
1. Introduction
The crustal deformation is localized at fault zones, which enclose a volume that spans from tens to several thou-
sands of cubic kilometers. However, most of the deformation is accommodated at the very center of the fault 
zone, a thin region, few millimeters wide, the fault core. Repeated slip events cause wearing of the adjacent rock 
walls (due asperities breakage or plowing) and filling of the fault core with brittle wear products. In a second 
step, they cause further mineral fragmentation due to cataclastic flow (Davidesko et  al.,  2014; Lyakhovsky 
& Ben-Zion,  2014; Lyakhovsky et  al.,  1997; C. G. Sammis & Ben-Zion,  2008; Scholz,  2002; W. Wang & 
Scholz, 1994). The resulting complex granular material is termed fault gouge. Given the process of formation 
of the fault gouge (wear and breakage), particles' shape is angular, and their size distribution is typically wide 
(Marone & Scholz, 1989; C. G. Sammis et al., 1986). During slip, a secondary strain localization zone (shear 
band) may form inside the granular gouge layer, which will control the softening branch of the slip response of 
the granular layer (Mühlhaus & Vardoulakis, 1987; J. R. Rice, 1976; Rudnicki & Rice, 1975, among others). This 
zone is referred to as the principle slip zone (PSZ; Ben-Zion & Sammis, 2003; Platt et al., 2014). Consequently, 
the frictional behavior of the fault gouge, plays a key role for the response of the fault zone during slip. In this 

Abstract A series of discrete elements simulations is presented for the study of fault gouges' frictional 
response. The gouge is considered to have previously undergone ultra-cataclastic flow and long-time 
consolidation loading. We explore the effect of different particle characteristics such as size, polydispersity, and 
also shearing velocities on gouge's response under the conditions met in the seismogenic zone. Monte-Carlo 
analyses suggest that the local stick-slip events disappear when averaging over a large number of numerical 
samples. Moreover, the apparent material frictional response remains almost unaffected by the spatial 
randomness of particles' position and by the particle's size distribution. On the contrary, the mean particle size 
controls the formation and thickness of the observed shear bands, which appear after the peak friction is met. 
Furthermore, the apparent friction evolution fits well to an exponential decay law with slip, which involves a 
particle size dependent critical slip distance. For the studied conditions and depth, the shearing velocity is found 
to play a secondary role on the apparent frictional response of the gouge, which highlights the importance of 
analyses involving multiphysics for studying the rheology of fault gouges. Besides improving the understanding 
of the underlying physics of the problem, the above findings are also useful for deriving pertinent constitutive 
models in the case of modeling with continuum theories.

Plain Language Summary Understanding the response of a fault gouge, the granular material at 
the core of fault zones, can shed light on the way earthquakes are nucleated. For this purpose, in this paper, a 
series of particle-based simulations of a fault gouge, under conditions similar to the ones expected at deep down 
at the seismogenic zone, are conducted. A full-scale fault with dimensions of the order of kilometers is almost 
impossible to be simulated at the grain-scale. In order to capture the inhomogeneities at this level, the response 
of several, small samples is combined in a stochastic-ensemble manner. The results suggest that local stick-slip 
events are vanishing with increasing number of tests thus, they are not critical for the macroscopic, global, 
material's response. Contrary to this, the amount of slip needed to promote earthquake instabilities is shown 
to vary with respect to the mean particle size of the material. Finally, the granular polydispersity and the slip 
velocity do not seem to affect the system's behavior. The later highlights possible important role of multiphysics 
on the rheology of fault gouges and provides evidence for the constitutive assumptions used in continuum 
models.
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work, we consider mature faults' gouge, which are healed after long periods of straining that lead to strengthening 
and new seismic events due to softening/weakening during slips.

A lot of effort has been put over the last decades to explore the constitutive behavior of fault gouges. These works 
are mainly experimental (Anthony & Marone, 2005; Chambon et al., 2002; Collettini et al., 2009; Dieterich & 
Carter, 1981; Mair et al., 2002; Mair & Marone, 1999; Marone et al., 1990; Marone & Scholz, 1989; Ruina, 1983; 
Scholz, 2002; Scuderi & Collettini, 2016) and give valuable information about the thermo-chemo-hydro-mechan-
ical behavior of gouges. The most frequently used constitutive law for friction is the Rate-and-State friction law 
(see Dieterich, 1978; Dieterich & Carter, 1981), which successfully fits a large spectrum of experimental results. 
In this model, the friction depends on the slip rate (velocity-dependent), a state variable, whose physical meaning 
can be related to various underlying physical processes (e.g., Aharonov & Scholz, 2018), and a characteristic 
length, Dc, which determines the post peak softening. The aforementioned length scale is a function of the parti-
cles' size for faults with gouge (Dieterich & Carter, 1981).

The consideration of the particles' size and its effect on the frictional response of the fault gouge is intrinsic in 
detailed numerical simulations using the Discrete Element Method (DEM). DEM is employed in the literature for 
investigating the mechanical response of idealized fault gouges (Abe et al., 2002; Abe & Mair, 2009; Aharonov 
& Sparks, 1999, 2002; Ferdowsi & Rubin, 2020; Guo & Morgan, 2004, 2006, 2007; Hazzard & Mair, 2003; 
Mair & Abe, 2008; Morgan, 1999; Morgan & Boettcher, 1999) and granular materials more generally (Azéma 
et al., 2012; Estrada et al., 2008; Nguyen et al., 2015). However, these works focus mainly on the appearance of 
repeating, abrupt, local stick-and-slip phenomena due to grain force chains changes (formation and collapse) and 
less on the constitutive frictional behavior of the granular gouge. They consider these events as the dominant, 
instability factor in seismic fault cores.

In the present article, we consider the medium's disorder through a statistical ensemble approach. This allows us 
to take into account the disorder of the medium in a statistical sense. More specifically, a volume of the fault core 
is simulated by a series of N DEM tests, with random packing of particles, each one representing a Stochastic 
Elementary Volume (SEV) of the fault core. The global response of the fault is thus represented by the statistical 
average of the N responses of the DEM models. By calculating the expected value of different parameters regard-
ing the apparent frictional response and deformation of the system, we derive useful conclusions concerning: (a) 
the statistically vanishing local stick-and-slip events with increasing number of tests, (b) the scaling of the critical 
slip distance, Dc, with the mean particle size, d50, (c) the formation of a localized zone (shear band) of shear defor-
mation whose thickness scales with d50 independently of the particle size distribution (PSD) and (d) the absence 
of significant velocity-weakening behavior at the confinement stress level tested and for the parameters used.

Our DEM analyses involve a granular fault gouge at seismogenic depth which has undergone a severe and long-
time cataclasis before the slip takes place, leading to a highly interlocked granular material. The behavior of this 
material is expected to show a different behavior than compacted, non-interlocked glass-beads analogs that are 
often used in laboratory experiments or in DEM simulations. It is worth noting that our numerical model is an 
idealization of a real fault gouge. Nevertheless, it allows to draw qualitative results showing the effect of grain 
size related to the stochastic apparent frictional behavior of the system. Moreover, our DEM analyses allow to 
access information that are hard, if not impossible, to obtain from real experiments.

Particular care was taken to use adequate scalings in order to accelerate calculations as much as possible without 
altering the physics of the problem. This is a central issue given the stochastic approach of this work, which 
involves tens of analyses in order to assure a correct statistical interpretation of the results and show a Monte-Carlo 
based 𝐴𝐴 1∕

√

𝑁𝑁  convergence. Furthermore, the scales controlling the apparent frictional behavior have been identi-
fied by spectral decomposition of the frictional response and the related slip events. This analysis has shown that 
results of single tests might be misleading. The high-frequency events related to grain-scale vanish as soon as 
the response of several tests is averaged. Then the global material response governs the frictional behavior of the 
fault gouge. Physically, this averaged response can be explained as the overall response not only of a thin slice of 
gouge material, but of a larger volume (see Figure 1).

Grain crushing is indirectly addressed in the present work. More precisely, having found that the shear band 
thickness (which would correspond to the size of the principal slip zone, see Section 2.2) and the critical sip 
distance scale with the mean particle size, makes possible the study of the evolution of the apparent frictional 
behavior of the gouge layer by decreasing the particle size during shearing. However, we do not study the effects 
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related to powder production and lubrication (Reches & Lockner, 2010), which are thought to be phenomena of a 
finer scale. From an energetic point of view, it is found that grain-crushing plays minor role in the total dissipated 
energy and thus is neglected from the problem (see Appendix A).

The findings of this work will lead to a better understanding of the frictional response of seismic fault gouges 
during slip and as a consequence of earthquake nucleation phenomena. Furthermore, the key-parameters 
controlling the frictional response and more precise bounds in friction may contribute in controlling seismicity 
in the future (Papachristos & Stefanou, 2021; Stefanou, 2019; Stefanou & Tzortzopoulos, 2022; Tzortzopoulos 
et al., 2021).

First, the numerical model used for the micro-mechanical analysis of the fault gouge is explained in Section 2. 
Then an extensive review of the numerical setup is presented in Section 2.1. More explicitly, it is explained: 
the way the gouge material analog and boundary conditions are simulated to be representative of realistic fault 
gouges in seismogenic depth, the separation of the characteristic scales of the problem, and the scaling procedure 
to obtain an equivalent medium without loosing any information. The stochastic interpretation of the model and 
the Monte-Carlo error convergence are then explained in Section 3. Once the simulations are setup, the shear 
band thickness and the critical slip distance is examined in order to obtain quantitative and qualitative descriptors 
for (a) slip-weakening and (b) velocity weakening behavior in Section 4. Finally, an extended discussion is given 
in Section 5, highlighting the significance of the findings of this work related to the earthquake instability and 
to slip.

2. Discrete Elements Gouge Model
2.1. DEM for Gouge Modeling

The analysis in this work is performed in the framework of the DEM. The fault gouge is modeled by spherical 
discrete element particles. The particles, interact with each other according to the inter-particle constitutive laws 
of friction and their motion is governed by Newton's second law of motion. The numerical analyses are conducted 
using the open-source platform YADE-Open DEM (Kozicki & Donzé, 2008; Šmilauer et al., 2015).

To a certain extent, DEM restores the micro-mechanical geometrical complexity of the original problem. Further-
more, it gives access to local micro-mechanical information at the particles' level, which is practically impossible 
to get through real experiments. Finally, the constitutive behavior of the simulated material emerges naturally 
throughout the analysis, rather than obeying to imposed ad-hoc behaviors.

Considering a purely frictional (cohesionless) granular medium, the simulated particles interact with each other 
under normal and tangential forces acting on them. Each particle is assigned with a radius R and a material 

Figure 1. Different length scales inside a fault gouge layer of size L × L × H. H is the (finite) thickness of the fault core (and 
consequently the specimen's height). The material behavior of the fault gouge is studied at the level of the Representative 
Elementary Volume (REV) of lateral size L REV and height H. The REV is approximated by a stochastic ensemble of a series 
of specimens or Stochastic Elementary Volumes (SEVs) at the level of the microstructure (l ≪ L REV ≪ L, w ≪ L REV ≪ L).
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described by density ρ and Young's modulus E. We assume a Coulomb friction between particles, with a fric-
tion angle ϕ. The studied material, fault gouge, is usually characterized by (a) angular fragments, products of 
previous ultra-cataclastic flow inside the fault core and (b) a dense structure due to the high effective stresses. 
These two factors lead to a highly interlocked initial material state. In order to account for particle shape effect 
in the analysis several alternatives exist for DEM. A computationally efficient method, which is used hereafter, 
is including rolling and twisting resistance moments on the interactions between grains (see Estrada et al., 2011; 
Hosn et al., 2017; Iwashita & Oda, 1998; Liu et al., 2018; Plassiard et al., 2009), otherwise the exact grains shape 
should be taken into account (Kawamoto et al., 2016; Mollon et al., 2020), but this is a computationally very 
intensive task. For the approach used in this work, four extra micro-mechanical parameters need to be added at 
the contact level, the rolling stiffness, kr, the plastic limit for the rolling moment, ηr, the twisting stiffness, ktw, and 
the plastic limit for the twisting moment, ηtw.

Considering two particles A and B with radii RA and RB, respectively, in contact, the inter-particle forces are 
expressed as follows:

�⃗� = �� {��} �⃗

Δ�⃗� = −��Δ�⃗�, ���� ‖�⃗�‖ ≤ ‖�⃗�‖ tan(�)

Δ�⃗� = −��Δ�⃗�, ���� ‖�⃗�‖ ≤ ‖�⃗�‖��min (��,��)

Δ�⃗�� = −���Δ�⃗��, ���� ‖�⃗��‖ ≤ ‖�⃗�‖���min (��,��)

 (1)

where 𝐴𝐴 𝐹𝐹𝑛𝑛  , 𝐴𝐴 𝐹𝐹𝑠𝑠  , 𝐴𝐴 �⃗�𝑀𝑟𝑟  and 𝐴𝐴 �⃗�𝑀𝑡𝑡𝑡𝑡  are respectively the normal force, shear force, rolling moment and twisting moment, 
kn, ks, kr, ktw, the normal, shear, rolling, and twisting stiffnesses, δn the penetration length, 𝐴𝐴 𝐴𝐴𝐴  the contact normal 

and 𝐴𝐴 Δ�⃗�𝑈𝑠𝑠,Δ𝜃𝜃𝑟𝑟,Δ𝜃𝜃𝑡𝑡𝑡𝑡  are the relative shear displacement, rotation angle and spin angle, respectively. The depend-
ence on particle radii and stresses is a result of Hertzian contact theory of which the set of Equation 1 is a line-
arization. For more details, we refer to Johnson (1985) and Šmilauer et al. (2015). The normal force 𝐴𝐴 𝐹𝐹𝑛𝑛  is zero 
if particles are not in contact that is when δn ≤ 0. No inter-particle bonding is considered herein. As a result, no 
macroscopic, apparent cohesion is observed, as also shown in Figure B2 in Appendix B.

Macroscopic elastic properties remain independent of particle size by defining contact stiffnesses based on a 
particle stiffness modulus E and dimensionless material parameters (coefficients) of shear, αs, rolling αr, and 
twisting αtw (Hosn et al., 2017; Plassiard et al., 2009) as follows:

�� = 2��
����

�� +��

�� = ����

�� = ��������

��� = ���������

 (2)

The system is integrated in time explicitly, using a leapfrog, central finite difference approximation algorithm 
(Šmilauer et al., 2015).

2.2. Original Geophysical Problem

Earthquakes are usually expected to occur inside the limits of the so-called seismogenic zone. This zone refers 
to depths between 6 and 14 (km) (Saffer & Marone, 2003; Sibson, 2011). Due to tectonic movement, strain is 
accommodated inside fault cores and on the surrounding rock formations. The cores of mature faults are often 
composed of granular material that has been produced during abrasive wear of the interface asperities or due 
to plowing of harder minerals onto softer ones (Scholz, 2002). During pre- and co-seismic slip, shear strain is 
accommodated in thinner zones called PSZs, which correspond to shear bands formed in the granular gouge 
material (Mühlhaus & Vardoulakis, 1987; J. R. Rice, 1976; Rudnicki & Rice, 1975, among others).

Earthquake nucleation depends on many factors. A central one is fault friction. At the fault's core, a zone that 
undergoes a pronounced localized deformation upon far-field tectonic movement is formed. This thin zone 
opposes the fault interfaces movement through frictional resistance. It is composed of ultracataclastic materials 
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and has a complex structure (Ben-Zion & Sammis,  2003; Brodie et  al.,  2007) as a result of the numerous 
physico-chemical processes that occur during pre- and co-seismic slip (see Anthony & Marone, 2005; Rattez, 
Stefanou, & Sulem, 2018; Rattez, Stefanou, Sulem, Veveakis, & Poulet, 2018; Reches & Lockner, 2010; Scuderi 
et al., 2017; Tinti et al., 2016, among others).

The complex composition of this region, results in an apparent friction that does not depend only on the extent 
of the slip and the slip-rate, but also on phenomena (geometrical, mechanical or physico-chemical) at the level of 
the microstructure and of the interstitial fluids (see e.g., Brantut & Sulem, 2012; Sulem & Famin, 2009; Veveakis 
et al., 2010, 2013). However, here we consider only a dry granular medium in our discrete element analysis. As far 
as it concerns earthquake nucleation, knowing the constitutive behavior of the apparent friction is of paramount 
importance as it determines the conditions for which the dynamic instability can take place. A dynamic instability 
can take place when the material is slip-rate weakening or when the slip-weakening is higher than the negative 
slope of the effective elastic response of the surrounding to the fault rocks, which represents the elastic unloading 
of the system that cannot be counter balanced by fault friction (Dieterich & Carter, 1981; Gu et al., 1984; J. Rice 
& Ruina, 1983; Scholz, 2002; Stefanou, 2019). Supposing a piecewise linear friction law, where friction drops 
from peak value, μpeak, to the residual value, μres, in a characteristic distance, Dc, the stability condition becomes 
σc(μres − μpeak)/Dc > − G/L where σc is the (Terzaghi) effective normal stress applied to the fault, G is the effec-
tive shear elastic modulus of the surrounding to the fault rocks and L the fault's length (see related paragraph in 
Stefanou, 2019, among others). A similar instability condition holds for “velocity weakening” materials when the 
rate-and-state friction law is used (see Ruina, 1983; Scholz, 2002, among others).

2.3. Numerical Analog of Fault Gouge During Slip

There is a number of conditions that will be fulfilled in this work, to approach as close as possible to the original 
problem and to the conditions of a mature fault that has undergone fragmentation (cataclasis), wear, consolida-
tion, and other phenomena related to healing during the long time-scale before a new seismic slip event.

First of all, (a) at such depths, elevated effective stresses at the order of 75–225 (MPa) are expected, depending 
on the tectonic setting and fluid upflow. Furthermore, (b) the granular gouge inside mature fault cores, is a 
product of excessive wear from previous slip events which lead to cataclastic flow (Collins-Craft et al., 2020; 
Numelin et al., 2007; Scholz, 2002). Due to this fragmented nature of the granular core, the in situ stress level, 
the frequently reported low permeability (see Fairley et al., 2003; Morrow et al., 1984; Takahashi, 2003) and 
the large time intervals between the seismic slips, the initial state of the gouge layer (at depth) is expected to be 
dense (of low porosity) and (c) highly interlocked, but cohesion-less (the importance of the initial state of the 
granular material is further discussed in Appendix B). It is noted that the dilation is negligible as compared to the 
friction angle of the material, about two orders of magnitude lower (see Appendix B). The degree of interlock-
ing can depend, among others, on the porosity, the grain size distribution, and on the degree of angularity (see 
Collins-Craft et al., 2020, and references therein). The size of gouge particles usually follows a wide distribution 
(d), while the upper bound for the mean particle diameter is at the order of 100 (μm) (e) (Morgan, 1999; Saffer 
& Marone, 2003). The mean size of the particles is also expected to be reduced (f) during the seismic slip, due to 
grain crushing (Scholz, 2002). Finally, a large range of slip velocities has been observed (g) spanning from 10 −10 
to 1 (m.s −1) during seismic slip (Reches & Lockner, 2010).

When the above conditions are met, the emerging fault gouge can be characterized as healed and provide the 
necessary weakening mechanisms for new seismic slip events to occur. Notice, that this healed granular gouge 
can present pronounced weakening without being cohesive, as shown in Section 4 and Appendix B.

In order to mimic the conditions described above, a granular DEM packing, is subjected to consolidation (or 
else, compaction to the in situ stress conditions), and then to direct shear. The following procedure is used in the 
numerical simulations. A numerical specimen is first created by random deposition of spherical DEM particles. 
The specimen is periodic along its length and width, while on its top and bottom is bounded by rigid plates. The 
initial material is assigned with ϕ ≃ 0° and no rotational moments, in order to enhance compaction and densifica-
tion of the packing that will be sheared. It is then isotropically compacted to a dense state. Next, the upper plate 
is displaced to compact the specimen to consolidate it, up to the point that the desired effective stress level σc is 
achieved and is homogeneous inside the specimen. The final material properties are then assigned to the particles 
and their existing interactions. This way, the conditions (a)–(c) are met. Once the packing is in equilibrium, the 
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top and bottom plates are assigned with a constant shear velocity Vs/2 in opposite directions. A velocity controlled 
servomechanism, applied on the top plate, ensures the effective stress to be kept constant during shearing and 
equal to the desired value.

In this work, we analyze the frictional behavior of the granular gouge material. The 3D DEM model represents 
an elementary volume enclosed by (l × w × H) in Figure 1. The model considers a constant shearing velocity of 
the top and bottom blocks (which are modeled as rigid plates). The specimen used for the tests is in three dimen-
sions, composed of spherical particles and it has a size of 1.8 × 0.54 × 6.3 (mm), which corresponds, in average, 
to 20 × 6 × 70 mean particle diameters, d50, (length along shearing axis × width of out of plane axis × height or 
thickness of the layer). Note that although this is a uni-directional shearing test, important 3D effects may arise 
from particle re-organization, thus the 3D dimension should not be disregarded (Hazzard & Mair, 2003).

The periodicity of the packing ensures invariance along the slip direction and, given the packing's width, it 
allows local granular density fluctuations and jamming-unjamming transition along the width-axis of the spec-
imen (Dorostkar et  al.,  2017a; Ferdowsi et  al.,  2014; Marone et  al.,  2008). Thus, boundary effects on these 
axes are avoided. Furthermore, the non-periodic, plate boundaries at top-bottom of the specimen enable the 
formation of strain localization inside the specimen during shearing. It is worth emphasizing that there are 
enough particles along the vertical axis for a shear band to form (Rattez, Stefanou, & Sulem, 2018) and avoid 
boundary effects. Note that the later is not the case in most of the DEM studies on fault gouge shear tests (e.g., 
Dorostkar et al., 2017a, 2017b; Ferdowsi et al., 2014). Consequently, the apparent shear stress-shear strain rela-
tion is influ enced (in those works) by the limited height of the specimen. The thickness of the shear band influ-
ences directly the above-mentioned relation as mentioned in many works (Needleman, 1988; Rattez, Stefanou, 
& Sulem, 2018).

The reference scenario in this work will consider a mean particle diameter of d50 = 90 (μm), which falls inside 
the limits of condition (e). In order to account for the PSD of condition (d), three different PSDs will be tested: 
one monodisperse and two with uniform distributions setting d = d50(1 ± f), where f is a fuzziness index describ-
ing the width of the distribution. The f value will be set to f = 0.5 and f = 0.7, giving, for the case of d50 = 90 
(μm), dmin = 45 (μm), dmax = 135 (μm) with dmax/dmin = 3 and dmin = 27 (μm), dmax = 153 (μm) with dmax/dmin = 5 
respectively. Although this is a polydisperse distribution and very close to the (2D) fractal PSD used by Morgan 
and Boettcher  (1999), which is observed in several naturally and experimentally sheared gouges (see Biegel 
et al., 1989; Blenkinsop, 1991; Hooke & Iverson, 1995; Marone & Scholz, 1989; C. Sammis et al., 1987; C. G. 
Sammis et al., 1986), it still is far away from a complete, ultracataclastic gouge PSD, which ranges from nanome-
ters to hundreds of micro-meters. The reason for not using such fine distributions is the prohibiting large compu-
tational cost of the model (i.e., very low timestep controlled by the small particles and very large total number of 
particles, see also Section 5). However, our modeling assumption can provide useful insights for the role of PSD 
width as shown in Section 4.

Excessive grain crushing is expected under the studied conditions. However, it is shown in Appendix A that the 
energy release from this phenomenon is not expected to vary the results of this study. Thus, grain size reduction 
is taken into account implicitly, to satisfy condition (f). Three different mean particle sizes, d50 are tested, 60, 
90, 120 (μm) and their behavior is compared in terms of shear band width and frictional response. Note that the 
production of fines and the related lubrication phenomena (Reches & Lockner, 2010) are of course not taken into 
account using the above assumptions, but it lays beyond the scope of the current work.

Apparent rate effects and velocity weakening of the granular layer during slip are studied by using a range of 
different shearing velocities from 10 −3 to 1 (m/s). This range falls in the limits of condition (g) and sheds light to 
the importance of rate effects during weakening in purely mechanical simulations of gouge material.

The micro-mechanical parameters used for this work are presented in Table 1. Note that they were not calibrated 
to any gouge material as the scope of the paper is not a one-to-one comparison with experiments, but rather a 
qualitative analysis. They are chosen, however, to be such that their values have a physical meaning and, at the 
same time, the maximum apparent friction of the gouge material to comply with the maximum friction of the 
Byerlee's law (Byerlee, 1978) that is, μpeak = 0.85 (we term friction coefficient the stress-ratio τ/σc hereafter, see 
also Appendix B). The values of particles' friction, ϕ, stiffness modulus, E and density, ρ are selected to be 30°, 
63 (GPa) and 2,900 (kg/m 3) respectively, similar to the values used by Dorostkar et al. (2017a) for comparison 
to experiments. Finally, the values for rolling (and twisting) resistance are selected such that the particles would 
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correspond to angular shaped grains, more specifically between rectangular 
and pentagonal (in 2D) according to Estrada et al. (2011).

2.4. Scaling

For accelerating the simulations, a scaling procedure will be used, which will 
allow us to work on a mechanically equivalent system that requires minimum 
calculation time. In order for this system to be adequately scaled, the related 
time-scales and length scales of the original and the scaled systems have to 
be appropriately selected, as explained below, to ensure that for the selected 
parameters the system is described by the same type of shear-physics as the 
original system.

We will start the scaling by identifying characteristic times and lengths 
involved in the specific system. The granular system is mainly described by 
its inertia and stiffness. In the following, the inertia and stiffness limits of 
the whole system are explained, leading to the dimensionless quantities that 
describe it.

However, the parameter selection should also favor the stability of the algorithm. The stability of the numerical 
scheme is thus derived for the general case and the related critical time-steps are defined. The final parameters 
selection will be based on both the granular physics description and the numerical stability of the algorithm.

2.4.1. Quasi-Staticity of the Problem

The behavior of granular materials can be classified in three main different regimes: quasi-static (solid-like), dense 
flows (fluid-like), and collisional (gas-like; Aharonov & Sparks, 2002; MiDi, 2004; Radjaï & Dubois, 2011). 
These regimes are defined by two dimensionless numbers. The first one, the inertial number, I, is the ratio of 
timescales imposed by the stress, shear rate, and momentum and is given by (Koval et al., 2009; MiDi, 2004; 
Radjaï & Dubois, 2011; Rognon et al., 2006, 2008):

𝐼𝐼 = �̇�𝛾𝛾𝛾50

√

𝜌𝜌

𝜎𝜎𝑐𝑐

 (3)

where 𝐴𝐴 𝐴𝐴𝐴  is the shearing rate.

According to MiDi (2004), Radjaï and Dubois (2011), and Rognon et al. (2008) on high inertial numbers, I > 10 −1, 
the behavior of the material is similar to that of a non-well structured network with spontaneous collisions between 
particles and very short force-chains between particles that disappear almost instantly. For intermediate inertia 
numbers, 10 −3 < I < 10 −1, the material behaves as a homogeneous shear flow, whose viscosity is controlled by 
the inertia number and can be translated as a state in the constitutive law for the material. The network is dense 
and the force chains are longer than the collisional regime. Finally, for low inertial numbers, when theoretically 
I → 0 or, practically, I ≪ 10 −3, the material behaves quasi-statically. In the later case, any related rate-effects on 
the global behavior of the granular material are negligible and the grains network is dense, well-coordinated with 
the force-chains well defined across many particles. Moreover, the material behaves as a solid (which might show 
dependency on the dimensional stiffness of the granular packing, κ, see next paragraph) and eventually reaches 
a state in which it can undergo infinite plastic isochoric deformation under constant load, which corresponds 
to the well-known “critical-state” as defined in soil mechanics (Wood, 1990). The critical state of a granular 
material strongly depends on its friction coefficient, rolling resistance (Radjaï & Dubois, 2011) and fabric (Li 
& Dafalias, 2012). Note that this classification scheme is based on monodisperse distributions. However, at the 
range of polydispersity studied in this work, this classification still holds (Shire et al., 2021). The evolution of I 
with depth is presented in Figure 2 for a constant density of ρ = 2,900 (kg/m 3). In the same figure, the shearing 
regime of a gouge layer with a thickness of H ≃ 70 particles, as considered in this study, is compared to different 
cases of normalized layer thicknesses and shearing velocities. The represented conditions correspond  to a high 
seismic shear velocity of vs = 2.0 (m/s) and in situ effective stress based on σc = ρgz − ρwgz, with ρw the density 
of water. It is shown that lower velocities and larger layer thicknesses favor quasistatic response of the medium.

Table 1 
Micro-Mechanical Parameters of Gouge Material

Particles property (unit) Value

E (GPa) 63

ϕ (°) 30

ρ (kg/m 3) 2,900

αs (-) 0.25

αr (-) 0.1

ηr (-) 0.1

αtw (-) 0.1

ηtw (-) 0.1
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Given the physical restrictions on pre- and co-seismic velocity, which is 
several orders of magnitude lower than 2.0 (m/s) and on the ratio of gouge 
layer over particle size, which is similar or higher than H ≃ 70d50 for real 
fault cores (Chester & Chester,  1998), this trend can be considered as an 
upper limit inertia number evolution versus depth for the conditions studied 
hereafter.

The second dimensional number characterizing granular material flow 
regime is the dimensionless stiffness number, 𝐴𝐴 𝐴𝐴 =

𝑘𝑘𝑛𝑛

𝜎𝜎𝑐𝑐𝑑𝑑50

 (for linear contacts in 

3D). κ describes the effect of contact strains of order 𝐴𝐴 
(

𝜅𝜅
−1
)

 to strains from 
network re-organization on the global behavior of the packing. For κ ≫ 1, the 
rigid grain limit is met and the DEM granular material's mechanical response 
becomes independent of κ (Hosn et al., 2017; Radjaï & Dubois, 2011). As 
a result, any scaling of stiffness that returns a κ above the rigid grain limit, 
should not affect the mechanical response of the system.

2.4.2. Critical Timesteps

The generalized dynamics for the granular assembly are given by:

𝐌𝐌�̈�𝐱(𝑡𝑡) + 𝐂𝐂�̇�𝐱(𝑡𝑡) +𝐊𝐊𝐱𝐱(𝑡𝑡) = 𝐅𝐅(𝑡𝑡) (4)

𝐉𝐉�̈�𝜽(𝑡𝑡) + 𝐂𝐂�̇�𝜽(𝑡𝑡) +𝐊𝐊𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝜽𝜽(𝑡𝑡) = 𝐓𝐓(𝑡𝑡) (5)

where, x is the displacement of particles at time t and their first and second time derivatives 𝐴𝐴 �̇�𝒙, �̈�𝒙 are their transla-
tional velocity and acceleration, respectively, at time t (s). The matrices M, C, and K are the global mass matrix, 
a drag force matrix by the viscosity/damping exerted on particles and the generalized stiffness matrix describ-
ing the stiffness of contacts of each particle. Finally, F is the resultant force exerted on the particles at time t. 
Similarly, θ is the rotation vector of the particles at time t and, 𝐴𝐴 �̇�𝜽  , and 𝐴𝐴 �̈�𝜽  the rotational velocity and acceleration, 
respectively. The matrices J, C, and Kr.tw are the moment of inertia, any viscous dissipation on rotation and the 
rotational/twisting stiffness. T is the resultant external torque applied to the particles.

The discretization of the above set of equation in the finite difference scheme requires a maximum time-step 
for numerical stability of the algorithm. This critical timestep, in absence of damping is (Šmilauer et al., 2021):

Δ𝑡𝑡𝑘𝑘𝑐𝑐 =

√

2𝑚𝑚

𝑘𝑘𝑛𝑛

 (6)

Δ𝑡𝑡𝑟𝑟𝑐𝑐 =

√

2j

𝑘𝑘𝑟𝑟

 (7)

where 𝐴𝐴 Δ𝑡𝑡𝑘𝑘𝑐𝑐  and 𝐴𝐴 Δ𝑡𝑡𝑟𝑟𝑐𝑐  are the critical timestep emerging from translational and rotational degrees of freedom, 
respectively. m, kn = ER, j and kr are the particles' mass, stiffness, moment of inertia, and rotational stiffness, 
respectively, which are selected in such a way to minimize the critical timesteps. The resulting critical timesteps 
are in agreement with the findings of Hosn et al. (2017).

Furthermore, in the extreme case when there is no active contact on a particle, the above timesteps are impossi-
ble to be calculated (kn = 0). In this case, the timestep is calculated based on the sonic wave velocity (Šmilauer 
et al., 2015) and it is equal to:

Δ𝑡𝑡
𝑝𝑝

𝑐𝑐 = 𝑅𝑅

√

𝜌𝜌

𝐸𝐸
 (8)

The critical timestep that will be governing the numerical problem should be 𝐴𝐴 min
{

Δ𝑡𝑡𝑘𝑘𝑐𝑐 ,Δ𝑡𝑡
𝑟𝑟

𝑐𝑐 ,Δ𝑡𝑡
𝑝𝑝

𝑐𝑐

}

 .

2.5. Equivalent System

In this section, it is explained how a new system, which is equivalent to the original one in terms of shear 
mode (defined by its inertia and stiffness), can be simulated through scaling in order to achieve a computa-
tionally affordable model. In the following, a scaling analysis is presented in which, starting from the reference 

Figure 2. Inertia number evolution with depth for different shearing velocities 
Vs and normalized layer thickness, H/d50. The blue shaded area corresponds 
to granular layer in dense shear flow regime and the dark shaded area to 
non-seismogenic zones.
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system, corresponding here to the gouge material under seismic slip in the 
seismogenic zone's conditions, we find an equivalent system, which keeps 
the mechanical behavior of the reference system unaffected, but reduces the 
computational cost to minimum. To do so, a density scaling procedure is 
taken into account.

The values on Table  2 describe the reference system. From these values, 
using the definition of the inertia number in Equation  3, the system's 
response to shear loading falls in the quasi-static regime I*  =  1.3  ×  10 −4 
< Imax = 10 −3. Consequently, according to Section 2.4.1, the system responds 
quasi-statically.

Due to computational restrictions related to the critical time-step of the 
numerical integration scheme, which, at the studied conditions could reach 

below 10 −9 (s) (according to Table 2), simulating the exact conditions of the fault gouge in the seismogenic zone 
can be prohibiting. Combining equations Equation 3 for the inertia number, I, and Equations 6–8 for the critical 
timesteps of the system, the critical timesteps are expressed as a function of the inertia number as follows:

Δ𝑡𝑡𝑘𝑘𝑐𝑐 =

√

2𝑚𝑚

𝐾𝐾
=

(

1

�̇�𝛾

√

2𝜎𝜎𝑐𝑐

3𝐸𝐸

)

𝐼𝐼 (9)

Δ𝑡𝑡
𝑝𝑝

𝑐𝑐 =
𝑑𝑑50

2

√

𝜌𝜌

𝐸𝐸
=

(

1

2�̇�𝛾

√

𝜎𝜎𝑐𝑐

𝐸𝐸

)

𝐼𝐼 (10)

In order to obtain the maximum timestep for which the system will remain in the quasi-static regime (I ≤ Imax), 
we solve the relation for the critical timestep, using the maximum allowed inertial number Imax  =  10 −3. We 
obtain: 𝐴𝐴 Δ𝑡𝑡𝑘𝑘𝑐𝑐 = 0.5 × 10−7 (𝑠𝑠) for the DEM system, while the critical time-step for the real system corresponds to 

𝐴𝐴 Δ𝑡𝑡𝑘𝑘∗𝑐𝑐 = 6.4 × 10−9 (𝑠𝑠) . Using this scaling in time, our simulations can be accelerated by one order of magnitude. 
This is of particular importance given the stochastic approach followed herein and presented in Section 3.

Naming the ratio between the DEM time-step and the real one ζ, the scaled density of the particles of the DEM 
system in order to be equivalent to the real one is (assuming E = E* and 𝐴𝐴 𝐴𝐴50 = 𝐴𝐴

∗
50

 ):

𝜁𝜁 =
Δ𝑡𝑡𝑘𝑘𝑐𝑐

Δ𝑡𝑡𝑘𝑘∗𝑐𝑐
=

𝑑𝑑50

√

𝜌𝜌

𝐸𝐸

𝑑𝑑
∗
50

√

𝜌𝜌∗

𝐸𝐸∗

=

√

𝜌𝜌

𝜌𝜌∗
⇒𝜌𝜌 = 𝜁𝜁

2
𝜌𝜌
∗ (11)

In this case ζ ≃ 8, thus ρ = 64ρ* = 64 × 2,900 (kg.m −3). In other words, we increase the density of the particles 
to speed-up the calculation time and keep the mechanical behavior of the system unaffected. Notice that this is 
the maximum speed-up allowed in this case, as higher ρ would violate the quasi-static regime of granular flow 
and would alter the physics of the problem.

3. Stochastic Interpretation
Earthquakes depend on the frictional properties of the fault system. The term frictional properties, refers to the 
apparent mechanical behavior of a Representative Elementary Volume (REV) of the granular gouge material, 
which emerges from the collective behavior of individual grains inside the REV during shearing. Over the whole 
surface of the fault, which has an area ∼ L × L and thickness H, the properties of the gouge and packing of 
the granular material are heterogeneous and random. This randomness is considered in our analysis using the 
Monte-Carlo method. More specifically, in order to account for this randomness, we consider multiple tests on a 
smaller, periodic SEV, of characteristic size l, which after averaging will lead to the REV, of characteristic size, 
L REV, that is seen here as an intermediate scale (meso-scale), see Figure 1. According to Ostoja-Starzewski (2006), 
the SEV has to contain enough particles in order to be representative and, consequently, its characteristic size, l, 
has to be larger than the characteristic size of the grains, that is, l > d50. Here, l ≃ 20 d50 in length, 6 d50 in width 
and H ≃ 70d50 in height. Adopting scale separation L ≫ L REV > l, w > d50 (Ostoja-Starzewski, 2006).

In systems with few particles, the overall frictional response of the granular layer is expected to arise from repetitive 
cycles of stick and slip behavior. These cycles will emerge from the periodic grain force chains buildup-collapse. 

Table 2 
Mechanical Properties of the Reference Fault System

Property (unit) Value

E* (GPa) 63

ρ* (kg.m −3) 2,900

𝐴𝐴 𝐴𝐴
∗
50

 (μm) 90

𝐴𝐴 𝐴𝐴
∗
𝑠𝑠  (m.s −1) 2.0

𝐴𝐴 𝐴𝐴
∗
𝑐𝑐  (MPa) 160
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We will refer to this effect as local stick-slip motion hereafter. In systems 
with higher geometrical complexity, for example, more particles across the 
height, width, and length of the gouge layer, the local stick-slip may play a 
less prominent role due to the large extent of states of internal re-organization 
of the granular layer. Taking into account the size of the fault zone interface 
compared to the size of the fault gouge particles, many geometrical varia-
tions can emerge in the spatial arrangement of gouge particles. Furthermore, 
if the conditions allow for strain localization to take place, a thin zone in 
which most of the deformation takes place may appear, which represents a 
self organization of the system toward a critical state (Bak et al., 1988).

Moreover, in order for the local stick and slip motion to be persistent at 
the large scale, the particles should be equally distributed in space over the 
complete length and width of the fault. If this is not the case, the local slip at 
some small part of the fault can be counter-balanced by a synchronous stick 
at a small part near by it.

For the above reasons, we will present here an analysis based on the stochas-
tic interpretation of several tests of SEVs, which, after averaging, represent 

the frictional behavior at the scale of the REV. The minimum number of SEV tests, N, that, after averaging, 
provide an adequate, representative description of the frictional response at the level of the REV is determined 
using the Monte-Carlo error estimation (see Appendix C for details about bounding the error in the prediction of 
the mean quantities of interest).

The error convergence for the different quantities of interest (critical slip distance Dc, the residual friction angle, 
μres, the peak friction angle, μpeak, and shear band thickness λ) is shown in Figure 3. The values are oscillating 
around the theoretical error prediction and then fairly converge toward it. It is thus justified that, in our case, a 
total of 50 averaged tests is adequate to describe the response and the related apparent frictional behavior of the 
fault gouge.

The response of the representative sample will now be as appears in Figure 4 (right). In this figure, the fric-
tion drop related to the global slip-weakening behavior of the material is denoted as Δμ g, while friction drops 
related to local stick-and-slip dynamics are denoted by Δμ l. Comparing it to the behavior of a single test 
Figure 4 (left), it becomes evident that the local stick-slip events tend to vanish with increasing number of tests 
and thus its role is negligible for the overall, apparent frictional behavior of the granulated fault gouge. This 
stochastic approach renders this work fundamentally different from previous analysis with DEM, where the 
authors are focusing on single analysis and they did not take into account the stochastic nature of the problem 
at hand.

Figure 3. Monte-Carlo error-convergence for 50 tests with d50 = 90 (μm), 
f = 0.0 and Vs = 2 (m.s −1).

Figure 4. (left) The plastic (post-peak) branch of the frictional response of a single test and (right) the averaged responses of 2 and 50 tests on specimens with 
d50 = 90 μm and f = 0. The effect of averaging on local and overall, apparent quantities (superscript  l and  g respectively) is demonstrated.
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3.1. Spectrum and Filtering

Using discrete Fourier transform the following properties emerge for the system. Single tests show, a large density 
of events correlated to frequencies related to 1.5d50. These events correspond to local stick and slips. However, 
these events are completely missing from the averaged response. In Figure 5, we present the mean of the response 
spectra of single tests together with the response spectrum of the averaged. This corroborates the negligible role 
of the local stick-slips in the global apparent friction of the granulated fault gouge.

What is even more interesting is that, the total dissipated energy (calculated as Edis = ∫Fsδsdδs+ ∫Fnδndδn, δn being 
the dilation and δs the slip) in the averaged ensemble and single tests, is practically the same (with a relative 
average absolute error of 4%), for the ensemble and single tests. This can also be explained figuratively. One can 
think of the ensemble as in Figure 1 with the SEVs placed along the width. A local slip event might take place in 
one SEV (dissipating energy) while simultaneously a stick phase might be taking place in another SEV (building 
up energy).

The aforementioned statistical analysis enables us to determine the global apparent frictional properties of the 
gouge with less analyses. Specifically, since the hi-frequency signal is irrelevant for the apparent global frictional 
response, a Butterworth low-pass filter is applied on the responses to remove the high-frequency noise related 

to phenomena of the level of the grain size. In Figure  6, it is shown that 
if a cutoff frequency of 1/1.5 d50 is used on 20 averaged tests, it confirms 
the resulting response is almost identical to the 50 tests case. Thus, for all 
tested scenarios in the following sections, and in order to reduce the calcula-
tion cost, 20 tests are ran, averaged and filtered as above  to obtain the global 
response.

4. Results
Based on the assumptions justified above, a series of tests were done to study 
the influence of particle characteristics, such as the mean particle diameter, 
d50, and the PSD width, f, on the apparent frictional behavior of the gouge 
analog and the slip-weakening behavior that will finally control the fault's 
stability. Furthermore, the frictional response of different shear-rates was 
studied in order to study the existence of velocity-weakening apparent fric-
tional behavior of the gouge, as it controls the stability of the granular inter-
face (see Section 2.2). The tests description is summarized in Table 3. All 
tests were performed under constant normal stress, σc = 160 (MPa).

Figure 5. (left) The average (power) spectra of individual tests shows a clear peak at the frequency related to 1.5d50. Displacements for related to 1.5d50 scales are thus 
expected to be important for single tests. (right) Response spectrum of the averaged tests shows minimal impact of high frequencies. Thus, the behavior seems not to 
depend on grain-scale related displacements. In all cases, the sampling frequency was fs = 1.11 MHz.

Figure 6. Butterworth low pass filter applied on data obtained by 20 tests to 
remove the high-frequency noise. The cutoff frequency of the filter is set at 1/2 
d50. The response of 20 tests, filtered, is approaching the one of 50 tests.
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4.1. Apparent Frictional Response - Macroscopic Slip Weakening - 
Critical Slip Distance Dc

The emerging peak and residual friction coefficient of the granular layer 
during shearing will define the friction drop Δμ. According to Section 2.2, 
any parameter that affects the friction drop could be directly related to the 
stability of the system. It is worth mentioning that the “peak” (also called 
“maximum”) and the “residual” friction are often referred to in the litera-
ture as “static” and “kinetic” friction, respectively. The terms “dynamic” 
or “steady-state” are used to describe the kinetic friction. The peak friction 
is associated with higher frictional strength at the onset of sliding (stick/
static phase). This friction must be exceeded for slip to commence, during 
which slip is resisted by a dynamic friction, which is usually lower (see also 

Byerlee, 1978; Dieterich, 1979; Kanamori & Brodsky, 2004; Rabinowicz, 1951, 1958; Scholz, 2002). The tran-
sition from the static to the dynamic friction is performed in a characteristic slip distance Dc as we also observed 
in our simulations.

The apparent frictional response of the averaged tests is compared here for tests on samples containing different 
PSD widths f and different mean particle sizes d50. The frictional response of the related tests is presented in 
Figure 7. The shear-tests for distributions defined by f = 0.0, f = 0.5, and f = 0.7 (tests 90f#0.0, 90f#0.5, 90f#0.7 of 
Table 3) are shown for mean particle diameter d50 = 90 (μm). The peak and residual friction coefficients and the 
resulting friction-drop magnitude for all cases is summarized in Figures 8a, 8c, and 8e. The results demonstrate 
that there is minimum effect of distribution width on the apparent friction of the granular layer. Several authors 
considered the width of the PSD as a stabilizing parameter (see Anthony & Marone, 2005; Mair et al., 2002; 
Morgan & Boettcher, 1999, among others). Although they are right about the fact that the parameter f controls 
the local stick-slip magnitude, in the stochastic case studied here it is found to control how fast the local stick and 
slips (or, the high-frequency noise) are vanishing with increasing width of the fault gouge. Thus, the PSD width 
property is not directly related to the apparent frictional stability of the fault system, according to the analysis 
performed here.

Similarly, the effect of particle size of the gouge granular analog on the apparent friction is presented on the 
same plots in Figures 7, 8b, 8d, and 8f for tests on mean particle diameters of d50 = 60, 90, and 120 (μm) (tests 
90#f0.0, 60f#0.0, 120f#0.0 in Table 3). As for the case of PSD width, the mean particle size is found to play no 
important role on the emerging macroscopic friction coefficient evolution. This is not a surprising result (see 
Cantor et al., 2018; Voivret et al., 2009). However, our simulations show evidence that the PSD does not have a 
significant impact on the peak friction coefficient as well. Nevertheless, according to Figures 8e and 8f, the slip 
distance, Dc, for the transition from the peak to the residual apparent friction coefficient, scales with the mean 
particle size.

Table 3 
Tests Performed

Name Description Number of tests

90f#0.0 d50 = 90 (μm), f = 0.0, H = 6 (mm) 20

90f#0.5 d50 = 90 (μm), f = 0.5, H = 6 (mm) 20

90f#0.7 d50 = 90 (μm), f = 0.7, H = 6 (mm) 20

60f#0 d50 = 60 (μm), f = 0.0, H = 5 (mm) 20

120f#0 d50 = 120 (μm), f = 0.0, H = 8 (mm) 20

Vs#1 90f#0, Vs × 10 −3 20

Figure 7. Frictional response of averaged tests for different particle size distributions (f = 0, 0.5, 0.7), left, and particle size (d50 = 60, 90, 120 (μm)), right.
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One of the main characteristics that describes the apparent frictional behavior of a fault is the above mentioned 
critical slip distance Dc (Dieterich & Carter, 1981; Scholz, 2002). Dc is the displacement that has to be carried 
over for the transition from peak (static) friction to residual (dynamic) friction. Dc plays a very important role on 
the dynamic stability of the system at a given depth, along with the friction drop described previously, as they 
both determine the amount of mechanical softening with slip.

In the following, the critical slip distance, Dc, is estimated from the interpolation of the averaged friction 
response at softening with the exponential decay function (Platt et al., 2014; Rattez, Stefanou, Sulem, Veveakis, 
et al., 2018): 

Figure 8. (top plate: a, b) Emerging peak and residual friction angle, (middle plate: c, d) friction drop, (lower plate: e, f) critical slip distance, Dc, for different particle 
size distributions, f, and mean particle diameters, d50, respectively.
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𝜇𝜇 = 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟

(

1 +
Δ𝜇𝜇

𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟

𝑟𝑟
−𝛿𝛿∕𝐷𝐷𝑐𝑐

)

 (12)

where μres is the residual friction coefficient, Δμ = μpeak − μres the variation between the maximum and residual 
friction coefficient, Dc the characteristic slip distance and δ the total slip distance.

The interpolation with the exponential decay law of Equation 12, is plotted against the related averaged frictional 
response in Figure 7. It is shown that the mean critical slip distance in tests of different PSDs, varies for the differ-
ent distributions, but does not scale with the width of the PSD, f. Consequently, the width of the distribution does 
not seem to play a stabilization role on dry gouge shearing, as previously postulated by other studies focusing on 
local stick-slip events (e.g., Anthony & Marone, 2005; Mair et al., 2002; Morgan & Boettcher, 1999).

Regarding the effect of mean particle size, d50, on the critical slip distance, Figures 7 and 8 (lower plate) show that 
Dc does scale with the particle size d50. Consequently, the apparent slip-weakening behavior of the fault gouge 
can be described as a function of the mean grain size. The relation of critical slip distance, Dc with d50 (or another 
measure of the PSD) is important aspect in modeling as it gives a justifiable and measurable characteristic length, 
that of the mean particle diameter, d50, to the problem for detailed macroscopic modeling (e.g., Collins-Craft 
et al., 2020; Rattez, Stefanou, Sulem, Veveakis, et al., 2018).

4.2. Shear Band Thickness

The shear band thickness was measured by interpolating the total shear strain accumulated in the sample. The 
interpolation function used is a trigonometric function previously used by Rattez, Stefanou, and Sulem (2018), 
and Rattez, Stefanou, Sulem, Veveakis, et al. (2018).

The width of the localized deformation zone will govern the response of the softening branch of frictional 
response. Thus, one of the most important pieces of information we can get from the present DEM analyses is 
the physically emerging width of the shear band of the gouge material and its evolution during shearing. Passing 
from displacements to deformation for the sheared layer requires an equivalent continuum representation. Here, 
the specimen is first discretized in equal-width horizontal zones of height Δh. Then, the average strain 𝐴𝐴

⟨

γ𝑖𝑖𝑠𝑠
⟩

 and 
average strain rate 𝐴𝐴

⟨
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 are calculated for each zone, i, as follows: 
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where 𝐴𝐴
⟨

𝑣𝑣
𝑖𝑖

𝑥𝑥

⟩

 is the average velocity component in the direction of shear for the zone i.

The shear band thickness (which can be related to the width of the principal slip zone, or PSZ, a zone of intense 
deformation which is often observed in fault cores outcrops) is then calculated based on the cumulative strain 

𝐴𝐴
⟨

𝛾𝛾
𝑖𝑖

𝑥𝑥

⟩

 , using the following trigonometric interpolation function:
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with B being twice the maximum strain, Z being the coordinate of the center of the shear band, λ the wavelength 
of the cosine function and 𝐴𝐴 𝐴𝐴[
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2
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2

] the rectangular function defined by: 
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0 otherwise

 (15)

Z and λ are unknowns to be determined from the velocity profiles by the DEM analysis. The wavelength of the 
cosine function is interpreted as the shear band width.

Applying the above interpolation at the final stage of shear loading allows for estimation of the shear band thick-
ness. In the top plate of Figure 9, the shear band thickness of tests corresponding to different PSDs and shearing 
velocities are shown along with its variance (denoted with error-bars). The lower plate of Figure 9 shows the 
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non-smooth velocity gradient across the specimen. The shear band is usually forming close to the center of the 
specimen. In some cases, however, it might form closer to the boundaries. In these cases, the shear band thick-
ness is not taken into account in the statistical analysis, to exclude any parasitic effects related to the boundary 
conditions. The shear band width was measured at the steady state, after a total slip of ∼ 6–10 (mm) or 4 × l after, 
that is, shearing displacement significantly larger than characteristic slip distance, Dc. The shear band width, 
normalized by the mean particle size, d50, remains almost constant among tests. This justifies why Dc scales with 
d50. It also justifies recent studies with continuum approaches that take into account the size of the microstructure 
(e.g., Mühlhaus & Vardoulakis, 1987; Rattez, Stefanou, Sulem, Veveakis, et al., 2018). These studies show also 
the connection of the shear band thickness with the size of microstructure.

4.3. Rate Dependency

Finally in terms of shearing velocity, no influence of the slip-rate on Dc was observed for tests with the same 
inertia number conditions. Shearing velocity tests for Vs = 2 (m/s) and 2 × 10 −3 (m/s), on the same packings, 
exhibit no difference on the global behavior caused by shear velocity (see averaged and interpolated results in 
Figure 10). Peak friction and residual friction values, μpeak, μres, are almost identical for all the tests and the same 

Figure 9. (top plate) Mean value and variance of the final band width compared between different particle size distributions of width f and for mean particle diameters, 
d50. (lower plate) Velocity profile across the height of the specimen and the resulting localization of deformation.
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applies to the critical slip distance, Dc, independently of the applied slip-rate 
(see Figure 11 lower plate).

The results are in accordance with previous findings in the mechan-
ics of granular materials, which suggest that if the sample remains in the 
quasi-static regime the global response is unaffected by the loading rate (here 
the slip-rate) and the fluctuations in apparent friction are of higher orders, 
caused by local inter-granular inertial creep (Radjaï & Dubois,  2011). As 
mentioned in Section 2.4.1 for a fault gouge at several kilometers depth, the 
inertial number is of the order of I ≃ 10 −4 or less during co-seismic slip, 
which always falls into the quasi-static regime. Consequently, there is no 
slip-rate weakening observed for the dry granular system under the studied 
conditions.

In order to investigate the appearance of rate-and-state dependency on the 
response, a velocity-stepping simulation is carried out following similar 
protocols with Dieterich and Carter  (1981), Ruina  (1983), and Verberne 
et al. (2020). Experimental results have shown the existence of such viscous 

effects during shear-rate changes (Beeler et al., 1994; Biegel et al., 1989; Chambon et al., 2002; Dieterich, 1979). 
In the following test, the initial shearing velocity is set to 𝐴𝐴 𝐴𝐴

0
𝑠𝑠 = 2  (mm/s) and after ∼7 (mm) of shear displace-

ment, that is, in the so-called steady-state regime, the shearing velocity is lowered to Vs = 0.2 (mm/s). This 
protocol allows the identification of “velocity-weakening” effects, in the frame of the rate-and-state friction law 
terminology. More specifically, in this framework, “velocity weakening” refers to the difference of the steady 

Figure 10. Frictional response of averaged tests for shearing velocities Vs = 2 
(m/s) and Vs = 2 (mm/s).

Figure 11. (top left) Emerging static and dynamic friction angle, (top right) friction drop, (lower plate) critical slip distance Dc, for different shearing velocities Vs.
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state friction coefficient before and after a shear velocity change is applied 
(Dieterich & Kilgore, 1994; Marone, 1998; J. R. Rice, 1993; Ruina, 1983).

In Figure  12, the steady state friction is compared between the case Vs#1 
sheared at 2.0 (mm/s) and after a change in shear velocity, Vs at the end of 
the test, at a lower velocity, V2 = 0.2 (mm/s). The obtained response shows 
a difference of Δμss ≈ 0.00013. The difference in the steady state friction 
coefficient, is about two orders of magnitude lower than the measured fric-
tion drop promoted by the slip-weakening behavior at the onset of sliding. 
However, this drop of the steady state friction coefficient, is at the limits 
of the variance of the measured frictional response (for number of samples 
N = 20). Therefore, it should be considered with care due to the noise related 
to the repeated local stick-and-slip events that were observed in our simula-
tions even after averaging over 20 samples (Monte Carlo simulations statisti-
cal ensemble, see Section 3).

5. Discussion
The material studied here mimics a material, which has undergone a severe 
cataclasis and large confinement for a long time. That is, after the long 

consolidation phase, the gouge particles are considered to be fragmented and angular with high resistance to roll-
ing (this has been simulated numerically by spherical particles, but with relatively high rolling resistance values, 
see Estrada et al., 2011). This material is stiff, well coordinated, and highly interlocked before the slip takes 
place. As opposed to previous studies on glass-beads or DEM (Abe et al., 2002; Abe & Mair, 2009; Aharonov 
& Sparks,  1999,  2002; Anthony & Marone,  2005; Collettini et  al.,  2009; Guo & Morgan,  2006; Hazzard & 
Mair,  2003; Mair & Abe,  2008; Mair et  al.,  2002; Mair & Marone,  1999; Marone et  al.,  1990; Marone & 
Scholz, 1989; Morgan, 1999; Morgan & Boettcher, 1999), our granular material is under high confinement, and 
shows a high degree of interlocking. High interlocking and confinement, in this case result to a more intense fric-
tion drop in the material behavior as more effort is needed in order to overcome the maximum friction.

The conditions studied here are in analogy to the conditions taking place inside the seismogenic zone 
(Sibson, 2011). That is, large confinement, hard minerals, small mean particle size, and shear velocities spanning 
from slow to very rapid (for co-seismic slip). Under these conditions, it is shown that the fault gouge shears in the 
quasi-static regime, fails in brittle manner and eventually reaches a critical state regime. According to granular 
material mechanics, the behavior for quasi-static flows and granular materials in critical state does not depend on 
shearing velocity up to small order creep based fluctuations of Δμ ≃ 10 −3 (e.g., Radjaï & Dubois, 2011). This is 
actually the case for the material's behavior. For shearing velocities between 10 −3 and 1 (m/s) the global behavior 
is identical. The difference in steady state friction coefficient, although compatible with experimental findings 
(see Chambon et al., 2002), is about two orders of magnitude lower than the measured friction drop promoted by 
the slip-weakening behavior of the initial material. Contrary to the slip-weakening friction drop, such rate-effects 
are at the limits of variance of the frictional response. Indeed, several studies on rate effects needed an implemen-
tation of dynamic friction or rate-and-state friction laws at the contact scale (Morgan, 2004; C. Wang et al., 2019) 
in order to obtain an evident velocity weakening behavior. Even if the lower-order drops in friction are able to 
cause instabilities under such conditions, these small friction drops will be probably compensated by the geomet-
rical disorder (variation) along the fault zone (Kanamori & Brodsky, 2004). What will control the system's stabil-
ity finally is the massive drop in macroscopic, apparent friction.

One step further, probably due to the lack of an intense global friction drop in the non-interlocked assemblies, the 
aforementioned studies have been mostly focused on local stick and slip dynamics, that is, the periodical forma-
tion and breakage of grain force-chains. Although this mechanism takes place at the critical state, our analysis 
shows that these dynamics vanish with increasing number of tests (Monte-Carlo samplings). The reason is the 
disorder in the medium. For a persistent local stick-slip motion, for averaged tests, it would be necessary that the 
same grain-force-chain is placed (and broken) at the same position, at the same displacement. This might be true 
for small specimens, with few spheres which can get jammed or crystallized, but it becomes less probable for 
larger specimens, with larger geometric disorder. In a real fault, it would be even less likely to have exactly the 
same spatial arrangement along hundreds of meters, with the same composition and same properties. We thus 

Figure 12. Comparison of residual friction coefficient during 
velocity-stepping test. The specimen is sheared at a velocity Vs = 2.0 (mm/s) 
initially, then suddenly to a slower velocity Vs = 0.2 (mm/s).
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propose that the apparent friction is controlled by the global material behavior of gouges and not by the local 
chain breakages between particles.

The analysis has also shown that the material's critical slip distance, Dc, for the transition from peak to residual 
friction is comparable to the mean particle diameter of the sample. Scaling for maximum or minimum particle 
diameters did not show any sign of convergence to the obtained results. This is important as the polydispersity 
of gouge does not play such an important role for stability as much as the mean particle diameter. In the absence 
of very fine particles that can cause lubrication (Reches & Lockner, 2010), even for wide distributions as far as 
the fine content is not dominant (see Taha et al., 2019), d50 and its evolution seem to be a good descriptor for the 
gouge stability as used in Rattez, Stefanou, Sulem, Veveakis, et al. (2018), for example, without the need for an 
explicit description of the grain size distribution.

In all tests presented in this work, an important slip-weakening response is taking place (see e.g., Figure 7). The 
drop in friction is in all cases Δμ ≃ 0.3 (see also Kanamori & Brodsky, 2004). In terms of stability, according to 
Section 2.2, the friction drop slope should be smaller than the system's stiffness, −k, for a stable, creep behavior 
to take place. Due to the very small critical slip distance in all cases (few d50), the slope becomes too large to be 
sustained by a typical crust-rock (G ≃ 30 GPa) and L at meters scale. Dc in situ is found to be several orders of 
magnitude higher (see Byerlee, 1978; Kanamori & Brodsky, 2004). This difference can be attributed to various 
phenomena related to fault geometry, heterogeneity and multi-physical couplings, which our micro-mechanical 
model does not take into account. However, it provides useful insight in the micro-mechanisms that take place 
during seismic slip.

Of course, there is a number of assumptions in the present work and other additional mechanisms could 
explain differences between the results and in situ measurements. For example, Rabinowicz  (1955) and 
Reches and Lockner (2010) have shown that small (particles product of wear) produced during shearing might 
lubricate the fault gouge and enhance slip-weakening behavior. Depending on which stage the lubrication-film 
is formed it might reduce the friction drop or enhance it. Given the high confinement of the seismogenic 
zone, grain breakage and ultra-cataclastic flow are also expected (Collins-Craft et al., 2020). In the present 
work, grain breakage is not simulated explicitly. However, an energy based analysis is derived (see Appen-
dix A), showing that the released energy by particle-breakage is too little to affect the system's response. Thus, 
considering only the geometric entropy of the system, from the findings of this work, it is expected that a 
slow evolution of the fault gouge during shearing will widen the PSD (and thus will change the parameter f). 
The existence of few smaller fragments is not expected to affect the stability of the system. On the contrary, a 
fast evolution (reduction of the mean particle size, d50) will reduce the critical slip distance, Dc, and thus will 
affect the stability. Further DEM simulations that include grain breakage (see e.g., Guo & Morgan, 2004) up 
to very fine particles might give more information in this aspect. Multi-scale simulations with state-of-the 
art tools such as TANN (Masi & Stefanou, 2022; Masi et al., 2021) could also provide insights. Other lubri-
cation films may be created by multi-physical processes such as dehydration or melting of particles while 
self-healing might be present due to sintering (Reches & Lockner, 2010). These effects are expected to modify 
the apparent frictional properties of the gouge and should, therefore, be further investigated in future research. 
Furthermore, the complex interplay between competing multi-physical phenomena is found to have primary 
impact on fault's stability (Brantut & Sulem, 2012; Rattez, Stefanou, & Sulem, 2018; Rattez, Stefanou, Sulem, 
Veveakis, et al., 2018; Rempe et al., 2017; Stefanou & Sulem, 2016; Veveakis et al., 2010, 2013). All the above 
mechanisms are essential for grasping the frictional weakening of faults and they will be thus considered for 
future research.

6. Conclusions
In this work, we studied the apparent frictional behavior of a healed (but cohesion-less) fault gouge in seis-
mogenic depth. The gouge material was simulated using the DEM and was assumed to be dry and in a highly 
interlocked initial state (as a result from cataclasis and long-term consolidation period). As a result, the material 
presented a strengthened initial state that leads to pronounced softening/weakening during slips. The results 
were interpreted in a stochastic way to account for the geometric disorder of gouge layers using Monte-Carlo 
analysis.

The main outcomes of this work are summarized below:
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•  Local stick-slip motion is found to statistically vanish for increasing number of (averaged) tests due to the 
geometric disorder of the granular medium. Moreover, the local stick-slips do not affect the expected value of 
the apparent frictional response.

•  Both the thickness of the PSZ and the critical slip distance, Dc, are scaled with the mean particle diameter, 
d50, and they are not significantly influenced by the PSD, f. Since DEM models are restricted to smaller 
domains due to the high computational cost, continuum methods are used for larger scale computations. The 
aforementioned finding is an important one, since it can justify the ad-hoc use of d50 as the main length scale 
in continuum models that take into account the size of the microstructure (e.g., Rattez, Stefanou, Sulem, 
Veveakis, et al., 2018).

•  Shearing velocity seems to play secondary role under the conditions studied here. The consideration of 
Thermo-Hydro-Chemo-Mechanical (THCM) couplings at the level of the microstructure could lead to more 
important rate effects compared to the geometric entropy (complexity) that was only considered here.

Appendix A
Under the conditions met at the seismogenic zone (high confinement), grain crushing is expected during shear-
ing. We showed that PSZ's width, λ, scales with the mean particle size, d50, and so does the critical slip distance, 
Dc. The two properties Dc and λ did not show any scaling with particle size distribution. We thus consider the 
mean particle diameter, d50, as the main descriptor of the gouge layer and particle crushing as the reduction of 
mean particle size, d50. To account for grain-crushing, we model the evolution of the mean particle diameter 
assuming an exponential decrease of d50 with the total shear strain, γ12, by Montési and Hirth (2003):

𝑑𝑑50(𝛾𝛾12) =
(

𝑑𝑑500 − 𝑑𝑑50

)

𝑒𝑒
−
𝛾𝛾12

𝛾𝛾𝑐𝑐 + 𝑑𝑑50
 (A1)

where 𝐴𝐴 𝐴𝐴500
 is the mean particle diameter before grain crushing and d50 the final mean particle size. γc is a charac-

teristic deformation that accounts for the rate of evolution, which will be here taken equal to 1 for simplicity. We 
show below the evolution of Dc and λ for d50 ≃ 70% and d50 ≃ 50% of the 𝐴𝐴 𝐴𝐴500

 .

Furthermore, we account for the energy density dissipated by grain crushing as follows. We consider the dissi-
pated energy Egc released during the crushing of a single grain to be:

𝐸𝐸𝑔𝑔𝑔𝑔 = 𝐺𝐺𝑔𝑔𝐴𝐴(𝑑𝑑50) = 𝐸𝐸𝑔𝑔𝑔𝑔(𝑑𝑑50(𝛾𝛾12)) (A2)

Gc is the surface energy associated to the material of the grain and A the created surface due to crushing. Conse-
quently, the energy dissipation due to grain crushing for the transition from the first mean particle size, 𝐴𝐴 𝐴𝐴500

 to the 
current one d50, is given by 𝐴𝐴 Δ𝐸𝐸𝑔𝑔𝑔𝑔 = 𝐸𝐸𝑔𝑔𝑔𝑔 − 𝐸𝐸𝑔𝑔𝑔𝑔0

 or, more specifically, for the specimen:

Δ𝐸𝐸𝑔𝑔𝑔𝑔 = 𝐺𝐺𝑔𝑔𝑁𝑁𝑝𝑝(𝑑𝑑50)
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Figure A1. (left) Grain crushing energy for different mean particle sizes d50 and (right) energy densities for plastic dissipation and grain crushing.
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where we use Gc = 3 × 10 −3 (N/mm 2) which falls inside the values found in Wiederhorn (1969), 𝐴𝐴 𝐴𝐴𝑝𝑝 = 𝑉𝑉 (1 − 𝜉𝜉)∕
4𝜋𝜋𝜋𝜋2

50

3
 

is the number of particles at the current state, with ξ being the porosity and V the total volume, which finally 
gives:

Δ𝐸𝐸𝑔𝑔𝑔𝑔 =
3𝐺𝐺𝑔𝑔

8
𝑉𝑉 (1 − 𝜉𝜉)

(

1

𝑑𝑑50

−
1

𝑑𝑑500

)

 (A4)

The lower bound on Figure A1 is closed by the findings of Stefanou and Sulem (2016). Comparing the energy 
dissipation densities of grain crushing and plastic dissipation for increasing plastic deformation, in Figure A1, 
one can observe that the final grain crushing energy corresponds to ∽4% of the plastic dissipation in the system 
and can thus be considered negligible.

Appendix B
Common laboratory experiments and DEM studies for the study of shearing behavior of fault gouges are based on 
sheared response of glass-beads. Glass-beads particles are easily modeled by spherical DEM and can thus provide 
a good source of experimental validation on numerical experiments. However, modeling gouge materials using 
glass-beads (and the related DEM numerical tests) for the study of fault gouges, disregards the initial state of the 
gouge. The gouge at seismogenic depth and inside the fault core is expected to be product of abrasive wear of the 
host rock and of ultra-cataclastic flow due to previous slip of the fault core. Thus, it is expected to be dense and 
highly interlocked.

As it is shown in Figure B1, disregarding the initial state of the granular material will lead to different gouge 
response under shear. For example, considering perfectly spherical, non-interlocked particles, the medium, 
will show a slip-strengthening behavior, thus no global friction drop at all. If rolling moments are present (to 
simulate angular particles), the response shows a slip-weakening behavior with a peak friction of μpeak ∼ 0.55 
and a friction drop of Δμ ∼ 0.05 following a very mild softening branch till the residual value. However, if the 
same particles are previously consolidated to a dense interlocked initial state, the response shows much higher 
friction coefficient of μpeak ∼ 0.8 followed by a rather significant friction drop of Δμ ∼ 0.3 to the same residual 
value.

The maximum shear stress envelope for the studied material under different normal stress values after the 
initial consolidation (σc) is given in Figure B2. The numerical tests (represented by black dots) follow a para-
bolic envelope 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑎𝑎

2
𝑐𝑐 + 𝑏𝑏𝑎𝑎𝑐𝑐 + 𝑐𝑐  , with a = −0.0013 (MPa −1), b = 1.0115 (−), c = 0.0 (MPa) (blue line) 

and a coefficient of determination equal to R 2 = 0.9998 ≈ 1. The same initial consolidated sample is used 
for every unloading case. The classical dependence of shear strength on normal stress in geomaterials is thus 

Figure B1. Effect of the initial conditions of the shearing test. In this plot, a shearing test that considers highly interlocked 
particles at the beginning of the test is compared to two tests where the material's consolidation is similar to glass-beads 
experiments.
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captured and it reflects the effect of frictional cohesion-less (c = 0) interlocking (Goodman,  1989; Jaeger 
et al., 2009).

The derivative with respect to the normal stress represents the friction coefficient for a given normal stress. 
Notice, that many times in practice, the friction coefficient is informally given as the ratio of the shear stress 
over the normal stress (friction ratio) and it is not calculated using the above mentioned derivative. This can 
lead to inaccurate estimations of the friction coefficient, if the normal stress is varying (e.g., shearing under 
constant volume). However, in all the simulations presented herein, the normal stress was kept constant lead-
ing to non-isochoric shearing deformation. Thus, the dependence of the friction ratio in terms of the different 
parameters studied herein, represents the evolution of the friction coefficient at a specific normal stress. For other 
stresses a correction could be approximated by: dτ/dσc = dμ/dσc σc+μ (considering expressing τ as μ(σc)σc.

The dilation of the numerical sample during shear is presented below. By definition the dilatancy, β, is equal to 
𝐴𝐴 𝐴𝐴 =

�̇�𝜀
𝑝𝑝𝑝𝑝

𝑣𝑣

�̇�𝛾𝑝𝑝𝑝𝑝
 , where 𝐴𝐴 𝐴𝐴𝐴

𝑝𝑝𝑝𝑝

𝑣𝑣  is the plastic volumetric strain rate and 𝐴𝐴 𝐴𝐴𝐴
𝑝𝑝𝑝𝑝  is the shear plastic strain rate. Here, we calculated 

the average dilatancy of the sample after the peak, 𝐴𝐴 𝛽𝛽 =
�̄�𝜀
𝑝𝑝𝑝𝑝

𝑣𝑣

�̄�𝛾𝑝𝑝𝑝𝑝
 , where 𝐴𝐴 𝐴𝐴𝐴

𝑝𝑝𝑝𝑝

𝑣𝑣  is the average plastic volumetric strain and 
𝐴𝐴 𝐴𝐴𝐴

𝑝𝑝𝑝𝑝  is the average shear plastic strain after averaging at the post-peak shearing. The above quantity was calculated 
using the simulations of reference case (90f#0.0) and was found to be approximately equal to 𝐴𝐴 𝛽𝛽 ≃ 0.45◦ . This 
dilatancy represents the dilation of the localized zone, as the parts of the specimen outside the shear band act 
almost as rigid bodies. Corrections for elastic strains were applied by fitting the elastic response at the beginning 
of shearing with a linear elastic model, but they were negligible.

The reported dilatancy is low, given the experience from laboratory experiments in soil mechanics. Our interpre-
tation is that this is due to (a) high confining stresses in comparison with usual lab experiments of sands and (b) 
the fact that the calculated dilatancy represents the average dilation of the sample after the peak friction is met. 
Low values of dilation angles in faults are also reported and used in the literature (Sleep, 1999; Sleep et al., 2000).

Appendix C
Denoting the measured quantity of interest (here the critical slip distance Dc, the residual friction angle, μres, the 
peak friction angle, μpeak, shear band thickness λ) of a trial ”i” with yi, the expected value, or else, the mean value 
of y is given by:

𝜇𝜇𝑦𝑦 ≡ 𝐸𝐸(𝑦𝑦) =
∫

∞

−∞

𝑦𝑦𝑦𝑦 (𝑦𝑦)𝑑𝑑𝑦𝑦 (C1)

Figure B2. Maximum shear stress envelope for different normal loadings, after the initial consolidation.
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where f(y) is the probability density of y.

For N number of tests, an estimator for μy would be:

�̄�𝑦 =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

𝑦𝑦𝑖𝑖 (C2)

Monte-Carlo involves random sampling of inputs, therefore different results (in terms of 𝐴𝐴 𝐴𝐴𝐴  ) are expected each time 
a probabilistic analysis is performed. The variance of the results of 𝐴𝐴 𝐴𝐴𝐴  varies from Monte-Carlo to Monte-Carlo 
simulation depends on the number of tests, N. Thus the accuracy of 𝐴𝐴 𝐴𝐴𝐴  is found by the expectation 𝐴𝐴 𝐴𝐴𝐴 − 𝜇𝜇𝐴𝐴  :

𝐸𝐸(�̄�𝑦 − 𝜇𝜇𝑦𝑦) = 𝐸𝐸(�̄�𝑦) − 𝜇𝜇𝑦𝑦 = 𝐸𝐸

(

1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

𝑦𝑦𝑖𝑖

)

− 𝜇𝜇𝑦𝑦 =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

𝐸𝐸(𝑦𝑦𝑖𝑖) − 𝜇𝜇𝑦𝑦 (C3)

Following Willcox and Wang (2014), since yi occurs from random sampling of inputs when using Monte-Carlo, 
then E(yi) = μy. Thus 𝐴𝐴 𝐴𝐴(�̄�𝑦 − 𝜇𝜇𝑦𝑦) =

1

𝑁𝑁
𝑁𝑁𝜇𝜇𝑦𝑦 − 𝜇𝜇𝑦𝑦 = 0  . Hence, on average, the error in using 𝐴𝐴 𝐴𝐴𝐴  to approximate μy 

is zero and the estimator is unbiased. The variance 𝐴𝐴 Var(�̄�𝑦 − 𝜇𝜇𝑦𝑦) can now be used to compute the variability of 𝐴𝐴 𝐴𝐴𝐴  
(the variance of μy is zero since μy is a constant).

Var(�̄�𝑦 − 𝜇𝜇𝑦𝑦) =
1

𝑁𝑁2
Var

(

𝑁𝑁
∑

𝑖𝑖=1

𝑦𝑦𝑖𝑖

)

 (C4)

However, Monte-Carlo picks as input independent, random samples hence the variance of the sum of sample yi 
is the sum of their variance:

Var(�̄�𝑦 − 𝜇𝜇𝑦𝑦) =
𝜎𝜎
2
𝑦𝑦

𝑁𝑁
 (C5)

The standard error of the estimator is finally given by: 𝐴𝐴 𝐴𝐴�̄�𝑦 = 𝐴𝐴𝑦𝑦∕
√

𝑁𝑁  .

Data Availability Statement
The generated numerical data presented in this study are publicly available in Zenodo repository (Papachristos 
et al., 2022).
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