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This special issue on machine learning (ML) in Drug Safety 
illustrates the extent to which the excitement around ML in 
broader society is now pervading pharmacovigilance (PV). 
Pharmacovigilance is in a time of great change [1] and 
there is much discussion of the role that newer technologies 
including ML can and will play in driving this necessary 
change. This excitement is not of course unique to PV and 
we see widespread scientific research and discussion of ML 
and artificial intelligence (AI) in the broader healthcare field. 
Machine learning used routinely in many applications, for 
example, voice recognition for automated clinical visit scrib-
ing, and visual pattern recognition for medical imaging such 
as in retinopathy [2]. Given the complexity of medicine and 
healthcare delivery, rule-based systems that typically involve 
human-curated rule sets are necessarily limited in capabil-
ity both for recognizing large numbers of complex patterns 
and for automation in data ingestion, pre-processing, and 
dissemination. One would theoretically anticipate expert-
crafted rule-based systems will be upper bounded by human 
capacity, where with sufficient rich well-labeled training 
data and generalizability the potential for ML seems much 
more promising.

While the use of ML is not new in safety, see for example 
[3] nor even in application to safety reports, for example [4], 
there has been limited routine use in PV and there are many 
reasons for this [5]. However, there are signs this is changing 
and some of these barriers are beginning to be overcome, 
particularly in the area of natural language processing, which 
is finding extensive use in the extraction of information from 
free-text clinical notes in electronic health records [6]. In 
this issue, there is a scoping review [7] showing the breadth 
of research from data ingestion to signal detection. There 

clearly remains much confusion and lack of clarity around 
the scope of ML and AI and the usage as discussed in a 
systematic review [8] shows there is clearly a huge increase 
in published research on AI-based ML [7]. This is further 
illustrated by the wide range of examples of original research 
covering applications as diverse as predicting drug approvals 
[9], automated patient-reported adverse event [10] and drug 
coding [11], and adverse event report causality assessment 
[12], and disease prediction [13] and its role in supporting 
decision making by safety experts during signal validation 
[14]. This issue also contains perspectives from different 
stakeholders and data networks [15–17], insights and chal-
lenges into how ML can help facilitate identifying the com-
pletely unexpected ‘black swan events’ [18] and insights 
into how ML is making inroads into causal inference and 
telehealth and in resource-limited settings [19–21].

Despite the range of articles, it would however be a mis-
take to believe that all the challenges for effective, trusted, 
routine production ML have been resolved—we are still 
some way from ubiquitous ML yet! Many thorny issues 
remain for the use of ML in PV. Consider a few examples. 
How important is contemporaneous explainability in the 
broadest sense of the term? Clearly, the ability to explain so 
another understands the reasoning behind an output boosts 
trust in the system, but is it essential? Does this depend on 
the application or even the choice of the algorithm? For 
example, should we prefer deterministic over non-deter-
ministic algorithms? A requirement on contemporaneous 
explainability may limit performance especially if we require 
the ML to only do what a human can do or at least compre-
hend the value in the immediacy of a ML-based suggestion. 
The example of the board game ‘Go’ and move 37 during 
the second game of a series defeat of the human champion 
by an AI system springs to mind, which at the time of the 
move was not readily appreciated, for example, “that’s a very 
strange move” and “I thought it was a mistake” [22], and 
was since seen as brilliant through the lens of retrospect. 
Yet if one was always to require some sort of retrospective 
comprehensibility to a human as a condition for trust, how 
would one define the length that a retrospective evaluation 
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would apply? If this was a necessary cause, this could clearly 
preclude the timely use of some ML outputs for decision 
making in certain circumstances. Would AlphaGo have lost 
that second game of Go had a human-required approval been 
needed for proposed move 37 and denied?

Similarly, performance of ML is a contested issue, in 
safety, we have a responsibility to show we are doing all that 
we can to ensure the safe use of medicines and continuously 
strive to improve. How do we show improvement with new 
technologies? Much has been said that strong performance 
of ML in a subtask is promising for future PV, but it must 
also improve performance across the overall PV lifecycle 
[18], rather than just creating work or inefficiencies or delays 
elsewhere that overwhelm improvement at the particular 
steps or tasks. A compelling evaluation of safety system per-
formance on a holistic level is notoriously difficult, however, 
with much discussion about reference sets for method evalu-
ation [23]: progress in this area will be needed to show the 
future value of ML.

Much data of relevance to PV cannot be shared readily 
because of the broader ethical and privacy concerns around 
sharing healthcare data. Arguably, sharing code has limited 
value unless it is simple to follow and therefore can easily be 
accurately implemented and adapted with minimal effort to 
run on a data source or run on public domain data. In other 
parts of healthcare, many articles rely on data sets avail-
able in the public domain [24]. Data sources that have been 
used to train ML models more generally are increasingly 
being released so that results can be fully reproduced by 
other researchers. For example, the use of ML on real-world 
data for PV might accelerate if we see more publications 
with open source code that runs on public domain real-world 
data sources such as for example, MIMIC-III [25] or the US 
Centers for Disease Control and Prevention NHANES data 
set, and this could similarly foster reproducibility as well as 
address confidence in performance.

So what to the future? We expect to see more efforts to 
integrate ML holistically across the entire PV lifecycle, and 
as the need for rapid and effective learning from emerg-
ing data for decision making has become even more evident 
during the COVID-19 pandemic, we anticipate also evolu-
tions in workflows [26]. For example, performance of dis-
proportionality analyses of individual case safety reports is 
more limited in identifying high-order dependences such as 
drug–drug interactions because of the increased impact on 
quantitative scores of coincidentally similar reports, which 
may be artefactual. Machine learning to cluster and quantify 
similarity of reports [27] has been used to downweigh likely 
duplicative reports to make such higher order dependency 
signal detection more effective [28], therefore linking ML 
in data ingestion to a subsequent data analysis. 

In addition to more clear links between ML for data 
ingestion and analysis, we expect to see more evidence of 

the implementation and practical impact of routine use of 
ML, not as sole ML solutions but embedded in overall pro-
duction systems including together with rule-based systems. 
We hope this special issue provides the reader with a clear 
perspective of ML in evolution in PV, and we expect it to 
herald ever more interesting, informative, and important 
articles on the use of ML in PV. Please see video 1 (online 
only) for authors’ views on this theme issue of Drug Safety. 
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