosis method. In the current ITS1-
MinION system, the SRA PCR test is still recommended for
screening human-infective T. b. rhodesiense in a more sensitive
and specific manner.

In this study, the most common trypanosome detected was
T. congolense. This is in agreement with reports from other
southern African countries [32, 58]. Trypanosoma congolense
and T. vivax were more prevalent in Nkhotakota than in
Kasungu, with no parasites seen in Lilongwe. Possible reasons
for this trend may be the different methods applied for AAT
control. Nkhotakota wildlife services have intensified blue cloth
targets in the park to reduce the number of tsetse flies. In
Kasungu, local veterinarians and farmers apply an anti-parasitic
treatment, Berenil (diminazene aceturate), to the cattle twice
every year before and after the herding season. Berenil is a
common therapeutic and preventive medicine for animal
trypanosomiasis that has been used for >60 years [27]. Since
samples were collected during the rainy season, we may expect
a higher prevalence of parasites in the dry season when disease
transmission peaks [31, 42]. In both the Kasungu and Nkho-
takota areas, cattle are usually bitten when brought into close
contact with flies at river crossings, village water holes, or other
tsetse fly habitats in the field [37]. On the other hand, semi-
intensive farming was applied in Lilongwe, where the cattle
were kept in paddocks, thus preventing the mechanical trans-
mission of T. vivax in cattle by biting flies. However, as T. vivax
was detected in Nkhotakota, this emphasizes the necessity of
sustained non-tsetse vector control for animal trypanosomiasis
in the region. Also, since we collected a limited number of cat-
tle samples only at three locations during short period, a broader
countrywide survey is required to assess the overall AAT/HAT
situation in the country.

The PCVvalue of infected cattle was significantly lower than
that of non-infected cattle. Anemia has long been considered the
main clinical sign of trypanosomiasis in both humans and ani-
mals [15, 16]. Anemia associated with infection has been previ-
ously associated with lower productivity of infected animals
[55, 56]. Consistent with previous studies [33, 54], our findings
confirmed that cattle with T. congolense infection tended to be
anemic, as compared to those infected with other trypanosome
species, suggesting the importance of controlling AAT.

Malawi is rich in ecosystems where humans, livestock, and
wildlife populations exist close to each other. Compared with
neighboring countries such as Uganda, Kenya, and Tanzania
in eastern and southern Africa where rhodesiense HAT is ende-
mic [5, 59, 62], T. b. rhodesiense prevalence in tsetse flies is
higher in Malawi, according to xenomonitoring data [2]. As
Kasungu and Nkhotakota are hotspots of HAT in Malawi, the

presence ofT. b. rhodesiense in cattle has been suspected in these
areas [11, 38], but had not been investigated before this study.

Studying the human–livestock–wildlife interface is essential
now, and even more so in the future because of human popu-
lation expansion and agricultural development [20]. This
expansion induces farmers and their livestock to migrate closer
to wildlife conservation areas, increasing their exposure to
tsetse flies. Here, the surveyed areas were in close proximity,
within <1 km, to the Kasungu and Nkhotakota national parks.
The extensive farming system allowed cattle to interact with
infected wildlife and tsetse flies during grazing activities at
the human–livestock–wildlife interface, increasing the possibil-
ity of pathogen sharing and disease transmission in the popula-
tions involved.

In this study, we identified both human- and animal-
infective trypanosomes residing in cattle at the human–
livestock–wildlife interface areas in Malawi. A limited number
of trypanosomiasis and tsetse control programs addressing both
diseases have been conducted in the area [35]. AAT and HAT
control activities are interdependent since both diseases share
the same transmission vector and host. Control programs target-
ing flies and animal populations are necessary to achieve HAT
control [23]. This study contributes to improving knowledge
regarding the status of trypanosomiasis in Malawi. Our findings
emphasize the need for sustainable integration between AAT
and HAT control measures and collaborative human and animal
health care services under the One Health concept, which are
indispensable in tackling HAT.

Conclusions

This is the first study to assess the prevalence of animal and
human infective trypanosomes in cattle in Malawi. The use of
MinION sequencing in combination with ITS1 PCR increased
the reliability of PCR-based comprehensive trypanosome
detection. However, for more sensitive and specific detection
of human infective T. b. rhodesiense, SRA PCR is still recom-
mended. Trypanosome-susceptible cattle harbor both human
and animal infective trypanosomes, implying its role as a poten-
tial reservoir of T. b. rhodesiense. This study emphasizes the
urgent need for sustainable control measures within the context
of the One Health approach for AAT and HAT in livestock.

Supplementary materials

Supplementary material is available at https://www.parasite-
journal.org/10.1051/parasite/2020043/olm

Table 2. Associations between PCV values and trypanosome species infected in cattle.

PCV Status T. congolense T. vivax T. b. brucei T. b. rhodesiense All
trypanosomes

Total
animals

No
trypanosomes

<24% Anemic 62.5% (10/16)* 12.5% (2/16) 6.2% (1/16) 0% (0/16) 68.7% (11/16)* 16 5
24–50% Normal 3.5% (15/430) 2.3% (10/430) 0.5% (1/430) 5.6% (24/430) 11.4% (49/430) 430 404
Total 5.6% 2.7% 0.4% 5.4% 13.4% (60/446) 446 409

The proportion in parentheses (n/n) represents the number of trypanosome-infected animals compared to the total number of animals. Asterisk
(*) indicates that the anemic status in T. congolense infection is significantly higher than infection with T. vivax and Trypanozoon (p < 0.05).
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Supplementary Table 1. Farmer registry list used during
blood samples collection in the districts of Kasungu and
Nkhotakota. (*) indicates the data obtained from the District
Agriculture Development Office (DADO) for each district
through their District Animal Health and Livestock Develop-
ment Officer (DAHLDO).

Supplementary Table 2. List of primers and their sequences
used in this study.

Supplementary Table 3. SRA PCR, ITS PCR, and MinION
sequencing analysis for characterizations of trypanosome
species. No hit* shows the number of reads that could not be
identified by BLAST. FASTA $ describes the total number
of obtained reads processed into BLAST. “PC+” and “?” refer
to positive control and ambiguous results, respectively. Samples
which were negative in both the SRA PCR and the ITS1 PCR
are not shown here.

Supplementary Figure. Workflow for molecular detection
of African trypanosomes. The workflow depicts structural steps
for detection of African animal and human trypanosomes with
serial arrows to the right for cattle samples, and a single down-
ward arrow for human samples. The section on the identifica-
tion of trypanosome species by sequencing is divided into
three steps: library preparation, sequencing and basecalling,
and de-multiplexing. Bioinformatic analyses required in the
experiments are framed in red borderline.
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