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Abstract: Accurate completion of genome duplication is threatened by multiple factors that hamper
the advance and stability of the replication forks. Cells need to tolerate many of these blocking
lesions to timely complete DNA replication, postponing their repair for later. This process of lesion
bypass during DNA damage tolerance can lead to the accumulation of single-strand DNA (ssDNA)
fragments behind the fork, which have to be filled in before chromosome segregation. Homologous
recombination plays essential roles both at and behind the fork, through fork protection/lesion bypass
and post-replicative ssDNA filling processes, respectively. I review here our current knowledge
about the recombination mechanisms that operate at and behind the fork in eukaryotes, and how
these mechanisms are controlled to prevent unscheduled and toxic recombination intermediates.
A unifying model to integrate these mechanisms in a dynamic, replication fork-associated process is
proposed from yeast results.

Keywords: homologous recombination; replication stress; DNA damage tolerance; fork stability;
single-strand DNA gap filling

1. Introduction

The homologous recombination (HR) machinery uses intact DNA molecules as a template to
repair DNA breaks. For many years, research about HR focused on the repair of double-strand
breaks (DSBs) in both mitosis and meiosis; accordingly, most of our knowledge about the proteins,
activities, and mechanisms of HR comes from these specific repair events [1,2]. Indeed, the fact that
both spontaneous and induced (either by genotoxic agents or mutations) recombination depend on the
same genetic factors as DSB-induced recombination led to the long-held idea that DSBs are a common
intermediate in most of those events. Three stages are critical during recombinational repair of DSBs for
providing the means to search for and then invade an intact homologous template: (i) DNA resection of
the 5′-ends of the DSB, which generates 3′-ended, single-strand DNA (ssDNA) molecules; (ii) ssDNA
annealing; and (iii) DNA strand exchange; invasion of the template leads to the formation of a D-loop
that is further stabilized by DNA synthesis (Figure 1A). In eukaryotes, resection is carried out by a
battery of proteins, including the nucleases Mre11 and Exo1, the helicase Sgs1 (yeast)/RECQ (human)
and the helicase/nuclease Dna2 [3]. The classical HR proteins Rad52, Rad51, Dmc1 (meiosis-specific
Rad51 paralog), and the helicase Rad5 (yeast)/HTLF (human) can perform ssDNA annealing and
DNA strand exchange, whereas yeast Rad59 can promote ssDNA annealing [4–9]. In yeast, Rad52
plays an additional mediator role by facilitating the formation of the Rad51/ssDNA nucleofilament
required to search for and invade the homologous DNA sequence; this function is carried out by
BRCA2 in humans [10]. The D-loop intermediate is processed through different pathways that can
lead to crossovers between the broken and template molecules (Figure 1A). When the recombinogenic
process leads to the formation of a double-Holliday junction (HJ), this intermediate is either dissolved
by the STR complex (formed by Sgs1, the topoisomerase III (Top3), and the accessory factor Rmi1 in
yeast and their orthologs BLM, TOPOIIIα, and RMI1 and RMI2 in humans) [11] or resolved by specific
nucleases [12].
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the break are resected, leading to 3′-ended ssDNA molecules that search for and then invade a 

Figure 1. General strategies for the recombinational repair of double-strand breaks (DSBs) and
replication associated single-stranded DNA (ssDNA) gaps. (A) In response to DSBs, the 5′-ends
of the break are resected, leading to 3′-ended ssDNA molecules that search for and then invade a
homologous DNA sequence through Rad51-dependent ssDNA annealing and DNA strand exchange
reactions. This generates a D-loop intermediate that can be processed by two major pathways:
synthesis-dependent strand annealing (SDSA) or double-strand break repair (DSBR). Whereas SDSA
leads to non-crossovers (NCO), the output of DSBR (non-crossover versus crossover) depends on
whether the double-Holliday junction (HJ) is dissolved by the STR complex or resolved by DNA
structure-specific nucleases. (B) DNA damage tolerance (DDT) mechanisms promote replication fork
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advancement through DNA lesions that hamper DNA synthesis, postponing the repair of the blocking
lesion for later. This process can lead to the formation of ssDNA fragments behind the fork that
are repaired post-replicatively by either translesion synthesis (TLS) or homologous recombination
(HR). Two HR pathways have been proposed to operate depending on the cell cycle phase: template
switching during the S phase and the salvage pathway during the G2/M phases.

Over the last few years, it has become clear that the recombination proteins have additional and
essential functions in response to replicative stress that are not associated with DSB repair. Specifically,
a number of these functions are required both to bypass DNA lesions that hamper the advance
of the replicative polymerase and to fill in the fragments of ssDNA generated during this process
(Figure 1B). Although replication fork bypass of blocking lesions facilitates the timely completion
of DNA replication by postponing their repair, it also challenges genome integrity, as it can lead to
mutagenesis and genomic rearrangements. Thus, the proteins involved in these DNA damage tolerance
(DDT) mechanisms are tightly regulated to prevent unscheduled and toxic DNA intermediates.
In particular, HR during DDT provides an alternative, error-free mechanism to translesion synthesis
(TLS), during which specialized polymerases incorporate a nucleotide opposite to the lesion that can
result in high mutagenesis rates (see [13] for a recent review on TLS). In contrast, HR uses the intact
sister chromatid to circumvent the lesion, and it is believed to occur using two pathways that are
usually referred to as the template switching and salvage pathways (Figure 1B) [14,15].

We are still far from understanding how HR and other DDT proteins deal with replicative
DNA lesions. Here, I present a mechanistic overview of the recombination process during DDT in
eukaryotes. I dissect the process’ known roles at both the fork and the ssDNA gaps left behind the fork
as a consequence of the lesion bypass, as well as the genetic and physical interactions that connect
both processes. Finally, I present a unifying model from yeast results, which simplifies the complexity
of the multiple pathways and interactions that occur in both scenarios. Nonetheless, many questions
remain that now need to be addressed to obtain a better understanding of the genetic consequences of
failing in the recombinational response to replicative DNA damage, in particular in human cells.

2. Two Different Scenarios for Recombination during DDT: ssDNA Gaps at and behind the Fork

Early works showed that HR proteins are required to fill in the ssDNA lesions generated during
DNA replication in the presence of DNA adducts, such as those induced by UV light or the alkylating
agent methyl-methane sulfonate (MMS) [16–19]. The positions of these ssDNA fragments could not be
determined in these studies, as they were detected by separating pulse-labelled DNA over alkaline
glucose gradients. Yet the finding that HR proteins facilitate the advance of stressed replication forks
(Section 3) raised the possibility that lesion-bypass and ssDNA filling-in are mechanistically coupled
to the fork. However, single molecule analyses by electron microscopy of DNA molecules from
yeast cells and Xenopus egg extracts lacking the HR proteins Rad51 or Rad52 and treated with UV
light or MMS revealed an accumulation of ssDNA gaps behind the fork [20,21]. This indicates that,
at least in these organisms, HR also operates at ssDNA lesions behind the fork and suggests that
replicative and repair activities are spatially separated. Indeed, analyses of DNA damage-induced
Rad51 containing foci in yeast and mammalian cells showed the existence of both replicative and
non-replicative/DNA repair centers [22,23], with the latter restricted to G2/M in yeast through a
Mrc1-dependent mechanism that prevents their assembly during S phase [23–26]. Although the DNA
damage and replicative checkpoints sense different types of DNA lesions, they share the molecular
signal that triggers the response (an accumulation of ssDNA) as well as essential factors, including
the sensor kinases (Mec1/Ddc2 in yeast, and ATR/ATRIP in humans) and the effector kinases (Rad53
and Chk1 in yeast, and CHK1 and CHK2 in humans). One major difference is the mediator protein
that amplifies the signal at the DNA damage checkpoint (Rad9 in yeast, 53BP1 in humans) and the
replication checkpoint (Mrc1 in yeast, CLASPIN in humans) [27,28]. As the checkpoint mediator
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Mrc1 preferentially signals replication fork-associated ssDNA [29,30], I have previously suggested
that this strategy might ensure that DNA repair centers are not assembled as long as there are
stressed forks, as these recombination centers might interfere with proper DNA replication and favor
fork-driven genomic rearrangements [31]. Interestingly, the ssDNA fragments left behind the fork
upon MMS-induced stress trigger a checkpoint response that is genetically different from the one from
stalled fork-associated ssDNA: ssDNA gaps at the fork are signaled by Mrc1, while ssDNA behind the
fork are signaled by Rad9 [32,33]. Thus, although both ssDNA lesions, at or behind the fork, stem from
the same replicative problem (the encounter of the fork with a blocking lesion), they are signaled
through different mechanisms.

3. Recombination at the Fork

In response to replication stress, eukaryotic cells accumulate ssDNA gaps at the replication fork,
this is believed to be due to the uncoupling between the helicase and polymerase activities of the
replisome at the leading strand [20,21,34]. HR proteins assist replication forks through different
mechanisms that differ depending on the organisms and stress conditions. Yeast Rad51 and Rad52
can be detected at both unperturbed and MMS-stressed forks, suggesting that the recombinases are
not recruited specifically to stalled forks but rather travel with the fork to assist it in response to
replication problems [23]. This escort function seems to be conserved in human cells, as different
HR proteins (including Rad51) are detected at the nascent chromatin together with the replication
machinery [34–37]. However, human Rad51 slows down DNA synthesis [34,38], whereas yeast Rad51
accelerates it [23,25,39], suggesting different modes of action at blocked forks. Moreover, Rad51 is
essential in mammals but not in yeast [40,41], although this difference might reflect a more demanding
structural complexity, and accordingly more naturally-occurring replication obstacles, of the higher
eukaryote genome.

A reduction in the amount of Rad51 in human cells increases the length of the ssDNA gaps
generated by a broad range of genotoxic agents, including MMS and UV light, indicating that Rad51
prevents an excessive accumulation of ssDNA at stressed replication forks [34]. Importantly, human
cells respond to these replicative lesions with the formation of reversed forks through a mechanism
that, at least for the genotoxic agents camptothecin (CPT), mitomycine (MMC), or hydroxyurea (HU),
is completely dependent on Rad51 [34]. Reversed forks were initially proposed to explain replication
fork bypass of blocking lesions in mammalian cells; they would be formed upon displacement and
reannealing of the nascent strands, leading to a Holliday junction (HJ)–like structure; this structure
might facilitate replication fork bypass, by either strand invasion ahead of the fork or DNA synthesis
and fork regression, thus reducing the need for post-replicative ssDNA repair (Figure 2) [42]. In contrast
to its homolog in bacteria (RecA), Rad51 does not have fork-remodeling activity [43]. Thus, it may
control either the recruitment or the activity of fork reversal enzymes (Rad54 and Rad5 in yeast, and
HLTF, SMARCAL1, ZRANB3, FANCM, and RECQ in humans) [44,45].

In mammalian cells, BRCA2-dependent loading of Rad51 is required to protect newly synthesized
DNA upon replicative stress [46–52]. The mechanism of protection seems to vary depending on the
nature of the lesion. At stalled forks induced by HU, UV, light or CPT, Rad51 protects the newly
synthesized DNA from unscheduled and extensive DNA degradation by the nucleases Mre11 and
Exo1 [46–48,50,51]. In contrast, at stalled forks induced by MMC, Rad51 controls the nuclease activity
of Dna2 [49,51]. This difference likely reflects the difficulty in bypassing the DNA interstrand crosslinks
generated by MMC, which actually requires a complex network of DNA repair factors, termed the
Fanconi anemia (FA) pathway, which includes FA-specific factors, DNA structure-dependent nucleases,
and components of the TLS and HR machineries [53].

The Rad51 protective role at stalled forks might be associated with its ability to bind ssDNA
and form nucleofilaments. According to this possibility, the stability of the Rad51 nucleofilament is
dispensable for DSB repair but essential for replication fork stability [46]. Replication fork stability
requires the replication protein A (RPA) complex to coat the ssDNA gaps, and the replicative checkpoint
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ensures this mechanism by inhibiting replication origins, thus preventing an excess of ssDNA and
RPA exhaustion [54]. Since the mediators BRCA2 and Rad52 help Rad51 to compete with RPA at
ssDNA [4], it is conceptually possible that Rad51 replaces the protective function of RPA at the
fork. Recent studies combining defects in fork reversal enzymes with conditions that reduce or
increase the amount of Rad51 at the fork have elegantly shown that the protection of HU-stalled forks
against extensive degradation in mammalian cells occurs in two steps: (i) fork reversion through a
mechanism that requires Rad51, RPA, and fork reversal enzymes (but BRCA2-independent), and (ii)
reversed fork protection against nucleases by additional Rad51 binding (presumably through a stable
nucleofilament) (Figure 2). Importantly, both a lack of and an excess of fork reversion lead to genetic
instability (see [44,45] for recent and detailed reviews about fork reversion and protection).
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Figure 2. Mechanisms of replication fork protection and restart upon replication stress. In response
to replication stress (e.g., a blocking lesion that uncouples DNA unwinding from DNA synthesis),
displacement and further reannealing of the nascent strands leads to the formation of a reversed
fork through a process that requires the recombination protein Rad51. Stabilization of a Rad51
nucleofilament at this structure is required to protect the fork against nuclease degradation. Reversed
forks might facilitate lesion bypass by either DNA synthesis and fork regression, or strand invasion
ahead of the fork, thus reducing the need for post-replicative ssDNA repair.

Reversed forks can be detected in yeast cells and Xenopus egg extracts treated with CPT at similar
levels as in human cells [55]. However, they are rare structures in yeast cells treated with MMS or UV
light [21,56], except in checkpoint or primase/Ctf4 mutants defective for fork stability or repriming,
respectively [57–59]. In contrast to MMS or UV light, CPT generates hard-to-bypass lesions by trapping
topoisomerase I, as it is covalently linked to a nicked DNA intermediate (Top1 cleavage complex,
Top1cc) [60]. Thus, the scarcity of reversed forks in MMS-treated yeast cells might reflect transient
structures. Indeed, the helicase Mph1, which promotes fork reversal in vitro, protects MMS-stressed



Genes 2018, 9, 603 6 of 18

forks in yeast [61]. Along the same line, yeast Rad51 might deal with stalled forks through additional
and transient recombinogenic structures. DNA adducts generated by the alkylating agent adozelesin
lead to blocked replication forks that are associated with Rad51-dependent HJ structures, which are
required for DNA synthesis after the block [62]. However, it is unclear whether these structures
are specific for these particular hard-to-bypass lesions or if they are a common intermediate that is
resolved once the blocking lesion is circumvented, with this event occurring faster with MMS- or
UV-induced lesions.

The absence of Rad51 in yeast cells and Xenopus egg extracts leads to the formation of large
ssDNA gaps at the replication fork; interestingly, the length and frequency of these ssDNA gaps is not
affected by treatment with genotoxic agents like UV light or MMS, which strongly increase the number
of replication obstacles [20,21]. This suggests that Rad51 is required to prevent an excess of ssDNA at
the fork through a process that does not require activation of the DDT response. Although we still lack
information about this function, it is tempting to speculate about the possibility that Rad51 prevents
ssDNA from accumulating at the fork by coupling DNA unwinding and DNA synthesis, with this
function being even more critical in the presence of DNA damage. In this regard, Rad51 is known to
physically interact with the replicative helicase minichromosome maintenance (MCM) in both humans
and yeast, and even though its physiological relevance is still unknown [63,64], we recently observed
that this interaction is regulated at chromatin by the presence of replicative DNA damage.

4. Controlling Recombination at the Fork

Regardless of the mechanism by which Rad51 promotes replication under stress conditions,
its activity has to be tightly regulated as excess causes genetic instability [44,65]. In mammalian cells,
this control is specifically exerted at the fork by the ssDNA binding protein RADX, which competes
with Rad51 to prevent aberrant fork remodeling and genetic instability [66,67]. In addition, cells,
from yeast to humans, prevent unscheduled recombination events under unperturbed conditions
by the activity of a number of helicases that can disrupt the Rad51 nucleofilament. These helicases
include Srs2, Sgs1, and Fbh1 in yeast and their orthologs PARI (Srs2), the RecQ-like helicases BLM,
and RECQL5 (Sgs1) and FBH1 in humans [68–73]. These activities are tightly regulated to allow Rad51
to operate in response to replication stress. For instance, human cells facilitate HR at MMC-stalled
forks through a factor, BODL1, that counteracts the anti-recombinogenic activities of BLM and FBH1,
thus stabilizing Rad51 and preventing DNA2-mediated fork over-resection [51].

An additional and conserved mechanism of Rad51 control is mediated by Srs2/PARI. Cells,
from yeast to humans, prevent unscheduled recombination events under unperturbed conditions
through sumoylation of the replication processivity factor proliferating cell nuclear antigen (PCNA)
at lysine 164, which promotes the recruitment of Srs2 in yeast [74–76] and PARI in human cells [73]
(Figure 3a). This raises the question of how cells relieve Rad51 inhibition at stressed forks to facilitate
their replicative activities in response to DNA damage. This mechanism has been recently elucidated in
yeast cells treated with MMS. Specifically, it requires the activity of the SUMO-like domain-containing
protein Esc2, which binds to stalled forks to locally reduce the levels of Srs2 through two interconnected
mechanisms: (i) physical recruitment of the PCNA unloader Elg1, which removes PCNA-bound Srs2;
and (ii) physical targeting of Srs2 to the Slx5/Slx8 complex, which promotes Srs2 degradation by the
proteasome (Figure 3b) [77]. It has been shown biochemically that Srs2 and PARI can prevent HR not
only through disruption of Rad51 nucleofilaments [71–73] but also through inhibition of DNA repair
synthesis, by disassembly of the PCNA/Polδ complex [9,78]. Remarkably, Esc2-mediated removal of
Srs2 promotes Rad51 accumulation at the fork (Figure 3b) [77]. While this is more consistent with Srs2
disrupting Rad51 nucleofilaments than with it inhibiting DNA repair synthesis, it does not exclude the
possibility that both activities operate at the fork.
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5. From the ssDNA Gap at the Fork to the ssDNA Gap behind the Fork

Single-strand DNA fragments have been physically detected behind replication forks in
organisms from yeast to humans, with a strong accumulation after cells are treated with genotoxic
agents [20,21,32,34]. In principle, only those lesions occurring at the leading strand should block
the advance of the polymerase, as continuous repriming during the synthesis of the lagging strand
provides a simple way to bypass the lesion. This prediction has been validated by studies in bacteria
and yeast both biochemically and in vivo [79–82]. However, ssDNA fragments accumulate at both
strands [20,21,34], indicating that the process of lagging strand synthesis helps to bypass lesions but
not to fill in the gaps. On the other hand, a mechanism is required for the replication fork to bypass the
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blocking lesion at the leading strand. This mechanism is unlikely to be associated with fork reversion,
in which lesion bypass is thought to be associated with concomitant ssDNA gap filling (Figure 2).
Mammalian cells possess a DNA polymerase with primase activity, PrimPol, that can prime new DNA
synthesis downstream of a blocking lesion; indeed, primase-null PrimPol mutants are defective for
progression through UV-damaged DNA, highlighting the physiological relevance of this mechanism
for bypassing replication fork-blocking lesions in vivo [83,84]. In yeast, which lack a homolog of
PrimPol, point mutations in the Polα/primase complex that have no effect on bulk DNA replication
lead to an accumulation of forks with long ssDNA gaps and multiple internal gaps behind the fork
in the presence of MMS, in addition to reversed forks and genomic rearrangements. This suggests
that the replicative Polα/primase complex is required for repriming upon replication fork blockage
(Figure 3c) [59]. The efficiency of the yeast replisome at priming DNA synthesis downstream of a
blocking lesion is low in vitro but can be stimulated by RPA depletion, indicating that additional
factors may modulate this process and they depend on the type and amount of DNA lesions [82].

6. Recombination behind the Fork

Although the post-replicative repair of ssDNA lesions is a conserved strategy to tolerate replicative
lesions, the contribution of HR in different species is unclear. The absence of Rad51 and Rad52 causes
an accumulation of ssDNA fragments behind the fork in yeast cells and Xenopus egg extracts treated
with UV light or MMS [20,21,32], whereas Rad51 knockdown by RNA interference (RNAi) has no
detectable effect on the amount of post-replicative ssDNA gaps in human cells treated with CPT,
MMC, or HU [34]. This suggests a major role for TLS in gap-filling in human cells, in which up to 17
DNA polymerases were identified and characterized [13]. In line with this, the absence of the TLS
polymerases Polη or Polζ in mammalian cells treated with UV light does not affect replication fork
progression but causes an accumulation of post-replicative ssDNA gaps [85,86]. However, many factors
and activities involved in post-replicative gap-filling by HR in yeast are conserved in mammalian cells
(see below). One possibility is that the levels of Rad51 upon RNAi, although insufficient to promote
fork reversal, are high enough to promote gap-filling [34]. Alternatively, the requirement for HR might
be related to the type of DNA lesion. MMC-induced interstrand crosslinks, like the CPT-induced
Top1cc, are hard-to-bypass lesions, and HU causes fork stalling by depleting the pool of available
deoxynucleotides (dNTPs) [87]. In yeast, UV and MMS, but not HU, lead to ssDNA gaps behind the
advancing forks [32], which are repaired not only by HR but also by TLS [21].

Therefore, most of our knowledge about the mechanisms by which post-replicative ssDNA gaps
are repaired by HR comes from yeast. HR proteins fill in the ssDNA gaps using the information of
the intact sister chromatid; this process leads to the formation of Rad51-dependent X-shaped sister
chromatid junction (SCJ) structures that can be detected by 2D-gel electrophoresis in MMS-treated
cells lacking the STR dissolvase [88]. Different genetic and molecular approaches, including analyses
of SCJ formation, have elucidated many of the factors that cooperate with Rad51 in gap-filling by HR,
providing a comprehensive view of the process. The first step is the enlargement of ssDNA gaps by
the activities of the exonuclease Exo1, and to a lesser extent Mre11, and the helicase Pif1, through
a process that is regulated by physical interactions with the 9-1-1 and PCNA clamps at the 5′- and
3′-junctions of the ssDNA gap, respectively (Figure 3d) [32,89]. A major role for Mre11 in expanding
the post-replicative ssDNA gaps has been reported in Xenopus egg extracts [20]. ssDNA gap processing
is required for (i) checkpoint activation by Rad9 and Rad53, which in turn downregulates Exo1 and Pif1
activity to prevent excessive and deleterious DNA degradation [32]; and (ii) further sister chromatid
invasion, as inferred from the requirement of Exo1 and 9-1-1 for the accumulation of SCJs [90,91].
This strategy has also revealed the core recombination factors involved in the strand invasion step that
leads to the formation of a D-loop intermediate: the complex RPA, the mediator Rad52, the multifaceted
Rad54 helicase, and the helper complex Rad55/Rad57 (Figure 3e) [90,92,93]. A major difference
between HR gap-filling and DSB recombinational repair is the dispensability of Rad59 and the
assistance of an additional helper factor (Shu complex) in the former [90,94]. This requirement for the
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Shu complex is shared with the helicase Mph1 [95]. After strand invasion, the D-loop is extended by
DNA synthesis using the intact sister chromatid, through a process that requires polymerase δ, whereby
the polymerase ε and the TLS polymerases are dispensable (Figure 3e) [90]. Electron microscopy studies
of the X-shaped structures that accumulate in response to MMS have recently helped to elucidate the
different intermediates leading to SCJs. These analyses suggest that DNA invasion is mediated by
annealing the ssDNA gap to the parental strand in the sister chromatid, rather than by the blocked
3′-end; annealing exposes the newly synthesized strand in the sister chromatid, which then acts as
a template for DNA synthesis. This intermediate might be disassembled by the helicase activity of
Sgs1, promoting synthesis-dependent strand annealing (SDSA) (Figure 3f,g), or alternatively, being
captured by the 5′-end of the gap to form a double HJ-like structure with the biochemical features of
a hemicatenane (Figure 3h) [56]. This model predicts topological constraints that would explain the
requirement for sister chromatid cohesion and the DNA bending activity of the Hmo1 protein in SCJ
formation [59,96]. Finally, SCJs are primarily dissolved by the STR complex through a mechanism that
requires STR activation by sumoylation, which is performed by the Smc5/Smc6 complex together with
the Ubc9 (E2)/Mms21 (E3) sumoylation enzymes (Figure 3h) [97–101]. Notably, Esc2 acts in concert
with the STR complex, likely through its physical interaction with Ubc9 and SUMO [98].

However, the scenario is much more complex, as genetic analyses suggest the existence of
two differentially regulated HR pathways dealing with ssDNA gaps. The process of SCJ formation
described so far is termed template switching [14,15], and is dependent on PCNA polyubiquitylation
(UbPCNA) at lysine 164 [74,93]. This modification occurs on chromatin in response to DNA damage
by two E2 conjugase/E3 ligase ubiquitylation complexes: the Rad6 (E2)/Rad18 (E3) complex first
monoubiquitylates lysine 164, and then the Mms2/Ubc13 (E2)/Rad5 (E3) complex extends this
ubiquitylation with a K63-linked polyubiquitin chain (Figure 3b) [74,102,103]. Importantly, this
UbPCNA-dependent HR pathway operates mostly in the S phase [104–106].

The sumoylation complex of E2 conjugase (Ubc9)/E3 ligase (Siz1) sumoylates chromatin-bound
PCNA at lysine 164 during S phase not only under unperturbed conditions but also in response to
replicative stress [74,107]. This is possible because PCNA is a homotrimer that can be sumoylated
and ubiquitylated simultaneously [108]. PCNA sumoylation recruits the antirecombinogenic helicase
Srs2, which prevents unscheduled HR. These recombination events can be detected in cells defective
in both PCNA ubiquitylation and sumoylation/Srs2, where the HR proteins Rad51, Rad52, Rad54,
and Rad55/Rad57, but not Rad59, provide resistance to MMS or UV light [75,76,109]; importantly,
they also lead to the formation of SCJs that migrate in 2D-gels and are similar to those associated
with the UbPCNA/HR pathway [93]. As PCNA sumoylation is restricted to the S phase [74], this
UbPCNA-independent HR pathway (also termed salvage pathway) has been suggested to operate
in G2/M. Moreover, the fact that Rad6/Rad18 binds to and activates preferentially sumoylated
PCNA favors the UbPCNA/HR pathway during the S phase [108]. Therefore, the hub sumoylated
PCNA/Srs2 controls HR both at and behind the fork: it inhibits HR at the fork during unperturbed
DNA replication, and this inhibition is released from the fork and then transferred to the ssDNA gaps
behind the fork in response to DNA damage.

It must be stressed that PCNA monoubiquitylation governs TLS working as an interacting
platform for TLS polymerases [13]. Nevertheless, physical interactions of Rad5, or its human orthologs
HLTF and SHPRH, with Rad18 and PCNA promote the extension of the polyubiquitin chain during
S phase, postponing TLS to G2/M [74,110], at which point the levels of Rad5 decline and the TLS
polymerase Rev1 reaches its maximal expression [106,111]. Importantly, most of the factors and
activities leading to PCNA ubiquitylation and sumoylation, as well as the regulation of these processes,
are conserved in mammalian cells [112], further supporting the idea that HR plays a role in the
post-replicative filling-in of ssDNA gaps.
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7. Controlling Recombination behind the Fork

The existence of a recombinational ssDNA gap-filling pathway that is inhibited during S phase
raises two important questions: (i) How is this pathway controlled without affecting the UbPCNA/HR
pathway? (ii) Why is this pathway inhibited during S phase? We do not have answers yet, although
some data suggest that both questions are connected. As UbPCNA-dependent HR is active during the
S phase, Srs2 may inhibit a step subsequent to strand invasion. In line with this idea, srs2 mutants
deficient for their helicase activity (and therefore deficient in displacing Rad51 from the nucleofilament)
inhibit HR to the same degree as the wild-type Srs2 protein; however, a mutation in Srs2 that impairs
its interaction with sumoylated PCNA, which is a prerequisite for Srs2-mediated disassembly of the
PCNA/Polδ complex, no longer inhibits HR as inferred from its capacity to rescue the UV sensitivity of
a rad18 null mutant [78]. This srs2 mutant cannot block the synthesis-dependent extension of D-loops
in vitro, and accordingly, it displays longer conversion tracts and higher crossover frequencies than the
wild-type [78]. Although crossovers between sister chromatids have no genetic consequences, they can
lead to deletions, inversions, translocations, and loss of heterozigosity when occurring between ectopic
or allelic homologous sequences [113]. Thus, cells preferentially dissolve the HJ-like structures to
non-crossover products with the STR complex, restricting the activity of resolvases to late G2/M as a
last option, as these enzymes also give rise to crossovers [114–116].

The UbPCNA/HR (template switching) and the UbPCNA-independent/HR (salvage pathway)
are considered to be two distinct error-free DDT mechanisms [75,76,91,93]. This explains why a double
mutant defective in PCNA ubiquitylation and HR is more sensitive to MMS or UV light than the single
mutants [75]. This idea is also supported by the fact that UbPCNA/HR operates mostly in the S phase,
and UbPCNA-independent/HR, in the G2/M phases. Indeed, the prominence of the dissolvase STR in
the S phase, and the resolvases Mus81/Mms4 and Yen1 in G2/M, suggest that they process different
SCJs at each pathway, which is also consistent with the specific role of Hmo1 in SCJ formation by the
UbPCNA/HR pathway [96]. In line with this, SCJs with the properties of both hemicatenanes and
HJ structures are detected in the presence of MMS (Figure 3h,i) [88,117]. HJs, but not hemicatenanes,
can be processed by resolvases [12]; however, the expression of heterologous resolvases cannot prevent
early accumulation of SCJs [117]. A possible explanation for these results is that the hemicatenanes
formed via UbPCNA/HR that remain undissolved in G2/M or in PCNA sumoylation/srs2 mutants
are converted into HJs and become a substrate for resolvases [15].

These results are not incompatible with the possibility that, rather than an independent
mechanism, the salvage pathway represents the loss of a regulatory mechanism aimed to prevent
excessive DNA synthesis, high crossover frequencies, and genetic instability during the post-replicative
repair of ssDNA gaps by the UbPCNA/HR pathway [78]. The helicase activity of Sgs1 would also
contribute to disassembling the D-loop intermediate, thus favoring SDSA and non-crossover products
(Figure 3f) [56]. This control would be removed at G2/M to accelerate the repair process before
chromosome segregation. In this framework, Rad5-mediated polyubiquitylation would be required to
counteract the inhibitory activity of Srs2 to ensure sufficient DNA synthesis to circumvent the blocking
lesion, and to fine-tune the regulation of the D-loop extension step.

PCNA polyubiquitylation drives the DNA-dependent ATPase Mgs1 to HU-stalled replication
forks [118], but it is unclear if this targeting also occurs at the ssDNA lesions left behind the fork
or if it reflects the role of Rad5 in replication fork progression in the presence of replicative DNA
damage [62,106]. Moreover, Mgs1 binding to polyubiquitylated PCNA interferes with the binding
of Polδ to PCNA [118], suggesting an anti-recombinogenic role. Indeed, the absence of Mgs1 causes
hyper-recombination [119]. In any case, the mild sensitivity to MMS of mgs1 null mutants rules out
Mgs1 as the essential target of PCNA polyubiquitylation in SCJ formation [119]. In human cells, PCNA
polyubiquitylation interacts with the helicase ZRANB3, but again, it seems that this interaction occurs
at stalled forks [120]. In any case, these results suggest that PCNA polyubiquitylation may serve as an
interacting platform to factors that either actively promote the UbPCNA/HR pathway or counteract
the Srs2 activity (Figure 3f).
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It is important to recall at this point that Rad5 and HLTF have DNA strand exchange activities
that, in contrast to Rad51, do not require ATP binding and/or hydrolysis [9]. Thus, although its
helicase activity is dispensable for SCJ formation [121], Rad5 might help Rad51 to invade the intact
sister chromatid (Figure 3e). Indeed, unlike Rad51, HLTF can use gapped DNA, such as that formed
behind the fork, for D-loop formation in vitro [9].

Although less explored, evidence has begun to suggest that chromatin dynamics have a decisive
role in regulating HR during post-replicative repair. This control operates at different levels: the
chromatin remodeller Fun30 seems to act together with Exo1 in post-replicative ssDNA resection [122]
as shown for DSB repair [123–126], whereas the chromatin assembly factor CAF1 counteracts the
activity of Rqh1 (the Sgs1 ortholog in Schizosaccharomyces pombe) to stabilize the D-loop intermediate
through physical contacts with PCNA [127]. Moreover, histone modifications ensure the completion
and accuracy of the recombination events. Specifically, the ubiquitin ligase Bre1 accumulates at
MMS-induced ssDNA lesions and contributes to SCJ formation by HR through H2B ubiquitylation at
lysine 123 [128]. In addition, acetylation of histone H4 at lysine 16 by NuA4, through a process that
additionally requires the chromatin remodeller RSC, promotes high fidelity and Rad5-dependent HR
at CAG/CTG trinucleotide repeats that are prone to form hard-to-bypass hairpin structures [129].

8. Are the Recombination Processes at and behind the Fork Mechanistically Connected?

Yeast cells genetically modified to express Rad52 only in G2/M are defective not only in replication
fork advance through damaged DNA, but also in the post-replicative filling-in of ssDNA lesions by
HR. This defect is a consequence of the inability of these cells to load Rad51 at ssDNA lesions,
indicating that recombinase binding to the ssDNA gaps left behind the fork is somehow coupled to
DNA replication [23]. This is an important difference to the recombinational repair of DSBs, which
can be completed in cells expressing Rad52 only in G2/M, as the binding of HR proteins to DSBs
is replication-independent [23,25,26]. As Rad52 and Rad51 travel with the fork under unperturbed
conditions, we proposed that repriming of DNA synthesis downstream of the DNA blocking lesion
would leave the recombination proteins loaded at the ssDNA gap left behind the fork (Figure 3c) [23].
In agreement with this expectation, Polα/primase mutants deficient in repriming DNA synthesis
after the blocking lesion accumulate post-replicative ssDNA gaps whose repair is associated with
high levels of TLS-mediated mutagenesis and genomic rearrangements, but which are defective in
SCJ formation [59]. Therefore, proper DNA repriming by the Polα/primase complex is required for
efficient post-replicative recombinational processing of ssDNA gaps. Additional evidence supports the
idea that the recombinational post-replicative filling-in of ssDNA gaps is coupled to replication fork
dynamics. Defective SCJ formation in mutants that cannot ubiquitylate H2B at K123 is associated with
a loss of replication intermediates, which is likely due to the role of this modification in chromatin
assembly of newly synthesized histones and replisome stability [130]. Likewise, the translocase Irc5
facilitates replication fork advance through alkylated DNA, SCJ formation, and recombinational gap
filling by assisting in the enrichment of cohesion complexes at stalled forks [131].

If recombination initiation through the loading of HR proteins were to be coupled to replication
fork stalling and DNA synthesis repriming, not only the proteins travelling with the fork but also
those recruited in response to DNA damage would get directly loaded at the ssDNA gaps left
behind the fork as DNA synthesis resumes. Further recombination steps, including resection, D-loop
formation, extension, and disassembly, as well as SCJ formation and dissolution/resolution, may occur
post-replicatively to facilitate the completion of genome replication. This model would mechanistically
link the activity at and behind the fork of many of the factors involved in DDT, although it does
not exclude the possibility that some of these can also access the recombinogenic intermediates
post-replicatively, as has been shown for Rad18, Rad5, Sgs1, or Smc5/Smc6 [99,104,105].
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9. Concluding Remarks

Genome duplication opens a window in which DNA is particularly susceptible to undergoing
mutations and rearrangements. The replication fork accumulates free DNA ends and ssDNA fragments,
while continuous nucleosome disassembly leaves DNA more accessible to nucleases and DNA
processing activities [132]. This scenario is particularly aggravated by endogenous and exogenous
agents that hamper replication fork advance. This explains the relevance that HR has during DNA
replication to prevent genetic instability and the association between defective recombination factors
with cancer and many genetic diseases [133]. Intensive research as well as novel and powerful tools
have strongly improved our knowledge about the mechanisms by which HR deals with replicative
stress, which may help to develop new therapeutic strategies. Still, many open questions need to be
addressed, some of which were already outlined in this review. What is the contribution of HR to
ssDNA gap-filling in mammalian cells, especially in response to DNA damaging agents like MMS or
UV light? Are the recombination processes at and behind the fork mechanistically coupled, and if so,
how? Is the salvage pathway a genetically distinct mechanism? Do HR proteins operate during DDT
exclusively through their recombinogenic activities? Are the processes of HR and TLS interconnected,
or they are independently regulated? These questions require the development of new approaches to
dynamically follow the activity of the recombination proteins along the DNA and through the cell cycle,
as well as new separation-of-function mutations that help to mechanistically dissect these processes.
However, addressing these questions is sure to bring novel and exciting advances to the field.
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