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Abstract: With the rapid development of speech assistants, adapting server-intended automatic
speech recognition (ASR) solutions to a direct device has become crucial. For on-device speech
recognition tasks, researchers and industry prefer end-to-end ASR systems as they can be made
resource-efficient while maintaining a higher quality compared to hybrid systems. However, building
end-to-end models requires a significant amount of speech data. Personalization, which is mainly
handling out-of-vocabulary (OOV) words, is another challenging task associated with speech assis-
tants. In this work, we consider building an effective end-to-end ASR system in low-resource setups
with a high OOV rate, embodied in Babel Turkish and Babel Georgian tasks. We propose a method of
dynamic acoustic unit augmentation based on the Byte Pair Encoding with dropout (BPE-dropout)
technique. The method non-deterministically tokenizes utterances to extend the token’s contexts
and to regularize their distribution for the model’s recognition of unseen words. It also reduces the
need for optimal subword vocabulary size search. The technique provides a steady improvement in
regular and personalized (OOV-oriented) speech recognition tasks (at least 6% relative word error
rate (WER) and 25% relative F-score) at no additional computational cost. Owing to the BPE-dropout
use, our monolingual Turkish Conformer has achieved a competitive result with 22.2% character
error rate (CER) and 38.9% WER, which is close to the best published multilingual system.

Keywords: end-to-end speech recognition; low-resource; BPE-dropout; augmentation; out-of-
vocabulary; transformer; BABEL Turkish; BABEL Georgian

1. Introduction

Digital speech assistants have become ubiquitous in everyday life. According to
the survey from Microsoft’s latest voice report [1], 75% of English-speaking households
are expected to have at least one smart speaker by 2020. Among the key functions of
an ordinary speech assistant is voice search. It allows users to search the web by saying
queries rather than typing them. In addition, voice search is expected to be as personalized
as any modern search. However, the personalization itself is more complicated for this
task than for typing-based search since it starts before ranking the results at the speech
recognition stage. The part of voice search, which is responsible for transducing speech
to words and passing them to the search field, can be thought of as the large vocabulary
continuous speech recognition (LVCSR) task of automatic speech recognition (ASR). One
of the main challenges in this task is the recognition of words that the ASR system has not
encountered before; such words are called out-of-vocabulary (OOV). Recognition errors for
such words occur more often than those that the system is aware of. Thus, the presence of
OOV words in voice queries may negatively affect the performance of voice search. In turn,
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an incorrect voice search may decrease the user-perceived quality of the whole system.
Moreover, speech assistants’ low personalization ability generally leads to deterioration of
user experience [2].

An ASR system is one of the main components of a smart voice assistant. This system
recognizes speech information from the user to transform it and pass it on for processing
as a command or query. Thus, recognition errors can lead to incorrect interpretation of
commands or incorrect formation of search queries. However, to operate effectively, it is not
enough for the ASR model to possess a high recognition quality. The system also has to be
fast and compact to be able to run on edge devices [3,4] or to have a combined server–device
structure with a lightweight model for commands and a high-quality server-grade LVCSR-
intended model [5]. To our knowledge, both hybrid [6] and end-to-end [7,8] ASR systems
are used for speech assistants (e.g., [9,10]). Regardless of the technology applied, building
an ASR system for smart assistants faces the data availability problem. Due to speech data
privacy concerns and the existence of underrepresented languages, there exist challenges
to gather enough data to build an effective recognition system. Thus, for many languages,
excluding English, one has to consider low-resource data availability conditions (the total
amount of annotated speech data suitable for training a model is less than a hundred hours).

The aforementioned problems of OOV words handling and low-resource data condi-
tions need to be addressed when building an ASR system. If the system is a conventional
hybrid (HMM-DNN-based acoustic model and word-based n-gram language model),
the OOV problem is often solved by dynamically expanding the system’s vocabulary
and/or adapting the language model (e.g., [11–13]). A less common approach is to use a
subword-based n-gram language model [14]. The vocabulary of character- or subword-
based end-to-end systems is not restricted compared with the hybrid ones. However, it
is difficult to build a model using extra unpaired data (viz. large external text corpora),
and doing this can lead to poor performance on rare and unseen words. One of the recent
approaches to tackle the OOV problem for such systems is biasing towards a given con-
text at decoding time [15]. However, even without such improvements, subword-based
end-to-end systems are generally better in handling OOV than conventional hybrid ones.
The downside is that the negative impact of low-resource conditions affects end-to-end
systems more since the acoustic units (output tokens) of such systems are more high-level
than the Hidden Markov Model states of hybrid ones. In other words, there are more
data required to saturate the model (without noticeable overfitting) that emits end-to-end
acoustic units. Concerning the choice of acoustic units for an end-to-end ASR system, there
is a trade-off between better saturation, obtained through the use of less specific tokens,
and higher token precision by using more specific and curated tokens that are expected to
contain non-trivial lexical information. Without considering logogram-based languages
(e.g., Chinese), characters are the least specific tokens, and various word pieces (subwords)
are more specific ones.

There are many ways to divide words into subwords. The two most popular methods
of subword segmentation are Byte Pair Encoding (BPE) [16] and a unigram language model
(ULM) [17]. BPE is agglomerative merging of subwords, starting with characters, according
to the frequency of their joint occurrence in a training set. The ULM subword segmentation
is an approach for inferring subword units by training a unigram language model on
a set of characters and words suffix arrays and iteratively filtering out subwords using
the Expectation–Maximization algorithm to maximize the data likelihood. Notably, this
approach to make the ULM subword segmentation is not the only one. Another method
worth mentioning is Morfessor [18], which finds morphological segmentation of words
using greedy local search. Regardless of the subword segmentation method, there is a
problem to find the optimal (in terms of the final system performance) subword number.
Another problem related to subword usage is the variability of their segmentation. A text
segmented with the smallest number of highly specific subwords may not always be
optimal. We propose using dynamic acoustic unit augmentation to address these problems.
The approach consists of diversifying the subword segmentation during model training
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by sampling different segmentations for the same words. In ULM, sampling is supported
by a simple varying of its temperature, which is called the subword regularization [17].
A recent Morfessor modification, named Morfessor EM+Prune [19], is also able to perform
the subword regularization. Eventually, BPE-dropout [20] was proposed to regularize
segmentation by randomly omitting merges.

There are few previous works on ASR related to the investigation of subword augmen-
tation by non-deterministic segmentation. The vanilla subword regularization was studied
in [21,22]. In the first work, the method was applied for the WSJ dataset (English, 50 h).
In addition, the authors proposed a novel prefix search algorithm that utilizes subword
length in the calculation of prefix probability. The second work investigated the improve-
ment of applying the subword regularization to different amounts of data and analyzed
its effect on OOV word recognition and hypothesis diversity. Presently, BPE-dropout
and Morfessor EM+Prune were applied only to machine translation (MT). BPE-dropout
was beneficially used for low-resource MT tasks as a standalone improvement [23–25] or
combined with a neural sequence-to-sequence segmentation model [26]. The Morfessor
EM+Prune’s subword regularization, along with other improvements, was used for the
asymmetric-resource one-to-many MT task [27].

In this work, we have provided extensive research on how BPE-dropout and the
ULM subword regularization acoustic unit augmentations contribute to the performance
of strong end-to-end ASR system baselines in low-resource conditions. We studied the
sensitivity of a model to the total number of target subwords and the regularization rate.
We also analyzed how effective the aforementioned subword augmentation techniques
are for alleviating the OOV problem. Finally, we built systems that achieved competitive
results for IARPA Babel Turkish [28] and Georgian [29] low-resource tasks.

Our main contribution is as follows: We propose and evaluate a dynamic acoustic unit
augmentation method for ASR system training, improving speech assistants’ user experi-
ence and perceived quality by increasing the OOV word recognition quality. The method
is based on a non-deterministic BPE subword segmentation algorithm, BPE-dropout.

2. ASR Modeling

This section provides an overview of two main ASR approaches: hybrid and
end-to-end.

2.1. Hybrid Approach

Conventional hybrid ASR systems can be divided into acoustic and language models.
The acoustic model is responsible for converting an input feature sequence to output
acoustic units (e.g., phonemes). The language model contains the language knowledge and
helps the decoder convert acoustic units into the final word sequence. Apart from a few
service parts, the model includes pronunciation lexicon and linguistic information, applied
as a statistical n-gram model. The pronunciation lexicon defines the rules for mapping
graphemes (characters) to phonemes.

In recent years, hybrid systems have been well studied and proven to solve many ASR-
related problems. However, this approach to training ASR systems has inherent drawbacks:

• Acoustic and language models are built separately from each other and have their
different objective functions. This significantly complicates the process of optimizing
the ASR system.

• To train the final DNN-based acoustic model, a hard alignment (mapping of each input
feature frame to a target acoustic unit) is required. It is generated and refined through
several iterations of GMM-HMM-based training, in which the condition-independent
assumption is in effect. However, this hard alignment also limits the acoustic context
that the model can process before emitting the target token’s spike.

• Decoding with WFST graph is highly memory intensive, which makes it difficult to
use the approach in ASR tasks for smart devices where the memory is severely limited.
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2.2. End-to-End Approaches

CTC. Connectionist Temporal Classification (CTC) [7] was the first significant step
towards addressing hybrid models’ problems mentioned earlier. A new loss function
was proposed to map input features to final speech recognition labels without using
hard alignment and pronunciation lexicon. Any acoustic units (graphemes, phonemes,
subwords) can be used as output labels. An auxiliary “blank” symbol controls label
repetitions and their absence. However, the CTC-trained end-to-end ASR system does not
have its own context- or language model (the system is an encoder only, and it is trained
in a context-independent manner), which leads to degradation of the recognition quality.
Nevertheless, using pure CTC-trained systems can still be advantageous since they are
often the most efficient and deliver competitive quality [30].

Neural transducer. Later, a neural transducer [31] was introduced, which can solve
the context-independent problem of the CTC approach. The proposed prediction network
is designed to utilize contextual information and thus works similarly to the language
model. The encoder and prediction network results are then sent to the joint network,
which emits the final result based on acoustic and context information. The entire system
is jointly optimized with the single Transducer objective function, which is a modified CTC
loss. Recently, the transducer approach has proven its effectiveness both in large-resource
(e.g., [32]) and low-resource (e.g., [33]) tasks.

Attention-based. Another approach to building an end-to-end ASR system is using
the attention-based sequence-to-sequence architecture [8] that consists of an encoder and a
decoder with the attention mechanism. The attention mechanism allows the decoder to
use a weighted representation of an encoded input context. Along with an autoregressive
decoder, this provides context-depending label modeling. However, this approach is prone
to overfitting, which manifests in the output of a highly probable sequence of tokens
regardless of acoustic information. It was proven effective to combine attention decoding
with CTC to alleviate their shortcomings and improve recognition quality [34]. At the same
time, the Transformer [35] attention-based architecture was proposed as more effective than
various RNN architectures. A multi-head self-attention (MHA) mechanism significantly
improved the quality of models over the recurrent models. A transformer model, trained
with CTC-Attention, can outperform neural transducer systems (e.g., [36]) and benefit from
various augmentation techniques [37]. Recently, the Conformer [38] was introduced, which
is a modification of the transformer layer. Convolution blocks and advanced activation
functions were added to each layer of the model encoder. The latest reports (e.g., [39])
demonstrate that the Conformer outperforms the Transformer in almost all tasks.

3. Subword Modeling

This section describes the subword augmentation techniques that were the subject of
our investigation.

3.1. ULM Subword Regularization

The subword segmentation algorithm [17] is based on a simple unigram language
model. It allows getting multiple subword segmentation variants with the corresponding
probabilities. The probability of a subword sequence x = (x1, x2, . . ., xM) is the prod-
uct of unigram probabilities of these subwords. To obtain the most probable subword
segmentation x∗ for the input word sequence W, the Viterbi algorithm is used.

For subword regularization, one first has to get l-best segmentations according to
a probability distribution P(x|W) over subword segmentation variants corresponding
to a source word sequence. Next, one can sample a new segmentation xi from the
multinomial distribution:

P(xi|W) =
P(xi)

α

∑l
i=1 P(xi)α

(1)

where α is a temperature parameter, which controls the smoothness of the distribution.
If α = 0, then the segmentation is sampled from uniform distribution (segmentation is
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uniformly sampled from the n-best (if l = n) or lattice (if l = ∞)). A larger α allows
the selection of the most probable Viterbi segmentation. The parameter l is restricted
by the Forward-Filtering and Backward-Sampling algorithm [40] because the number of
all possible subword segmentation variants increases exponentially with respect to the
sentence length.

3.2. BPE-Dropout Augmentation

The Byte Pair Encoding (BPE) [16] segmentation defines a simple deterministic map-
ping of words to subword tokens. The algorithm starts by creating an initial token vo-
cabulary consisting of characters of the input text’s words. The end-of-word mark is also
added to disambiguate word boundaries. Next, the tokens are agglomeratively merged
according to their co-occurrence frequency. The merge operations are written in the merge
table. The algorithm iterates until the maximum number of merges is exceeded, or the
desired vocabulary size is reached. The resulting merge table contains all allowed rules
and the order of merging subwords.

During the segmentation process, the word is split into characters with the addition of
the end-of-word mark. Then, the tokens are assembled according to the merge table until
the merge rules are exhausted. The training and inference procedures are deterministic,
thus the result of the algorithm is always unambiguous. Such formulation does not imply
any regularization or augmentation.

Recently, BPE was reformulated [20], which made applying augmentation possible.
The method, named BPE-Dropout, is based on random discarding of a certain number of
merges with some probability p. If p = 0, then it operates like standard BPE segmentation.
When p = 1, all merge operations are omitted, and words are split into single characters.

4. Method Description

In this section, we present the method of our dynamic acoustic unit augmenta-
tion. An evaluation criterion for the recognition performance of OOV words is also
provided here.

4.1. Dynamic Acoustic Unit Augmentation

A typical ASR pipeline involves static preparation of acoustic units prior to model
training. Grapheme-based segmentation breaks down words into characters. In subword
segmentation, a pre-built subword tokenization system transforms word transcripts into
subword sequences used as targets in the ASR model training. The transcripts are seg-
mented deterministically by design (even if the segmentation itself is non-deterministic) as
the model processes the whole training text in a single shot. For each training data batch in
each epoch, there will be identical target subword sequences.

Using subword augmentation techniques allows for getting different subwords for the
same word. Using a non-deterministic segmentation during training, rather than before
it, enables obtaining various target subword sequences each time a word sequence occurs
in a batch. This leads to a diversification of the targets by epochs, while acoustic data
remain the same. This augmentation method enriches acoustic units and regularizes the
training process.

4.2. Recognition of OOV Words

It is assumed that an end-to-end ASR model trained on subword-segmented utterances
is capable of recognizing any new word in the target language. However, if a word was not
sufficiently represented in the training data, then the model can assign a low probability
to the subword sequence representing the word during the decoding process. Therefore,
instead of an OOV word, the decoder is likely to emit the most similar seen word. We
assumed that non-deterministic subword tokenization should improve the recognition of
unseen words, as this technique allows for enhancing the diversity of subword sequences
during the ASR model’s training process.
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To analyze OOV word recognition performance, we used an F-score metric similar
to [22]. The method based on counting after decoding how many times the model emitted
(true positive, tp) or did not emit (false negative, f n) the OOV words from the evaluation set.
Words that were neither in training nor in evaluation transcripts (false positive, f p) were
also counted and used for calculating precision = tp/(tp + f p) , recall = tp/(tp + f n),
and F-score = 2 · precision · recall/(precision + recall). This allows for estimating the
quality of OOV word recognition.

5. Experiments

This section describes the experiments performed and provides the results obtained.

5.1. Data

For our experiments, we used two telephone conversations datasets for the IARPA
Babel Turkish [28] and Georgian [29] languages. We formed training sets from utterances
with duration from 10 to 2000 frames and not exceeding 300 characters to avoid GPU
memory overflow and stabilize the training process. We also extracted one hour of data
from each training set for validation purposes. Final data training sizes were 73.40 h for
the Turkish set and 50.52 h for the Georgian one. All results were obtained for the official
development sets, which consist of 9.82 h (5.40% OOV words) and 12.36 h (8.95% OOV
words) of Turkish and Georgian, respectively.

5.2. End-to-End Setup

The main end-to-end model architecture for our experiments was the Transformer.
The encoder consisted of a 2-layer CONV2D subsampling block (to reduce input feature
sequence by four times) (In object detection, Convolutional Neural Networks (CNNs) are
used as main architecture blocks (e.g., [41]). Some inference-efficient ASR systems also use
purely-convolutional solutions (e.g., [30]). However, CNNs seem to be the most effective
only for the initial time compression to our knowledge.) followed by 12 Transformer
layers with 1024 units feed-forward dimension. The decoder was a 6-layer Transformer
with 1024 feed-forward units. We used 8-headed self-attention with 360 dimensions for
both model parts. The model was trained with joint CTC and attention-based loss for
100 epochs. We used Adam optimizer [42] with OneCycleLr training scheduler [43] as this
combination showed the best model convergence during preliminary architecture search.
The input feature sequence for both hybrid and end-to-end setups were cepstral mean- and
variance-normalized 40-dimensional log-Mel filterbank coefficients with three-dimensional
pitch features. In our end-to-end training setup, we additionally used SpecAugment [44]
data augmentation.

To the extent of our knowledge, the Sentencepiece tokenizer (Available at https:
//github.com/google/sentencepiece accessed on 23 February 2021) [45] is the only tool
that currently supports both the ULM and BPE subword segmentation algorithms and
their non-deterministic segmentation techniques. We used it to dynamically tokenize
utterances when training our models in the ESPnet speech recognition toolkit (Available at
https://github.com/espnet/espnet accessed on 23 February 2021) [46,47].

5.3. The Augmentation Impact

Figure 1 shows how Word Error Rate (WER) depends on the usage of augmentation
techniques. In the first series of experiments, for the Turkish language, we trained the
Transformer model described above using two different subword tokenization methods:
BPE and ULM. The vocabulary size was set to 1000 units. For each method, a line graph
plots the dependence of α value (ULM sampling smoothing parameter and BPE dropout
probability of a subword segmentation model in the Sentencepiece tokenizer) on WER
(green and red colors respectively). The scale mark α = 0 denotes deterministic tokeniza-
tion. It can be observed that using both augmentation methods is beneficial for the models.

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://github.com/espnet/espnet
https://github.com/espnet/espnet
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The best result was obtained using the BPE-trained model with α = 0.1, which provided
an absolute WER improvement of 2.5%.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
α

44.0

44.5

45.0

45.5

46.0

46.5
W
ER

, %

BPE
ULM

Figure 1. (Turkish) WER for different values of α for the BPE- and ULM-trained subword models.
α = 0.0 means that deterministic segmentation is used. The vocabulary size is 1000 units.

Having settled on the BPE-dropout with α = 0.1 dropout probability, we investigated
how this augmentation technique performs for different vocabulary sizes. The results for
the Turkish and Georgian languages are presented in Figures 2 and 3, respectively (more
detailed representations are available in Tables 1 and 2). The models with character-based
acoustic units performed worse (with 53.0 and 51.2 WER% for Turkish and Georgian)
than the ones with subword-based optimal vocabulary sizes. Despite this, character-based
models had a high recall and thus a competitive OOV recognition F-score. Using the chosen
unit augmentation technique was beneficial both in WER and F-score. With the vocabulary
size of 3000, the Turkish recognition quality was improved by 2.9 WER% and 0.034 F-score
compared to the best non-augmented models and by 6.0 WER% and 0.062 F-score for
the models of the same vocabulary size. Similarly, the improvements of 3.2 WER% and
0.032 F-score were obtained for the Georgian language with 500 acoustic units. Overall,
using BPE-dropout lessened the need for optimal subword vocabulary size choice to build
a more effective model.

Another study was to check the BPE-dropout augmentation when applied with a
more advanced Conformer architecture and other augmentation approaches. We chose a
Conformer with the depth-wise convolution kernel of size 15 and the 3-fold speed pertur-
bation (SP) [48]. The rest of the model hyperparameters and the training environment were
the same as in our Transformer setup. The tokenization setup was as follows: 3000 BPE
vocabulary units and the dropout probability α = 0.1. The results for the Babel Turkish are
presented in Table 3. The BPE-dropout augmentation improvement remained for the Con-
former setup with 2.4 WER% and 0.035 F-score compared to 6.0 WER% and 0.064 F-score
for the Transformer setup. It was also productively combined with the SP augmentation,
resulting in 38.9 WER% and 0.224 F-score of the final system. The training of the Conformer
model training did not converge for the Babel Georgian in our setup. It can be assumed
that 50 h of data may not be enough to train an advanced end-to-end model from scratch.
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Figure 2. (Turkish): WER and F-score for different vocabulary size for BPE segmentation with the
dropout (top) and without (bottom).
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Figure 3. (Georgian): WER and F-score for different vocabulary size for BPE segmentation with the
dropout (top) and without (bottom).
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Table 1. (Turkish): WER and F-score for different vocabulary sizes with (α = 0.1) and without
BPE-dropout augmentation.

Vocab Size BPE-Dropout WER (%) Precision Recall F-Score

char - 53.0 0.067 0.165 0.095

500 - 46.1 0.114 0.152 0.130
+ 44.4 0.120 0.209 0.153

1000 - 46.5 0.130 0.144 0.137
+ 44.0 0.126 0.194 0.153

2000 - 47.4 0.126 0.118 0.123
+ 43.6 0.144 0.198 0.167

3000 - 49.2 0.129 0.099 0.112
+ 43.2 0.156 0.197 0.174

4000 - 50.9 0.124 0.085 0.101
+ 43.4 0.151 0.183 0.166

5000 - 51.1 0.115 0.070 0.087
+ 45.0 0.137 0.160 0.148

Table 2. (Georgian): WER and F-score for different vocabulary sizes with (α = 0.1) and without
BPE-dropout augmentation.

Vocab Size BPE-Dropout WER (%) Precision Recall F-Score

char - 51.2 0.090 0.162 0.116

100 - 50.2 0.087 0.143 0.108
+ 48.5 0.101 0.167 0.126

500 - 49.5 0.095 0.126 0.108
+ 46.3 0.117 0.172 0.140

1000 - 50.7 0.088 0.096 0.092
+ 46.6 0.118 0.161 0.137

2000 - 53.8 0.070 0.061 0.066
+ 47.1 0.124 0.160 0.140

3000 - 57.0 0.054 0.039 0.046
+ 47.9 0.116 0.147 0.130

Table 3. (Turkish): Our end-to-end models’ performance depending on the BPE-dropout regulariza-
tion use (α = 0.1).

model BPE-Dropout WER (%) Precision Recall F-Score

Transformer - 49.2 0.129 0.099 0.112
+ 43.2 0.156 0.197 0.174

Conformer - 42.9 0.188 0.142 0.162
+ 40.5 0.194 0.201 0.197

Conformer+SP + 38.9 0.199 0.255 0.224

5.4. Final Comparison

Apart from our best end-to-end systems, we established baselines with a conventional
hybrid architecture consisting of an LF-MMI trained TDNN-F acoustic model and a 3-gram
word language model. The acoustic features were the same that we used for our end-to-
end models. The models setup and training process (except for acoustic features) were
performed according to the librispeech/s5 recipe of the Kaldi [49] toolkit.
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Our baselines and best models for both languages were compared to other published
results in Table 4. There is a specific type of recognition result scoring named sclite (sclite is
a part of the SCTK toolkit. Available at https://github.com/usnistgov/SCTK accessed on
23 February 2021) [50]. It was used in all NIST OpenKWS evaluations and provided for all
BABEL languages. Thus, the considered Babel Turkish and Georgian development sets are
expected to be scored with it. However, the exact comparison is not formally possible since
all the works except for [51] do not mention the use or non-use of the sclite scoring tool.
The results that are known to have been sclite-scored are marked with an asterisk.

Table 4. The final comparison. * indicates that sclite is used for scoring.

Language Model CER (%) WER (%)

Turkish

Our LF-MMI TDNN-F (* 21.4) 43.9 (* 38.6)
Our Conformer 22.2 (* 17.3) 38.9 (* 34.7)

CTC-BLSTM [51] - 50.7 (* 45.8)
BLSTMP+VGG-Multilingual [52] 28.7 -

XLSR-Monolingual [53] 26.1 -
XLSR-53-Multilingual [53] 18.8 -

Georgian

Our LF-MMI TDNN-F (* 25.4) 51.6 (* 43.3)
Our Transformer 24.6 (* 21.0) 46.3 (* 41.7)

BLSTMP+VGG-Multilingual [52] 36.0 -
Multilingual hybrid fusion [54] - 32.2

XLSR-Monolingual [53] 30.5 -
XLSR-53-Multilingual [53] 17.2 31.1

Our Turkish end-to-end model performed well compared to all the systems. It deliv-
ered 22.2% CER and 38.9% WER (17.3% CER and 34.7% WER with sclite scoring). These
results are better than those of the previous monolingual systems. The model may even
have outperformed the best Babel multilingual system (assuming sclite was used in [53])
in CER. This might indicate that applying advanced data augmentation techniques can
compete with out-of-language-domain data addition in terms of the quality improvement.
However, there are currently few works covering the Turkish speech recognition; therefore,
the topic has yet to be fully explored. As for Babel Georgian, our model with 24.6% CER
and 46.3% WER (21.0% CER and 41.7% WER with sclite scoring) was competitive among
the monolingual systems, but their quality is considerably low compared to the previous
multilingual results. Apart from out-of-language-domain data usage, this gap can be
explained by additional text data usage in building a language model for decoding [54]
and advanced multilingual pre-training approaches [53].

6. Discussion

This section attempts to explain the results provided in Experiments (Section 5).
With a subword text segmentation, tokens can be unevenly represented in training

data, and a model can be biased towards recognizing frequent tokens. Nevertheless, even
frequent tokens can have a small limited number of words, which they are a part of (context
words), and this can lead to overfitting. In addition, short (in terms of character number)
tokens in such conditions may have poor saturation, especially in low-resource cases.
BPE-dropout can address both of these problems: it increases the frequency of short tokens
and the number of context words for all tokens (except for subwords representing a full
word) in the training process.

The increase in the frequency of short tokens occurs due to “forgetting” to apply some
merging rules when assembling short tokens into more complex ones. Without “forgetting,”
these short non-terminal tokens become a part of other tokens, which causes the appearance
of non-terminal tokens in words that are otherwise occupied by more advanced terminal
subwords. Thus, the model receives more diverse contexts for these tokens during the
training process. It can be seen in Figures 4 and 5 that, with BPE-dropout, short tokens

https://github.com/usnistgov/SCTK
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appear evenly more often during the training (left line charts) and in a broader set of unique
words (right scatter charts). The latter is also true for longer tokens (3–4 characters long).

We argue that short (1–2 characters long) tokens play an essential role in the recognition
of OOV words. It was observed that their amount in the OOV recognition results ranges
from 60–70% to 80%. Consequently, extensive statistics for short tokens and the variability
of their contexts may help the model better produce unseen words based on the short token
utterances already encountered in the training.

BPE-dropout can be studied in terms of augmentation and regularization properties.
For tokens 1–2 characters long, the method has strong augmentation properties. The use
of BPE-dropout increased the amount of single-character tokens in the training process
by 2–3 times: from 14% to 29% for the BPE vocabulary size of 1000 and from 7% to
22% for the vocabulary size of 3000. In other cases, BPE-dropout performed more like
a regularization technique: the number of tokens with more than two symbols did not
increase or even slightly decreased for the tokens longer than four characters. For such
subwords, diversification of token sequences is one of the regularization properties, as it
reduces overfitting of the attention decoder.

Another important regularization property of BPE-dropout is reducing the influence of
the vocabulary size on the model quality (according to Figures 2 and 3). A small vocabulary
allows for better saturation of tokens when training, but the recognition may become
non-robust to unconventional and alternative pronunciations, as modeling long-term
language dependencies becomes difficult and acoustic information dominates decoding.
Alternatively, increasing the BPE vocabulary allows more words to be recognized “directly”
in one piece, which benefits the quality of recognition. At the same time, an increased
BPE vocabulary substantially shifts the balance of tokens in training towards long tokens,
thereby obstructing the OOV recognition ability. The BPE-dropout technique facilitates the
trade-off between these options. As can be seen in Figure 6, BPE-dropout compensates for
the decrease in the number of short token appearances at the cost of a slight decrease in the
percentage of long ones.
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Figure 4. (Turkish): Left: Token frequency distribution in 100 epochs. The horizontal axis represents tokens sorted by their
frequencies in the descending order. The vertical axis shows frequencies of tokens. Right: token frequency vs. number of
unique words in which these tokens are present. Points represent individual tokens. Both statistics were computed on the
training set for token lengths 1 and 2 with the dropout and without. The BPE vocabulary size was set to 1000.
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Figure 5. (Turkish): Left: Token frequency distribution in 100 epochs. The horizontal axis represents tokens sorted by their
frequencies in the descending order. The vertical axis shows frequencies of tokens. Right: token frequency vs. number of
unique words in which these tokens are present. Points represent individual tokens. Both statistics were computed on the
training set for token lengths 1 and 2 with the dropout and without. The BPE vocabulary size was set to 3000.

By revisiting Figures 2 and 3, it can be seen that the larger the vocabulary size, the more
noticeable the improvement from using BPE-dropout augmentation. To explain this, we
compared actual token distributions in the recognition results obtained. As demonstrated
in Figure 7, BPE-dropout increases the number of relatively short (1–3 characters long)
tokens in the OOV words from 61% to 75% for the BPE vocabulary size 3000. However, in
the case of the vocabulary size 1000, token length distributions in OOV are almost identical.
This may mean that the greater the improvement from the use of BPE-dropout, the more it
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reshapes and shifts the model token distribution towards the shorter ones, assuming that
the dropout parameter remains the same.
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Figure 6. (Turkish): Number of tokens in 100 epochs vs. token length for different BPE subword vocabulary sizes with the
dropout (bottom) and without (top).

Overall, the BPE-dropout-based augmentation provides the model with more com-
plete and diverse statistics for tokens during the training, especially for the short ones. In
addition, training with BPE-dropout allows the model to utilize a character-based model’s
properties to recognize OOV words while maintaining the subword-based model quality
for regular speech recognition tasks.
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Figure 7. (Turkish): BPE token length distribution in OOV words emitted at decoding. Top: Vocabulary size 1000. Bottom:
Vocabulary size 3000.



Sensors 2021, 21, 3063 16 of 20

7. Limitations

Below are the main limitations of the study:

• While the proposed acoustic unit augmentation approach significantly improves the
OOV recognition rate, it is still cannot compete with or replace explicit personalization
techniques for those personalized ASR tasks where the quality is more important than
the speed.

• Since the use of BPE-dropout shifts the distribution of acoustic units towards shorter
ones, the expected quality improvement might diminish if the method is applied to a
system with a higher frame subsampling factor (e.g., 8 or 16).

• The end-to-end systems used in this study may not be suitable for the use in smart
assistants “as is”, as the research focus was on the quality improvement. Additional
enhancements may be required to make the systems more efficient (e.g., model com-
pression, decoding optimization, and streaming training mode). Our best Conformer
model has almost 40 million parameters. Its decoding (inference on GPU Nvidia GTX
1080TI and beam search on CPU) has nine real-time (RT) (calculated as the total test
set duration divided by the decoding time). After moving to an edge device, the speed
will drop significantly, which can make our model impractical for the real-time ASR.
In particular, 1080TI has 11.34 tera floating-point operations per second (TFLOPs),
while, for example, Nvidia Jetson TX2 Series devices have 0.67 TFLOPs.

• The data used in this study may not be sufficient to build an effective ASR system
for smart assistants. It may require augmenting telephone waveforms with synthetic
room impulse responses and extending them with target microphone data.

8. Conclusions

In this work, we have proposed a method of dynamic acoustic unit augmentation
based on the BPE-dropout technique. This method allows for improved ASR system
quality at no additional training and decoding computational cost. Its regularization prop-
erties eliminate the need for optimal subword vocabulary size search, and its augmentation
properties provide a consistent word error rate reduction (at least 6% relative WER improve-
ment compared to the best non-augmented models) in low-resource setups. In addition,
BPE-dropout’s ability to significantly improve the recognition of out-of-vocabulary words
makes it useful for personalized ASR tasks. Using this approach can make speech assistants’
user experience better and improve the perceived quality. We found that our method is
more effective than the previously used ULM subword regularization technique. Applying
BPE-dropout unit augmentation to models trained on the Babel Turkish and Georgian
low-resource datasets helped our end-to-end monolingual models to be competitive with
the previous hybrid and multilingual systems.

Future work may concern adding Morfessor EM+Prune into consideration and compar-
ison with BPE-dropout and the ULM subword regularization. In addition, non-deterministic
subword tokenization should be studied in conjunction with the use of high frame subsam-
pling factors. Finally, the dropout probability can be scheduled during the training to make
a model behave differently (more like character- or purely subword-based) depending on
the training stage.
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