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Measurements of growing surface tension of
amorphous-amorphous interfaces on approaching
the colloidal glass transition

Divya Ganapathi', K. Hima Nagamanasa?>, A.K. Sood"? & Rajesh Ganapathy3*

There is mounting evidence indicating that relaxation dynamics in liquids approaching their
glass transition not only become increasingly cooperative, but the relaxing regions also
become more compact in shape. Of the many theories of the glass transition, only the
random first-order theory—a thermodynamic framework—anticipates the surface tension of
relaxing regions to play a role in deciding both their size and morphology. However, owing to
the amorphous nature of the relaxing regions, even the identification of their interfaces has
not been possible in experiments hitherto. Here, we devise a method to directly quantify the
dynamics of amorphous-amorphous interfaces in bulk supercooled colloidal liquids. Our
procedure also helped unveil a non-monotonic evolution in dynamical correlations with
supercooling in bulk liquids. We measure the surface tension of the interfaces and show that
it increases rapidly across the mode-coupling area fraction. Our experiments support a
thermodynamic origin of the glass transition.
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he precise mechanisms by which liquids vitrify, upon rapid

cooling, continue to elude our grasp'™. Of the many

competing theories, both thermodynamic*~® and kinetic’~
11 that attempt to capture the dynamical slowing down during
glass formation, the well-developed thermodynamic framework
of random first-order theory (RFOT) has recently gained pro-
minence. RFOT anticipates two transitions en route to forming
glass»!2. The first, a purely dynamical transition at T. > Tx
(T, and Tx being the mode-coupling and Kauzmann tempera-
tures, respectively) is associated with the fragmentation of the
homogeneous liquid into a patchwork of distinct amorphous
mosaics, separated by well-defined interfaces. The competition
between the configurational entropy gain and the interfacial
energy cost following a rearrangement sets the size of these
mosaics, which in turn governs the structural relaxation time, z,.
With further supercooling, the mosaic size is expected to grow
and eventually diverge at a bona fide thermodynamic transition
to an ideal glass at Tx"®. A non-zero surface tension, Y, is
essential for the stability of these mosaics!*~!> and is perhaps the
most fundamental prediction of RFOT. Nevertheless, even iden-
tifying these interfaces, let alone quantify the evolution of Y’
across T., has not been possible in bulk liquids. Instead,
motivated by measurements of the mosaic size, also called the
point-to-set length &prg, in particle pinning based methods!'®,
theoretical and numerical studies have attempted to use this
method to quantify ¥'>!*17 and also probe the statistics of
interface fluctuations'>'®18, While ¥* was estimated to grow
monotonically across T, the study focused on inherent structures
and moreover measuring ¥ also involved swapping particles
within a cavity keeping the boundary ones frozen and hence has
no experimental analogue!®. Simulations that probed the
dynamics of a liquid near a pinned amorphous wall have also
uncovered direct evidence for the predicted change in relaxation
mechanism across T.'?, in terms of a maximum in the dynamic
correlation length, £42°. Subsequent colloid experiments that
mimicked the simulation protocol not only corroborated these
findings but also showed that the maximum in &4 coincides with
the change in shaPe of most-mobile particle clusters from string
like to compact’?2, This observation was at odds with the
dynamical facilitation theory of glasses®!!.

Even while the artificial introduction of disorder by pinning
particles seems to be a prerequisite for testing predictions from
RFOT!3-16:20.21.23-26 '\yhether these findings readily carry over to
structural glasses, where disorder is self-pinned’, remains unan-
swered. At present, even in numerical studies on bulk supercooled
liquids, evidence for a change in relaxation dynamics across
T. is rather indirect?”?® leading to suggestions that the
non-monotonicity in £4 may be unique to the pinned wall geo-
metry>*=31. These concerns notwithstanding, simulations find
that a pinned wall can subtly influence particle dynamics by
exerting entropic forces that depend on the nature of the inter-
particle potential®’. Similar problems persist even when the
particles are randomly pinned. Although increasing the con-
centration of the pins results in a substantial growth in z,, the
peak in the dynamic susceptibility, y;, related to the size of
dynamical heterogeneities, remains nearly constant>® or is found
to decrease®! depending on the system under consideration. This
behavior of y} is unlike what is observed in bulk liquids, where it
steadily grows with supercooling, and suggests that the nature of
relaxation dynamics in the pinned liquid may be quite different
from the bulk. Dynamics aside, there is no consensus on whether
Eprs is even order agnostic and tracks structural correlations that
are different from those obtained from simple pair-
correlations®>3®, Developing strategies to help resolve these
controversies is a much needed step towards solving the glass
transition puzzle.
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Using the data acquired from optical video microscopy
experiments on bulk supercooled colloidal liquids (see Methods
section for details), here we devise a novel scheme to identify
self-induced pins and probe their influence on local structure and
dynamics. We exploit this conceptual advance to side step
controversies surrounding the pinning procedure and directly
measure the surface tension of the interfaces delineating regions
of high and low configurational overlap. Apart from a growing
static length scale, we also observe a non-monotonic evolution in
the dynamic length scale, with supercooling, even in the absence
of externally introduced pinning. Using the capillary fluctuation
method (CFM)3> ™1, we calculate the surface tension of the
interfaces and show that it grows rapidly on approaching the
mode-coupling area fraction as anticipated by RFOT.

Results

Evolution of length scales in bulk colloidal glass formers. We
identify self-induced pins by exploiting the fact that 7, is deter-
mined by the slowest relaxing regions in the supercooled liquid
and hence regions that harbor these pins should also be config-
urationally similar over at least 7,. The configurational overlap
q.(t) which measures the extent of this similarity over time is also
thought to be the order parameter within RFOT!!2, We measure
q.(t) by first coarse-graining the field of view into boxes of size 1o
(Fig. 1a). The box size is optimally chosen to minimize the
overlap fluctuations due to cage rattling as well as avoid multi-
particle occupancy in a given box?%2l. Nevertheless, particles
located near the box edges can still hop to neighboring boxes and
this results in spurious overlap fluctuations. We account for these
by developing the fuzzy-grid method which involves displacing
the coarse-graining grid by the cage size 0.1o, in various direc-
tions and then averaging q.(f) obtained from each of the reali-
zations (Supplementary Note 1 and Supplementary Fig. 1). For

(ni(H)ni(0

each box and for t=1,, we compute g (t) = W))»[’ where i is

the box index, n,(f) =1 if the box contains a particle at time t and
n;(t) = 0 otherwise. Unlike the case of the quenched disorder, self-
induced pins do not persist indefinitely since the liquid eventually
relaxes and hence the time averaging denoted by (), is performed
over lz,. Boxes with a q.(z,)>0.9 are identified as self-induced
pins (red box in Fig. 1a and Supplementary Fig. 2) and we restrict
our attention to those that persisted over many consecutive 7,'s.
For ¢=0.79>¢nct, however, owing to experimental difficulties
with sample equilibration, t=7¢*, where t* is the cage-breaking
time?!4? (Supplementary Fig. 3).

Having identified the pins, we probe their influence on local
static order and dynamics by adapting the procedure originally
developed for the amorphous wall geometry?’. In order to
improve the spatial resolution, the coarse-graining box size was
lowered to 0.50;. Next, we compute the radially averaged
configurational overlap g.(t,r) ={q.(t)), and the self-overlap

_ /m(0)n;(0),
4:(t,1) = Cro,
pin. Here, nj(t) = 1 if the box is occupied by the same particle at
time ¢t and #{(t) =0 otherwise. By construction, g.(t,r) is
insensitive to particle swaps, while g(t,r) is sensitive. Figure 1b
shows the time evolution of g (t,r) for ¢ =0.74 at different 7's. The
long time value of g.(t - «,r) = q.. is proportional to the extent to
which self-induced pins influence the local static density field. We
obtain ¢, by averaging over the plateau region of q.(t7)
(horizontal lines in Fig. 1b). For large 7's, as expected, g.. hovers
around the bulk value g.nq=4g..(r = ») (dashed line in bottom
panel of Fig. 1c). Here, g,,,4 measures the probability that a box is
occupied. For small r, however, we observe oscillations in
g centered around ¢ ,,q. By the very definition of q.(tr), we
expect q., for r's corresponding to predominantly filled(empty)

), for all boxes at a distance r from a given
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Fig. 1 Configurational and self-overlap around self-induced pins. a The background image represents a small portion of the field of view of a colloidal supercooled
liquid. The grid corresponds to a box size of 0.56,. The red box in the center of the image represents a self-induced pin with g.(z,) > 0.9 over a 1o, box size.
Upon fine-graining to 0.56, boxes to improve the spatial resolution, the overlap of the self-induced pin is shared by four boxes within the red region. (g.(t)),
is obtained by radially averaging boxes at a distance r (blue ring) from the center. b Time evolution of configurational overlap q.(t,r) for ¢ = 0.74 at different
r's from the self-induced pin. The horizontal lines represents g..(r). The horizontal red dashed line represents the random occupancy in the bulk g,anq. € Top
panel shows g(r) for the binary supercooled liquid at ¢ = 0.74 and the bottom panel shows the evolution of g, around a self-induced pin. The purple line
corresponds to the bulk value g,.nq. The green lines are only a guide to the eye. For the sake of clarity, b shows g.(t,r) only for r's where o > Grang- d Time
evolution of self-overlap gs(t,r) for ¢p = 0.74 at different distances (os) from the self-induced pin. The horizontal red dashed line corresponds to gs(t,r) = 0.3

boxes to be larger(smaller) than g.,q. Not surprisingly, the
maxima and minima in g. coincide with those observed in the
pair-correlation function, g(r), and indeed correspond to
predominantly filled and empty coordination shells around the
self-induced pin (top panel of Fig. 1c). The oscillations thus
reflect the local liquid-like order around the pin and grow in
amplitude on nearing the pin and indicate that density
fluctuations become increasingly frozen. Since q.(t,r) is a measure
of persistence of configurations, the oscillations in g, are more
stark even at large r in comparison to g(r)—a purely static
measure. Unlike q.(t,r), gs(t,r) decays to zero in the long time
limit, when particles have undergone displacements larger than
the box size (Fig. 1d). We define the relaxation time zy(r) as the
time taken for g,(t,7) to decay to 0.3. For all ¢s, the lifetime of the
self-induced pins considered is larger than zy(r) and the pins
therefore mimic quenched random disorder. As expected, z4(r)
close to the pin is larger than its bulk value 7?UIk.

Analogous to the behavior of static correlations in liquids with
externally introduced pins?®?1:?3, the excess contribution to the
configurational overlap over the bulk, |g.(r)—grandl, decays
exponentially with r for all ¢'s even for self-induced pins (Fig. 2a).
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This allowed us to estimate a static correlation length &, from
the relation 1q..(r)—Grandl = Bexp(—1/Egar). As seen in simulations
and experiments, we observe that the prefactor B depends on
#*%?1. We explicitly account for this de&)endence by defining a
second static length scale &garint= BE 020, We next attempted to
extract the dynamic length scale &4 In Fig. 2b, we show
In(z,(r) /72%%) versus r for different ¢'s. For all ¢'s except ¢ =
0.76 (inverted red triangles in Fig. 2b), In(z,(r)/z2"¥) shows an
exponential decay. For ¢=0.76, which is close to the mode-
coupling area fraction (¢pcr=0.77, Supplementary Fig. 4),
however, we clearly see two slopes. A similar departure from an
exponential deca\{ has been observed in the presence of a pinned
amorphous wall’®?! and was attributed to the presence of
multiple relaxation processes near the MCT transition!. We
extract &4 from the relation In(z,(r)/72"%) = Beexp(—r/&4)%°.
We perform the equivalent of disorder averaging by repeating
the above analysis for atleast 6-8 pins(=12 pins are used in
calculating &4 for ¢p=0.75-0.79) within our field of view. We
ensure that the average inter-pin separation is >10-126,. The
small hollow triangles and circles in Fig. 2c correspond to &g,
and &4 evaluated for each of these pins and the larger symbols
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Fig. 2 Static and non-monotonic dynamic correlations in unpinned supercooled liquids. a and b correspond 10 Ige(N=Grand! and In(z(r)/72%) versus r,

respectively. ¢ = 0.68 (pink circles), ¢ = 0.71 (orange triangles), ¢ = 0.74 (gray diamonds), ¢ = 0.75 (dark yellow stars), ¢ = 0.76 (red inverted triangles),
and ¢ =0.79 (blue squares). ¢ The small circles and triangles represent &4 and &g, respectively, for many independent pins for a given ¢ and the larger
symbols represent their averages. The squares correspond to the two-point correlation length. For ¢ = 0.76, the asymptotic slope was used in calculating &4

correspond to their averages for each ¢ (Supplementary Fig. 5).
We also show the two-point correlation length &,y (hollow green
squares) obtained by fitting an envelope to the decay of the pair-
correlation function g(r) for comparison. While &, appears to
grow faster than &), the more striking feature is the presence of
a maximum in &;. The observed trends are not very sensitive to
the value of g.(z,,) used to define a self-induced pin or issues with
sample equilibration beyond ¢ncr (Supplementary Note 2 and
Supplementary Figs. 6—10). This is the first observation of a non-
monotonic evolution of a dynamic length scale in a bulk
supercooled liquid. The presence of this maximum near ¢yicr
is consistent with the change in shape of dynamical heterogene-
ities observed earlier?!. Also, both &y, and & for self-induced
pins grow weaker than the amorphous wall geometry?!. While
this could simply be due to the lack of disorder averaging in the
latter, simulations find that the length scales in the random
pinning geometry, where the pin configuration is similar to the
self-induced pinning case, evolve much more slowly than for
other pin geometries?® and are also consistent with theoretical
predictions >. Further, while the standard deviation in &gy
remains nearly same for all ¢'s studied, for &, it is maximal near
¢rmcr (Supplementary Fig. 11) and this may be another signature
of being in the vicinity of the dynamical crossover predicted by
RFOT. More importantly, these observations unambiguously
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show that the non-monotonic evolution of &4, hitherto observed
only in liquids in the presence of a pinned amorphous wall?2!, is
clearly a feature of the bulk liquid and is not an outcome of the

pinning procedure as alluded in recent studies®>!.

Identifying amorphous-amorphous interfaces. The striking
similarities in the evolution of static and dynamic length scales
between artificially introduced and self-induced pinning moti-
vated us to explore if the methods for identifying
amorphous—amorphous interfaces in the former can be extended
to the latter'3~1°. Since experimental studies of such interfaces are
lacking even for pinned liquids, we first analyze data on colloidal
liquids in the presence of an optically pinned amorphous wall?!
(Supplementary Note 3 and Supplementary Fig. 12). We coarse-
grain the field of view into 1o boxes and subsequently calculate
the persistence function p.(t=17,)=(pi(t)), where p,(t)=1 if the
occupancy of box i remains unchanged at time =0 and t=t and
pi(t)=0 otherwise?”. The () denotes averaging over lz,. This
minor modification to the definition of g.(¢) ensures that, post
coarse-graining, an empty box in an immobile region of the liquid
is treated on par with an occupied one. Figure 3a shows a
snapshot of p.(z,) for ¢»=0.75. The image corresponds to the
portion of the field of view that contains the wall located at z< 0
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Fig. 3 Identifying amorphous-amorphous interfaces. a The background image represents the p.(z,) for a portion of the field of view containing the
amorphous wall located at z < 0 (dashed line) for ¢ = 0.75. The color bar represents p.(z,) values. The black line through the red symbols corresponds to
the instantaneous interface profile h(z,t) and the white line is the time-averaged profile (h(z,t)).. b Interface profile around self-induced pin represented by
the white circle. The background color scheme and the lines have the same meaning as in a. ¢ Instantaneous interface profiles around distinct self-induced
pins (represented by the numbered circles). Pins 1 and 2 and pins 6 and 7 lie within the same mosaic and yield nearly the same interface. d Instantaneous
interface profile post fuzzy-grid averaging. The black line represents the (h(z,t)); around the pin (black circle). In b-d, ¢ =0.79

(dashed line). In line with expectations, p.(z,) for regions close to
the wall (z > 0) is larger as compared to regions farther away
from it (represented by green and yellow boxes, respectively).
Next, starting from each box at z=0, we scan along z and locate
the box where the overlap dropped to p.(z,) < 0.67. The line
joining these boxes delineates the regions of high and low con-
figurational overlap'#!®> and we define this to be the instanta-
neous interface profile, h(z,t), for a given 7, (black line in Fig. 3a).
We follow this procedure for each 7, and quantify the dynamics
of h(z,t) (Supplementary Note 4). We find that the time-averaged
interface profile, (h(z,t));, as expected, is parallel to the wall at z=
0 (white line in Fig. 3a). For each ¢, interface fluctuations are
probed over their corresponding 7,, and a direct comparison of
their dynamics is thus possible. Supplementary Movies 1 and 2
show interface fluctuations for the pinned wall geometry for ¢ =
0.75 and ¢ =0.79, respectively.

We made modifications to the above procedure for identifying
interfaces around self-induced pins. Starting from the pin
(represented as solid white circle in Fig. 3b), we scan along x
and z directions for boxes where the overlap dropped to p.(z,) <
0.67 (Supplementary Note 4 and Supplementary Fig. 13). A line
through these boxes represents the instantaneous interface
profile. Figure 3c shows the interfaces obtained from this
procedure for many well-separated pins within our field of view
for ¢=0.79. At high ¢'s especially, the regions with a high
configurational overlap typically contain more than one self-
induced pin (Supplementary Fig. 2). We have checked that the
interface profile obtained starting from any of these pins defines
nearly the same high overlap region (white and pink interface
profiles around pins labeled 1 and 2 and 6 and 7, respectively, in
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Fig. 3c). We then carry out the fuzzy-grid averaging procedure to
smoothen out interface fluctuations for both the pinned wall and
self-induced pins. The resulting interface profile is interpolated
(black line through red symbols in Fig. 3d) before further analysis.
Supplementary Movies 3 and 4 show interface fluctuations
around self-induced pins for ¢p=0.75 and ¢ =0.79, respectively.

Growing surface tension of amorphous-amorphous interfaces.
The surface tension of an interface is inversely related to its
roughness, which is best captured by the interface width
w=/(8h) = /(h(z.1) — (h(z.1)),)* . Since the ampli-
tude of interface fluctuations is extensive in the system size and
diverges in the thermodynamic limit, we only consider interfaces
of the same length (Supplementary Note 5). Figure 4a and Sup-
plmentary Fig. 14a show the evolution in the distribution of
height fluctuations, P(Ah) with ¢, for the self-induced pin and the
pinned wall, respectively. P(Ah) gets narrower with ¢ which
already signals a growth in the 1" of the high p. regions. While P
(Ah) is well captured by Gaussian fits at low ¢'s, we observe
deviations for ¢>0.75 and hence extract w by fitting a Gaussian
only to the central region where P(Ah) dropped by about a
decade. In Fig. 4b, we show w versus ¢ for the self-induced pin
(solid symbols) and the pinned wall (hollow symbols). Strikingly,
for both these cases, we observe that w appears to taper off
beyond ¢yrcr-

Next, we attempt to measure 1" directly using the CFM. CFM
was originally developed to quantify the dynamics of flat interfaces
separating phases with a well-defined order parameter®®~*!, and it
is not immediately apparent if this approach can be extended to
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Fig. 4 Surface tension of amorphous-amorphous interfaces. a Normalized histogram of height fluctuations for various ¢s. The black lines represent Gaussian
fits to the data. b Interface width w versus ¢ for amorphous wall (hollow squares) and for self-induced pins (hollow circles). Error bars represent the
standard deviation of w obtained from distinct self-induced pins. ¢ L(IA(k)IZ)k2 versus k for a representative self-induced pin. ¢ = 0.68 (pink circles), ¢ =
0.71 (orange triangles), ¢ = 0.74 (gray diamonds), ¢ = 0.75 (dark yellow stars), ¢ = 0.76 (red inverted triangles), and ¢ = 0.79 (blue squares). d The small
hollow circles represent Y for distinct self-induced pins and the large circles represent their average for each ¢. Y versus ¢ for amorphous wall (hollow
squares). e The background image represents p.(t=7t*) for ¢ = 0.79. f Snapshot of liquid configuration corresponding to e. In e and f, the trajectories of

the top 1% most-mobile particles are shown by the colored symbols

configurational overlap fields and that too for interfaces that are
curved like those seen around self-induced pins. At finite
temperature, interfaces undergo broadening due to thermal
fluctuations and the final equilibrium profile is a trade off
between the surface energy term which prefers a flat interface and
the thermal energy kgT. In CFM, h(zt) is decomposed into
normal modes and the amplitude of each mode decays as (|A(k)
2y=kgT/LYK? in accordance with the equipartition theorem.
Here, k is the wavevector and L is the length of the interface.
Figure 4c and Supplementary Fig. 14b show L{IA(k)I?)k* versus k

6 NATURE COMMUNICATIONS| (2018)9:397

as a function of ¢ for a representative self-induced pin and the
pinned wall, respectively. We find that in both cases, L{IA(k)I*)k?
is constant for almost a decade in k which not only validates the
applicability of CFM for the present system but also allowed us to
quantify Y for the first time in experiments. Our findings are not
very sensitive to the precise definition of the configurational
overlap used, the coarse-graining box size, and the choice of time
scale in defining the interface (Supplementary Notes 6 and 7 and
Supplementary Figs. 15-21). Figure 4d shows Y versus ¢ for
many well-separated self-induced pins (small gray circles) and the
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pinned wall (hollow squares). The filled black circles correspond
to the average Y for each ¢. Remarkably, we observe that with
supercooling, 1" grows rather rapidly in the vicinity of ¢ycr-

In the original version of RFOT®, the concept of a mosaic state
is not meaningful beyond the spinodal singularity where
metastability is lost (T' > T, regime), and hence Y is also expected
to drop to zero above T, (¢p<¢ncr in colloid experiments). In our
experiments, we not only find 1" to be finite but it also grows as
¢mcr is approached from below (Su%)lementary Fig. 22). A
generalized RFOT, proposed recently!®!0, suggests that the value
of Y between distinct pairs of amorphous mosaics is not identical,
as assumed earlier”, but is instead a broad distribution with only
the average 1" vanishing for T2 T.!3. A broad distribution in ¥’
implies that the mosaic state can survive in the T > T, regime and
the sharp transition at T, is thus smeared out. Theoretical
arguments also anticipate that the distribution of activation
energy barriers develop long tails near T, due to presence of
secondary string-like relaxation processes, resulting in a smooth-
ening of the transition®®. Thus, while a non-zero value of " even
at the lowest ¢'s we study may simply be an outcome of our
analysis procedure, the systematic growth in ¥ lends support to
the generalized RFOT. Strikingly, the experimentally observed
growth in Y is in accord with the expected!? and observed
compaction of cooperatively relaxing regions (CRRs) on super-
cooling across ¢MCT20’

Anisotropic caging at amorphous-amorphous interfaces. We
finally focus on the dynamics of most-mobile particles at
amorphous—amorphous interfaces. In Fig. 4e, we show the top 1%
of particles that were labeled most-mobile over a t* interval** that
fell within the time window (7¢*) over which the underlying p(t)
was calculated for ¢=0.79. Figure 4f shows a snapshot of the
liquid at the beginning of the 7#* window. The different colors in
Fig. 4e and f represent different particles. While it is not sur-
prising that these particles are predominatly found in the low p.
regions, we observe that for most particles the trajectories are
elongated along the interface length. This anisotropic weakening
of the cage should result in string-like CRRs oriented along the
interface and is strikinng similar to the dynamics of particles at
crystal grain boundaries®’.

Discussion

The novel scheme put forth here for identifying self-induced pins
has helped unveil the existence of interfaces separating adjacent
relaxing regions in bulk supercooled liquids. Although our
experiments are restricted to the boundary of the RFOT regime
(¢ ~ ¢yer) In order to avoid too large relaxation times, the
observed rapid growth in the surface tension with supercooling is
in line with theoretical expectations of a crossover between null
amorphous surface tension and a finite one. Further, the non-
monotonic evolution in &4 with ¢ finds a natural explanation only
within the RFOT paradigm. Crucially, the fact that the static and
dynamical length scales and interface dynamics in the bulk liquid
mirror those seen in the pinned liquid strengthens numerous
findings on the latter which favor a thermodynamic origin of the
glass transition. Given that the involved procedure of artificially
pinning particles is not essential to verify RFOT opens the door to
extending our method to supercooled liquids made of particles
with complex shapes and internal degrees of freedom. In the
ongoing quest for identifying the relevant length scale(s) that best
capture the growth in 7, in the T < T. (¢ > ¢mcr) regimezg,
determining whether &, is eventually slaved to &, is crucial.
While this is presently beyond the scope of particle-resolved
experiments, numerical studies that exploit the swap Montecarlo
technique may be the way forward*®*’. CRRs are a generic
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feature of other competing theoretical frameworks of the glass
transition as well and whether our observations can be reconciled
within these approaches remains an open challenge. Finally, the
very existence of such amorphous—amorphous interfaces opens
up the possibility of tuning their properties, and hence that of the
glass itself, in a manner analogous to grain boundary engineering
in polycrystals*®.

Methods

Experimental details. Our experimental system comprises of a binary mixture of
colloidal polystyrene particles with sizes o;=1.05 pm and oy = 1.4 pm, respectively.
The number density ratio of big and small particles Ny/Ng=1.23 is sufficient to
prevent crystallization and is held nearly constant for all area fractions, ¢, studied.
Here, ¢ plays the role of an inverse temperature. Single-particle dynamics are studied
using optical video microscopy. The colloidal suspensions are loaded in a wedge-
shaped cell that is left standing for a suitable time duration to yield the desired
particle area fraction ¢. The systems are equilibrated for a typical time duration of
8-10 h before the experiments (several times 7, for all ¢s <0.79). Samples are
imaged using a Leica DMI 6000B optical microscope with a 100x objective (Plan
apochromat, NA 1.4, oil immersion) and images are captured at frame rates ranging
from 3.3 fps to 5 fps for 1-1.5h depending on the values of ¢. The typical field of
view captured in our experiment is of the size 720, x 440;. The analysis reported
here is carried out on experiments that were performed immediately after the
holographic optical tweezers, that are used to pin an amorphous wall of particles,
was turned off?! (Supplementary Note 3). Thus, a direct comparison of the present
findings with the earlier study is 9justiﬁed. The particle trajectories are obtained from
standard MATLAB algorithms*°. Subsequent analysis is performed using codes
developed in-house. The typical drift observed in the experimental data in the
presence of a pinned amorphous wall is of the order of 0.75; in the x-direction and
0.150; in the z-direction over the entire duration of the experiment. Since sample
drift corrections are not possible in the presence of the wall, we choose the longest
time window where the sample drift was <0.10; for further analysis.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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