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Abstract

Background: Echocardiography vector flow mapping can assess dynamic flow to treat congenital heart diseases.
We evaluated intracardiac flow, energy loss, left ventricular output kinetic energy, and energetic performance index
using vector flow mapping during Glenn and Damus-Kaye-Stansel procedures in order to assess the efficacy of the
surgery.

Case presentation: A 9-month-old boy underwent Glenn and Damus-Kaye-Stansel procedures. The energy loss
depends on the left ventricular preload; therefore, energy loss decreased after the Glenn procedure. After the
Damus-Kaye-Stansel procedure, the kinetic energy would increase owing to the integrated systemic outflow;
however, in our case, kinetic energy decreased, which was potentially explained by the fact that kinetic energy also
depends on the left ventricular preload. After the Glenn and Damus-Kaye-Stansel procedures, we detected an
improvement in energetic performance index, indicating that the cardiac workload improved as well.

Conclusion: We revealed the efficiency of the Glenn and Damus-Kaye-Stansel procedures using vector flow
mapping.
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Background
Echocardiography vector flow mapping (VFM) can
visualize blood flow and calculate energy loss (EL) in the
left ventricle [1]. This flow visualization technique can
assess dynamic flow to treat congenital heart diseases [2,
3]. However, there have been few reports evaluating EL
during congenital heart surgery [4, 5]. In this case, we
evaluated intracardiac flow, EL, and left ventricular out-
put kinetic energy (KE) using VFM during the Glenn
and Damus-Kaye-Stansel (DKS) procedures in order to
assess the efficacy of the surgery. We have reported how

to interpret these new indices in the perioperative
period.

Case presentation
A 9-month-old boy was diagnosed with a single left ven-
tricle with a hypoplastic right ventricle, double inlet left
ventricle, and ostium secundum defects at birth. At the
age of 2 months, he underwent pulmonary artery band-
ing to optimize pulmonary blood flow. At the age of 7
months, upon catheterization examination, his pulmon-
ary artery pressure was 14 mmHg, pulmonary artery vas-
cular resistance was 0.80 unit m2, and pulmonary artery
index was 366 mm2/m2. At the age of 9 months, he was
scheduled for elective Glenn and DKS procedures.
On admission, his height, weight, and body surface

area (BSA) were 66 cm, 6.1 kg, and 0.32 m2, respectively.
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His oxygen saturation was 85% in room air in the oper-
ation theater. Preoperative computed tomography
showed the anatomical condition (Fig. 1). Anesthesia in-
duction was uneventful, and transesophageal echocardi-
ography (TEE) was performed during pre- and post-
cardiopulmonary bypass (CPB); the patients’ vital signs
were stable. The stored ultrasound images from the Pro-
sound F75 Premier (Hitachi Aloka Medical, Tokyo,
Japan) were transferred to a computer for analysis with
the VFM software (DAS-RS-1, Hitachi-Aloka Medical,
Tokyo, Japan). We evaluated intracardiac flow, EL, KE,
and the ratio of the KE cycle to EL cycle (energetic per-
formance index, EPI).
We performed Glenn, DKS, and atrial septal defect

enlargement procedures. Pre- and post-CPB
hemodynamic parameters are shown in Table 1. Fig-
ure 2 shows the pre- and post-CPB VFM images ana-
lyzed by TEE, and Fig. 3 shows the pre- and post-
CPB chart of EL, and KE values during one cardiac
cycle. Furthermore, Additional file 1: Movie S1 and
Additional file 2: Movie S2 show the pre-CPB VFM
and EL and Additional file 3: Movie S3 and Add-
itional file 4: Movie S4 show the post-CPB VFM and
EL in the mid-esophageal long-axis views by TEE, re-
spectively. After the surgery, the mean EL and mean
KE decreased from 39.8 to 14.5 mW/m and from 49.7
to 46.5 mW/m, respectively. EPI increased from 1.25
to 3.20. Consequently, the patient was moved to the
general ward 23 days after the initial surgery, without
any inotropic support.

Discussion and conclusion
EL and KE are new indices and can be measured
using VFM technology in the perioperative period.
However, there are some clinical concerns about

interpreting these indices. In this case, we used the
EPI to overcome the limitation and interpret EL, KE,
and the efficacy of the surgery appropriately.
VFM technology uses both color Doppler images and

speckle tracking images [1]. Intracardiac EL can be cal-
culated using the following equation:

Energy loss ðELÞ ¼ R
μð2ð∂u∂xÞ

2 þ ð∂v∂yÞ
2 þ ð∂u∂y þ ∂v

∂xÞ
2ÞdA ,

where μ is the viscosity of the blood, u and v are the vel-
ocity components along the Cartesian axes (x and y, re-
spectively), and A is the area of the unit of the grid. EL
has also been estimated by using computer flow simula-
tion studies to assess hemodynamics following congeni-
tal heart disease [6–8]. Echocardiography VFM enables
us to evaluate the cardiac workload. Evaluation of pul-
monary valve stenosis and association between right
ventricular function deterioration and EL using VFM
technology have been reported [3, 9]. One of the well-
known concept of EL is the “energy loss concept,” which
is used to evaluate aortic stenosis [10], and the energy
loss index is one of the predictors of prognosis in
asymptomatic aortic stenosis [11].
However, there are some important points to be

considered in interpreting the EL value during
anesthesia. During CPB, the EL is zero because the
heart undergoes asystole and does not produce en-
ergy. In a patient with severe aortic regurgitation [12,
13], or when systolic anterior motion exists [5], the
patient’s left ventricular EL increases, which is caused
by vortex and turbulent flow. In a hyper-dynamic
state [14], the EL rises even if the patient does not
need any therapeutic intervention. Therefore, when
using VFM analysis during the early perioperative
period, we should consider not only whether is the
EL rising or falling, but also the clinical background
in which the condition occurs. EL evaluation is diffi-
cult, which is why there are few reports about the re-
lationship between EL and early perioperative
prognosis.
To solve this problem, Akiyama et al. reported the

utility of KE and EPI [14].

Fig. 1 Preoperative computed tomography image showing the
patient’s anatomical condition. Abbreviations: Ao, aorta; PA,
pulmonary artery; RV, hypoplastic right ventricle; LV, left ventricle

Table 1 Pre- and post-cardiopulmonary bypass hemodynamic
parameters

Pre-CPB Post-CPB

HR (bpm) 133 151

BP (mmHg) 105/58 91/48

SpO2 (%) 95 76

FiO2 0.33 0.98

CVP (mmHg) 12 11

BP blood pressure, CPB cardiopulmonary bypass, CVP central venous pressure,
FiO2 fraction of inspired oxygen, HR heart rate, SpO2 peripheral capillary
oxygen saturation
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Kinetic energy ðKEÞ ¼ R
1
2 ρv

2 � vdL , where ρ is the
density of the blood (1060 kg/m3), v is the velocity vector
of the blood flow, and dL is an increment of the cross-
sectional line. In this case, we calculated left ventricular
output KE, because we could acquire optimal images
from TEE. In our case, the EPI is defined as follows:

Energetic performance index EPIð Þ ¼ KEcycle
ELcycle

The EPI is useful for assessing the cardiac condition,
effectiveness of treatment, and outcome of surgery [14,
15]. Nakashima et al. reported the energy efficiency

Fig. 2 Vector flow mapping by transesophageal echocardiography. Vector flow mapping (VFM) of the mid-esophageal long-axis view before (A–
D) and after (A'–D') cardiopulmonary bypass. Brightness indicates high energy loss. After the surgery, EL decreased dramatically, especially in the
diastolic phase. A,A’:isovolumic contraction phase. B,B’:systolic phase. C,C’:isovolumic relaxation phase. D,D’:Diastolic phase. -1: vector flow
mapping image, orange line is scale bar of the vector. -2: Energy loss image. Abbreviations: Ao, aorta; EL, energy loss; Neo Ao, neo aorta; PA,
pulmonary artery
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ratio, which is the left ventricular EL divided by KE of
the trans-mitral flow, to analyze the postoperative car-
diac condition [16]. By considering energy efficiency as a
ratio, it is easier to evaluate the cardiac condition.
Theoretically, after the Glenn procedure, blood flows

from the superior vena cava directly into the pulmonary
artery, and the patient’s left ventricular preload decreases
[17, 18]. The mean EL depends on the left ventricular
preload; therefore, after the procedure, the EL was
decreased.
The mean kinetic energy depends on the ejection of

blood from the left ventricle into the left ventricular out-
flow tract. After the DKS procedure, the KE would in-
crease owing to the integrated systemic outflow;
however, in this case, KE decreased, which was poten-
tially explained by the fact that KE also depends on the

left ventricular preload [14]. Interestingly, EL and KE
were reported to decrease in an 11-month-old patient
who underwent the Glenn procedure, which may be
consistent with our findings [4]. Together, evaluation of
EL and KE is difficult because the left ventricular pre-
load changes dramatically during pediatric congenital
heart surgery.
Thus, we tried to calculate the EPI. After the Glenn

and DKS procedures, we detected an improvement in
EPI, indicating that the cardiac workload improved as
well. Using VFM technology, the efficiency of the con-
genital heart disease surgery can be assessed in the early
postoperative period.
The systolic and diastolic EL were positively correlated

with the heart rate, and the E wave peak velocity and
negatively correlated with age [19]. In this case, EL/BSA

Fig. 3 Flow energy loss (top) and flow kinetic energy (bottom) during one cardiac cycle. Upper graph demonstrates the pattern of flow energy
loss during one cardiac cycle. The blue line presents preoperative energy loss, and the yellow line represents postoperative energy loss. Lower
graph demonstrates the pattern of flow kinetic energy of the left ventricle during one cardiac cycle. The red line presents preoperative kinetic
energy, and the purple line represents postoperative energy loss
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is still higher than the reference value. If this patient
undergoes Fontan surgery, cardiac preload will decrease
and the EL will decrease appropriately. The EL measure-
ment was two-dimensional in this case. Three-
dimensional measurements using magnetic resonance
imaging might allow a more accurate assessment of the
ventricular workload [19]. Further research should be
performed to analyze the blood flow changes between
the Glenn and Fontan surgeries.
The VFM blood flow analysis has some advantages

and limitations. We believe that intraoperative blood
flow analysis can contribute to the understanding of the
pediatric congenital heart disease physiology, thus help-
ing in improving these patients’ prognosis. This report
would be helpful and useful for anesthesiologists and
surgeons to interpret perioperative blood flow analysis
appropriately during congenital heart surgery.
In conclusion, we revealed the efficiency of the Glenn

and DKS procedures using VFM. After Glenn and DKS
procedures, we detected an improvement in EPI, with an
appropriate improvement in the mean cardiac workload.
The EPI might be a helpful index of the hemodynamic
status in patients with a single ventricle.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40981-020-0312-4.

Additional file 1: Movie S1. Vector flow mapping of the mid-
esophageal long-axis view before cardiopulmonary bypass.

Additional file 2: Movie S2. Energy loss in the mid-esophageal long-
axis view before cardiopulmonary bypass.

Additional file 3: Movie S3. Vector flow mapping of the mid-
esophageal long-axis view after cardiopulmonary bypass.

Additional file 4: Movie S4. Energy loss in the mid-esophageal long-
axis view after cardiopulmonary bypass.
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