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Eukaryotic origins

James A. Lake

MCDB Biology and Human Genetics, University of California, 232 Boyer Hall, Los Angeles, CA 90095, USA

The origin of the eukaryotes is a fundamental scientific question that for over

30 years has generated a spirited debate between the competing Archaea (or

three domains) tree and the eocyte tree. As eukaryotes ourselves, humans

have a personal interest in our origins. Eukaryotes contain their defining

organelle, the nucleus, after which they are named. They have a complex

evolutionary history, over time acquiring multiple organelles, including mito-

chondria, chloroplasts, smooth and rough endoplasmic reticula, and other

organelles all of which may hint at their origins. It is the evolutionary history

of the nucleus and their other organelles that have intrigued molecular

evolutionists, myself included, for the past 30 years and which continues to

hold our interest as increasingly compelling evidence favours the eocyte tree.

As with any orthodoxy, it takes time to embrace new concepts and techniques.
1. From ribosome structures to genes and genomes: the
evolution of the eocyte tree

In 1983–1984, Walter Fitch walked into my UCLA office during his sabbatical.

His visit changed my scientific life. My laboratory was reconstructing ribosome

structures, mapping the locations of their proteins and rRNAs using immuno-

electron microscopy, and growing the first three-dimensional crystals of

ribosomal subunits [1]. I was intrigued by the unusual ribosomal substructures

that we had found in an organism called Sulfolobus solfataricus and wanted to

understand why the ribosomal substructures found in this prokaryote were

very similar to those present in eukaryotes [2].

As I explained my ideas to Walter, he replied in his very direct way that I had it

all wrong! But we continued our discussions over many weeks as he taught me

how to use parsimony, his favourite method for analysing evolutionary trees.

In retrospect, our exciting, collegial arguments gave me a conceptual understand-

ing of evolution that would soon allow us to infer the deep eocyte, i.e. dawn

cell, roots of eukaryotes from ribosome structures [3], from gene sequences, and

ultimately from genomes.

Our first study analysed three-dimensional ribosomal substructures using

parsimony. Because ribosomal substructures evolve much more slowly than

gene sequences, we circumvented the long branch attraction (LBA) artefact that

can easily confound phylogenetic analyses based upon molecular sequences

[4]. That first unrooted eocyte tree (figure 1) based on a single eocyte species,

S. solfataricus, is still consistent with the rooted trees and rings being derived

from gene sequences (figure 2). Currently, four phyla have been discovered/

named within the Eocyta: the Aigarchaeota [7], Crenarchaeota [8], Korarchaeota [9]

and Thaumarchaeota [10], as summarized in reference [11].
2. Reconstructing the origin of eukaryotes
At the inception of gene sequencing discovering, the origin of eukaryotes was a

major scientific goal. Parsimony and distance approaches were the main

methods in use, and very few scientists were aware that these simple methods

were vulnerable to error when sequences evolved rapidly.

When parsimony fails, it does so in a recognizable fashion. LBA groups all of

the slowly evolving sequences into a ‘slow-clade’ and all of the rapidly evolving
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Figure 1. This first ‘eocyte tree’ was reconstructed based on the presence and
absence of two ribosomal substructures. These substructures, an additional
basal small subunit lobe and an additional lateral large subunit lobe are
present exclusively in eukaryotes and in eocytes, and absent in ‘eubacteria’
and ‘archaebacteria’. Both substructures most parsimoniously support the
eocyte tree. Note that this is an unrooted tree. Adapted from [3].
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sequences into a ‘fast-clade’. The initial attraction to parsimony

when genes were first being sequenced was that it appeared to

provide strong, often suspiciously strong, support for LBA

trees. In the early days of phylogenetic reconstruction, parsi-

mony’s super strong, but incorrect, results made it the

favourite algorithm for studying ‘deep phylogenies’, and

even today, LBA-sensitive algorithms are still being used and

generating incorrect results.

When eukaryotic 18S ribosomal sequences were first being

sequenced, a ferocious competition arose to discover the oldest

eukaryote. During this period, every newly sequenced nuclear

ribosomal RNA gene was analysed and compared with those

from prokaryotes in hopes of discovering the oldest, i.e. the

deepest branching, eukaryotic lineage. Every few months, a

new sequence analysis would report the discovery of the

‘oldest eukaryote’. The idea that eukaryotes might be very

old was exciting and seemed to have strong support.

Ultimately, the race to find the oldest eukaryote collapsed

under the weight of the LBA artefact. The final straw leading

to the demise of the Archezoa occurred when the long-branch

leading to the Microsporidia (spore-forming intracellular

eukaryotic parasites) was nearly an order of magnitude

longer than the other branches within the ‘crown group’ of

the eukaryotes [12]. Once recognized, this plus the discovery

that all Archezoa have or once had mitochondria [13] signalled

the death knell for the Archezoa. But it would take several dec-

ades longer for it to be widely accepted that the three

domains tree was also caused by LBA.
3. The accumulation of evidence for the eocyte
tree over time

I was fortunate to learn about LBA early on because it

focused our laboratory on reconstructing evolution in ways

that would minimize the effects of LBA. Along the way, we

developed several new analytical methods that used novel

mathematical approaches to make them less affected by

LBA. These included operator metrics, paralinear distances

[14], closely related to LogDet which was independently dis-

covered [15], and especially evolutionary parsimony [16]

which is based on group theory and should not be confused

with parsimony. All of these were more resistant to LBA than
other contemporaneous methods. In 1988, evolutionary parsi-

mony was used to reconstruct the ‘origin of the nucleus’ [17].

That paper was widely covered by the press and it produced

letters from around the world, some by anti-evolutionists. I

still remember one from a witty fundamentalist who wrote,

‘ . . . you say humans came from an organism that lived at

high temperature and smelled of sulfur. I have news for you,

that’s not where we came from, that’s where you’re going’.

Although the 1988 paper was quickly challenged [18], a

few years later, I was extremely impressed to find that

Manolo Gouy, the junior author of the paper that initially

challenged eocytes, subsequently published analyses sup-

porting the eocyte tree [19]. This result showed that future

leaders in the field were beginning to change their minds

as new data were collected and new methods developed.

It also gave me hope that the technical details related to

LBA were beginning to resonate within the phylogenetic

reconstruction community.

In the beginning, the eocyte hypothesis had the support

of several leading evolutionary biologists including: Walter

Fitch (UC Irvine), Alan Wilson (UC Berkeley) and Colin Pat-

terson (Natural History Museum, London). At that time, few

biologists were familiar with the phylogenetic arguments

against LBA, so my wife suggested that I apply for funding

from the Sloan Foundation to hold winter schools on Evo-

lutionary Biology at UCLA. Similar short courses offered by

the MRC in Cambridge had shaped structural biology. I

hoped that evolutionary short courses would provide the

analytical skills to advance evolutionary biology. These dis-

tinguished evolutionists were extremely helpful in getting

support from Sloan. The Sloan courses were highly successful

and featured speakers such as Wally Gilbert, of DNA sequen-

cing fame, the novelist Irving Stone (who wrote a biography

of Darwin), Alan Wilson and Walter Fitch. They helped train

a new generation of evolutionary biologists and many of our

former students are now leaders in their fields.

Alan Wilson encouraged us to use PCR to sequence riboso-

mal RNAs and other informational genes from eukaryotes,

potential eocytes and reference taxa. Thus, we sequenced many

eocyte genes. Among the most useful genes that we sequenced

were those coding for protein synthesis elongation factor

EF-Tu, because it revealed the existence of an important indel

(insertions and deletions within genes) that strongly supported

the eocyte evolution of eukaryotes [20]. Even today, those results

are so compelling to me that I still do not understand why they

were not more widely accepted at the time.

The eocyte controversy also brought with it some unexpect-

edly positive benefits. It taught us how to quickly sequence

genes using PCR, and it also forced us to develop new analyt-

ical methods that could handle LBA. Thus, we were positioned

to sequence and analyse the relationships between major

animal groups using a suite of new tools. The presence of

LBA was quickly recognized but we then knew how to circum-

vent it. As a result we proposed the ‘new animal phylogeny’

that consists of the Deuterostomia, the Lophotrochozoa and the

Ecdysozoa [21–23].

Without the eocyte controversy, we might never have dis-

covered the new animal phylogeny, because our success

depended upon being able to compensate for LBA. I will

never forget the excitement when our evolutionary parsimony

calculations first showed that the nematodes and the arthro-

pods were sister taxa—nematodes were then thought to be

Aschelminthes. I sat back in my chair almost in shock and
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Figure 2. The sister group relationship of the eocytes to the eukaryotes is illustrated by the magenta ‘informational gene flow’ shown on the upper right side of the
rings of life. It starts at the rectangle marked ‘Karyota’ and bifurcates to the left to enter the eukaryotes (lavender) and to the right to enter the Eocyta. The
Eukaryota and the Eocyta are sister taxa and together form the taxon named the Karyota. Formally, the Eocyta is the sister taxon to the eukaryotic ‘informational
genes’ [5] and the Karyota is the clade that includes the Eukaryota, the Eocyta, and their most recent common ancestor [6].

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140321

3

suddenly realized that these sister taxa both moulted their

exoskeletons, and then called my collaborators. For the first

time, to the best of my knowledge, a multicellular animal

tree had been reconstructed that directly related a genotype

to a phenotype (moulting or ecdysis). And it was a huge

animal group containing many more species than any other

animal super phylum.

In many ways, the new animal phylogeny marked the start

of a new phylogenetic era in which LBA was increasingly

recognized as a major problem for phylogenetic reconstruction.

Because our publications were in highly visible journals, they

received much attention, but so did our first eocyte publi-

cations. Something was clearly happening in the field of

multicellular animal evolution that was different from the

first time around. For some reason, the new animal phylogeny

met with little resistance, soon entered the textbooks, and

was fully accepted by the 150th anniversary of the publication

of the Origin of Species.
4. The beginnings of an evolutionary renaissance
The eocyte quest also took on some of the aspects of ‘six degrees

of separation’. For example, my former graduate student, now

Prof. Janet Sinsheimer, and her first graduate student, now

Prof. Marc Suchard, developed sophisticated, continuous time

Markov models in order to test the eocyte hypothesis [24].

Their methods were precursors to more recent approaches

such as NDCH [25] and CAT [26] that by better modelling evol-

utionary processes led to the recent demonstrations of strong

support for the eocyte phylogeny.

In 2008, my wife and I were in Hawaii on holiday when I got

an email asking if I would review a manuscript for PNAS on the

eocyte hypothesis. I was really excited by the abstract, but by the

time I got back to the editor, another reviewer had signed on. To

me that paper marked the beginning of the resurgence of the
eocyte classification [27]. Since that time, the eocyte hypothesis

has been recovered by phylogenetic analyses published by sev-

eral laboratories using better methods [28–33], so that it is has

now emerged as the consensus phylogenetic framework for

understanding eukaryotic nuclear origins.
5. What are the remaining questions
and challenges?

An outstanding challenge is how to relate the eocyte tree

and other new findings to eukaryotic evolution more broadly.

The eocyte hypothesis deals with the ancestry of the nuclear

host lineage and eukaryotic informational genes, but those

genes are only one part of the eukaryotic gene complement.

Thus, it is clear from our own work [5] and that of others

[34–36] that eukaryotic genomes contain many genes for

metabolism that are mainly, but not exclusively, of bacterial

ancestry. I have argued [6,37] that the chimeric nature of cel-

lular genomes, prokaryotic as well as eukaryotic, can be best

understood by a combination of large gene flows and cycle

graphs to represent genomic mergers. Our current under-

standing and hypotheses for the evolution of eukaryotes

based upon these ideas and analyses is summarized in

figure 2. At least two gene flows merge to form the eukary-

otes. These are the informational genes, shown in magenta

on the right and the operational genes shown in green on

the left [5]. The operational genes are present in eukaryotic

chloroplasts and mitochondria, and the informational genes

are present in the eukaryotic nucleus. The genes within the

informational gene flow underpin the eocyte tree discussed

above. The eocytes, formally the Eocyta (‘dawn cells’), and

the eukaryotes are sister taxa within the eukaryotic informa-

tional gene flow as shown in the upper right part of figure 2.

Together the eocytes, the eukaryotes and their last common
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ancestor form the taxonomic group known as the Karyota
[38], or the karyotes informally. This sister group based defin-

ition of the Eocyta provides the phylogenetic basis for

experimentally identifying additional eocytes, and suggests

clues to the origin and evolution of the nucleus.

The operational gene flow shown in green at the upper left

reflects its complex symbiotic origins. The operational gene

flow is proposed to have supplied the eukaryotic mitochondria

and chloroplasts, and is related to the complex acquisition of

these and possibly other eukaryotic cytoplasmic organelles

[13]. It is also related to the photosynthetic gene flow [39],

shown in green, and to the earlier photrophic gene flow [40]

shown in yellow. The rings are rooted at the bottom of

figure 2, based on indels incompatible with other possible

roots [6].

Other important challenges include studying the early

evolution of eukaryotes and more accurately mapping the

origins of their informational and operational genes. As we

continue to learn more about eukaryotic evolution, we position

ourselves to understand the evolution of developmental

pathways, in order to relate them to human health, and to

understand our evolutionary beginnings. The early evolution

of eukaryotes has been complex, and I suspect that the early

evolution of humans and other eukaryotes will be equally

and possibly far more complex.
Many other major problems are waiting to be solved.

Gene divergences and gene convergences of the sort that sim-

ultaneously determine both tree-like and ring-like evolution

have much to tell us. They can inform us about the deep

beginnings of prokaryotes and eukaryotes and they can do

it in ways that that can potentially allow us to relate geno-

types to phenotypes, but new, improved analytical methods

will be needed to reconstruct ring-like evolution.

I am optimistic about the future of evolutionary phylo-

genomics, especially given the many improvements being

made to reduce LBA. I believe that there may be an important

story behind each of the gene flows within the rings of life, that

those stories may be unlike any that we could have imagined in

the past and may simultaneously lead to significant advances

in improving human health. I predict that the story will only

get better as we understand more about the evolution of life

on the Earth. Enjoy the rest of this volume and as you read

keep in mind the role of LBA.

As my first departmental chair, George Palade said to me

upon his winning the Nobel prize, ‘It takes time for new

paradigms to displace old orthodoxies, and the decision

which is right has to be based on testing, and not on faith’.
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