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Abstract

Fish are rich in n-3 long-chain polyunsaturated fatty acids (LC-PUFA), such as eicosapenta-

enoic (EPA) and docosahexaenoic (DHA) acids, thus they have a great nutritional value for

human health. In this study, the adipogenic potential of fatty acids commonly found in fish oil

(EPA and DHA) and vegetable oils (linoleic (LA) and alpha-linolenic (ALA) acids), was evalu-

ated in bone-derived mesenchymal stem cells (MSCs) from gilthead sea bream. At a mor-

phological level, cells adopted a round shape upon all treatments, losing their fibroblastic

form and increasing lipid accumulation, especially in the presence of the n-6 PUFA, LA. The

mRNA levels of the key transcription factor of osteogenesis, runx2 significantly diminished

and those of relevant osteogenic genes remained stable after incubation with all fatty acids,

suggesting that the osteogenic process might be compromised. On the other hand, tran-

script levels of the main adipogenesis-inducer factor, pparg increased in response to EPA.

Nevertheless, the specific PPARγ antagonist T0070907 appeared to suppress the effects

being caused by EPA over adipogenesis. Moreover, LA, ALA and their combinations, signifi-

cantly up-regulated the fatty acid transporter and binding protein, fatp1 and fabp11, support-

ing the elevated lipid content found in the cells treated with those fatty acids. Overall, this

study has demonstrated that fatty acids favor lipid storage in gilthead sea bream bone-

derived MSCs inducing their fate into the adipogenic versus the osteogenic lineage. This

process seems to be promoted via different pathways depending on the fatty acid source,

being vegetable oils-derived fatty acids more prone to induce unhealthier metabolic

phenotypes.

Introduction

In the last decades, both the world population and the consumption of fish and seafood per

capita have increased and will continue to rise. Fish products are rich in n-3 long chain
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polyunsaturated fatty acids (LC-PUFA) such as eicosapentaenoic (EPA, 20:5n-3) and docosa-

hexaenoic (DHA, 22:6n-3) acids [1], which are crucial nutrients for overall health [2]. For

these reasons, scientific research is indispensable to improve aquaculture production under

sustainable conditions, which implies among others, a reduction in the use of fish oil in aqua-

feeds formulation [3]. The alternatives are vegetable oils, which in contrast to fish oil, are richer

in n-6 or n-9 PUFA such as linoleic (LA, 18:2n-6), oleic (18:1n-9) or alpha-linolenic (ALA,

18:3n-3) acids [4]. Moreover, fish (especially marine) may have limited ability to convert C18

PUFA to C20/22 [4], [5] so, it should be considered that feeding fish with highly substituted

diets can result in tissues with lower n-3 LC-PUFA content [6], [7]. Apart from changes in the

fatty acid composition of the fish filet [8], [9], [10], dietary vegetable oils in excess can cause

adipose tissue and hepatic metabolic alterations [11], [12] or affect the immune system [13],

[14]. Besides, low concentrations of dietary EPA and DHA during development, have been

related to increased incidence of skeletal malformations [15], [16]. Overall, these can lead to

unhealthier or low-quality fish having consequences in aquaculture production.

Fish bone consists, as in other vertebrates, of several cell types including progenitor cells or

mesenchymal stem cells (MSCs) that differentiate into osteoblasts after appropriate induction

[17], [18]. There are many regulators involved in the process of osteoblastogenesis, but runt-

related transcription factor 2 (Runx2), is the main transcription factor controlling lineage

determination and osteogenic genes expression [19]. Once differentiated, osteoblasts produce

the bone extracellular matrix (ECM) or osteoid, where key components such as osteonectin

(ON), osteopontin (OP) and osteocalcin subsequently regulate mineral deposition [20], [21],

[22]

Interestingly, mammalian adipocytes can arise from the same MSCs as osteoblasts and a

high degree of plasticity has been observed between the two cell lineages, even in very

advanced maturation stages [23]. During the onset of the adipogenic process, transcription

factors such as CCAAT/enhancer binding protein β and δ (C/EBPβ and C/EBPδ) are activated,

which in turn, induce the expression of c/ebpa and peroxisome proliferator-activated receptor

γ (pparg) [24]. These factors successively promote the transcription of specific genes mainly

related with lipid metabolism like fatty acid synthase (fas) or the hormone sensitive lipase (hsl)
[25]. Adipose tissue can grow not only by elevating the cellular number from resident precur-

sors (hyperplasia) but also by increasing the size of existing adipocytes (hypertrophy), by accu-

mulating lipids into their cytoplasm [26]. For that matter, fatty acid transporter proteins like

FATP1 or the FAT translocase/CD36, together with lipoprotein lipase (LPL), are relevant

actors that facilitate the fat uptake [27]. However, despite being the adipose tissue the largest

body energy reserve, considered vital for the maintenance of energy homeostasis [28], its

growth by hypertrophy has been associated with less responsive adipocytes to hormones and

metabolites (i.e. insulin). This situation in humans derives in hypertrophic obesity and is

closely linked to major health issues such as diabetes, hyperlipidemia or cardiovascular dis-

eases [29], [30].

As indicated, the decision of MSCs fate can be affected by cell surrounding microenviron-

ment and might be modulated by endocrine and dietary conditions. Moreover, the signals that

induce adipogenesis, at the same time act as inhibitors of osteoblastogenesis, and vice versa
[23]. Therefore, depending on the stimulus they receive, MSCs differentiate into one or

another lineage. In mammals, low dietary n-3/n-6 ratios reduce bone formation and cause

greater bone resorption [31], [32], [33], [34]. In the same way, changes in dietary fatty acids

could modify the bone health and whole fat content due to this cellular interconversion, but

although this is clear in mammals [33] it has not been proved in fish yet. Recently, culture

models of MSCs have been established in fish from various adult tissues including fat and
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bone, and those MSCs have been demonstrated to hold the plasticity to differentiate into line-

ages different from the original tissue [18], [35], [36], [37] [38], [39].

In this context, the aim of the present work was to study the effects of the fatty acids EPA

and DHA, present mainly in fish oil, and those of LA and ALA, common in vegetable oils

(such as soybean, rapeseed and linseed oils), on fat deposition and the expression of both adi-

pogenic- and osteogenic-related genes, in MSCs derived from gilthead sea bream vertebrae.

The study hypothesis was that these fatty acids, supplemented in the media, could induce the

differentiation of bone-derived MSCs toward the adipogenic versus the osteogenic lineage,

potentially producing phenotypically different adipocytes depending on the fatty acid source.

Materials and methods

Animals and ethics statement

Gilthead sea bream (Sparus aurata) were obtained from the Tinamenor fish farm (Cantabria,

Spain) and maintained in the animal facilities of the Faculty of Biology at the University of Bar-

celona. Sexually immature juveniles of an average weight of 30g were kept in 200 L fiberglass

tanks under a 12 h light/12 h dark photoperiod and fed ad libitum twice daily with a commer-

cial diet (Optibream, Skretting, Burgos, Spain). All animal handling procedures complied with

the Guidelines of the European Union Council (86/609/EU) and were approved by the Ethics

and Animal Care Committee of the University of Barcelona, (permit numbers CEEA 210/14

and DAAM 6759).

Primary cultures of bone-derived MSCs and experimental design

Primary cultures of gilthead sea bream bone-derived MSCs were performed as previously

described [35]. Briefly, three juvenile gilthead sea bream were used for each culture. The fish

were sacrificed by a blow to the head, and bone-derived MSCs were isolated from a piece of

vertebra by mechanical disruption and enzymatic (i.e. collagenase) digestion. After several

washes, cells and small vertebra fragments were plated with growth medium (GM) consisting

on Dulbecco’s Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS)

and 1% antibiotic/antimycotic solution and supplemented with 19mM NaCl and 1% fungi-

zone (Invitrogen Life Technologies, Alcobendas, Spain), in 10cm culture dishes. After 1week,

the fragments were removed, and the attached cells collected with 0.25% trypsin–EDTA (Invi-

trogen Life Technologies) and plated into new 10cm plates with fresh GM. From here, the cells

were routinely subcultured every time they reached about 70–80% confluence and used for a

maximum of 10 passages.

To perform the experiments the cells were seeded at a density of 1×104 cells/cm2 in 24 well

plates for the viability test and the lipid quantification assay and in 6 well plates for the gene

expression analyses. The fatty acids were applied 3–4 days after plating and the duration of the

treatments were of 6 h for gene expression analyses, 24 h to determine viability and 6, 24, 48

and 72 h to quantify lipid accumulation. In all cases, two wells were used for each experimental

condition. The fatty acids selected were the following: EPA and DHA since are the most abun-

dant n-3 fatty acids in fish oil sources, and LA and ALA because are essential fatty acids that

are present at a high percentage in vegetable oils commonly used in fish feeds (i.e. soya and

rapeseed oils). The fatty acids obtained from Cayman Chemical Company (Michigan, USA),

were first dissolved in ethanol and used at a final concentration of 200 μM both, individually

and in all tested combinations unless stated otherwise. Final concentration of ethanol was very

low (below 1%) and did not cause any negative effects in cell viability as confirmed in prelimi-

nary assays (ethanol concentrations up to 10% were tested for 24 h, S1 Fig). For the PPARγ
antagonists experiment, two commonly used covalent PPARγ ligands T0070907 (2-Chloro-
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5-nitro-N-4-pyridinyl-benzamide) and GW9662 (2-Chloro-5-nitro-N-phenylbenzamide)

were used. These two compounds are referred to as antagonists because they physically block

ligand binding by covalently modifying the Cys285 located in an orthosteric pocket embedded

in the ligand-binding domain, although they do not have comparable effects with regards to

transcription [40], [41]. Both were obtained from Sigma-Aldrich (Tres Cantos, Spain), diluted

with dimethyl sulfoxide (DMSO) and applied together with the fatty acids at a final concentra-

tion of 10 μM according to previous literature [42].

MTT cell assay

The methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was used to evaluate cell via-

bility as previously described elsewhere [35]. Briefly, cells from 3–4 independent cultures were

incubated the last 3 h of the total 24 h treatment with a final concentration of 0.5 mg/mL of

MTT. Then, cells were washed with PBS, resuspended in 250 μL of DMSO per well and absor-

bance was read immediately using a microplate reader (Infinite 200, Tecan). Cell viability val-

ues were obtained from the absorbance measured at 570 nm, with 680 nm as the reference

wavelength.

Oil Red O staining

Intracellular neutral lipid accumulation was analyzed by Oil red O (ORO) staining as

explained in [35]. Briefly, cells were fixed with 10% formalin for 1 h, subsequently rinsed with

PBS, stained with 0.3% ORO prepared in 36% tri-ethyl phosphate for 2 h, and then rinsed with

distilled water. Quantification of cell lipid content was calculated as the absorbance measured

at 490 nm divided by the read at 630 nm (Infinite 200, Tecan) corresponding to the protein

content. The latter was obtained after Comassie blue staining for 1 h and dye extraction by

incubation of the cells with 85% propylene glycol during 3 h at 60˚C [35]. Data are presented

as fold change relative to the control (n = 3). The staining effectiveness was evaluated with a

Zeiss Axiovert 40C (Carl Zeiss Inc., Germany) inverted research grade microscope equipped

with a Canon EOS 1000D digital camera (magnification 20x).

RNA extraction and cDNA synthesis

The cells were lysed with a cell scraper and TRI Reagent (Applied Biosystems, Alcobendas,

Spain) in a total volume of 1 mL per each two wells. Total RNA was extracted according to the

manufacturer’s recommendations, dissolved in DEPC-treated water (RNase-free), quantified

using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Alcobendas, Spain) and stored

at −80˚C. To eliminate any residual genomic DNA, total RNA (1 μg) was treated with DNase I

(Invitrogen, Alcobendas, Spain) and converted into cDNA using the Transcriptor First Strand

cDNA Synthesis Kit (Roche, Sant Cugat del Valles, Spain), following the manufacturer’s

instructions.

Quantitative PCR analyses

To characterize the transcriptional profile occurring during the differentiation of bone-derived

MSCs into adipocyte-like cells, key genes implicated in osteogenesis, adipogenesis and energy

metabolism regulation were analyzed by real-time quantitative PCR (qPCR). The genes evalu-

ated comprise the following: the transcription factor runx2, and ECM components: fibronectin

1a (fib1a), matrix Gla protein (mgp), op and on for the osteogenic genes. The transcription fac-

tors or nuclear receptors: pparg, retinoid X receptor (rxr) and cebpb; the enzymes: fatty acid

synthase (fas), lipoprotein lipase (lpl) and hormone-sensitive lipase (hsl); fatty acid
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transporters: cd36, fatty acid transport protein 1 (fatp1) and fatty acid binding protein 11

(fabp11) for the adipogenic genes. In addition, elongation factor 1 alfa (ef1a), ribosomal pro-

tein S18 (rps18), and beta-actin (b-actin) were tested as reference genes.

qPCR was performed using a CFX384 thermocycler (Bio-Rad, El Prat de Llobregat, Spain)

as previously described [38]. Each qPCR reaction was performed in triplicate in a total volume

of 5 μL, containing 2.5 μL of the iTaq Universal SYBR Green supermix (Bio-Rad, El Prat de

Llobregat, Spain), 2 μL of diluted cDNA, 0.125 μL of each primer (250 nM) (Table 1), and

milliQ water. Samples were amplified as follows: 95˚C for 3 min, and then 40 cycles of 95˚C

for 10 s, followed by annealing 60–68˚C for 30 s (primer-dependent, Table 1), followed by a

dissociation step from 55 to 95˚C with a 0.5˚C increase every 5 s. A standard curve with a dilu-

tion series of a cDNA sample pool was constructed to determine the qPCR efficiency of each

primer pair (Table 1), which was calculated using the CFX Manager Software (Bio-Rad). To

determine the overall performance of each qPCR assay three control samples were used: no

template control (NTC), no reverse transcriptase control (RTC), and PCR control (PCR). Rela-

tive expression levels of the target genes were determined by the Pfaffl method [43], using cor-

rection for primer efficiencies and normalizing the quantification cycle (Cq) value of each

gene, registered during the annealing step to that of b-actin and rps18, the most stable refer-

ence genes among the different conditions (P> 0.05) determined using the CFX Manager

Software (Bio-Rad). Data were obtained from 4–6 independent cultures.

Statistical analyses

Data normality and homoscedasticity were assessed using Shapiro–Wilk and Levene’s test,

respectively. Independent samples’ Student’s t-test was used for comparison between two

groups (each experimental treatment versus the control). For multiple mean comparisons

(among fatty acid treatments) of normal distributed data, one-way ANOVA was used followed

by Tukey’s or Dunnett’s T3 post hoc tests in case of homogeneous or heterogeneous variance

data, respectively. When data did not fit normal distribution, the non-parametric Kruskal–

Wallis test, followed by Mann–Whitney test, were used. Statistical analyses were performed

using SPSS Statistics version 20 (IBM, Armonk, NY, USA). Results are presented as

mean ± SEM. P< 0.05 was considered to indicate a statistically significant difference. Graphs

were generated using GraphPad Prism version 6.00 for Windows (GraphPad Software, La

Jolla, CA, USA, www.graphpad.com).

Results

Fatty acids effects in cell viability and differentiation

Preliminary analyses demonstrated that cell viability was unaffected by the addition of the dif-

ferent fatty acids up to the 200 μM concentration tested (S1 Fig). On the other hand, a dose

response was observed with regards to lipid accumulation upon a 48 h treatment with each

one of the four fatty acids (EPA, DHA, LA and ALA), showing at the 100 μM concentration

significantly higher intracellular lipid content compared to lower doses and the control condi-

tion without fatty acids (Fig 1A). Moreover, the images obtained after ORO staining of the

cells upon all treatments (EPA and LA shown in Fig 1B as a representation) confirmed this

observation, being the 200 μM concentration the one causing higher lipid accumulation and

therefore, the one selected for the following experiments. In addition, we could observe in

these images the change of cell morphology in response to the treatments, becoming the cells

more rounded with an enlarged cytoplasm while losing the fibroblastic shape of MSCs.

To further determine the effects through time of selected fatty acids on lipid accumulation,

individual treatments with EPA and LA as representatives from the highly present fatty acids
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in fish and vegetable oils respectively, plus the mixtures EPA+DHA as the fish oil combination,

LA+ALA as the vegetable oils one and EPA+LA as the combination containing one fatty acid

of each source, were tested at 6, 24, 48 and 72 h. All treatments caused a significant increase in

cell lipid content compared to the control condition. Moreover, a time-dependent response up

to 48 h (remaining high at 72 h) was also observed by treatments including LA alone or in

combination (Fig 2A). The effects of these fatty acids inducing cell lipid accumulation and dif-

ferentiation (i.e. rounding up) compared to the control condition were confirmed by the

microscopic visual evaluation of the culture (Fig 2B). According to these results, the 6 h treat-

ment was selected to evaluate gene expression in subsequent experiments, in order to observe

Table 1. Primers sequences.

Gene Primer sequence (5’!3’) Tm (˚C) Efficiency (%) Acc. Num.

runx2 F: ACCCGTCCTACCTGAGTCC 60 104.1 JX232063

R: AGAAGAACCTGGCAATCGTC

pparg F: CGCCGTGGACCTGTCAGAGC 66 94.1 AY590304

R: GGAATGGATGGAGGAGGAGGAGATGG

rxr F: CCCGGATGCAAAAGGTCTCT 60 99.7 -

R: ATGCTCCAGACACTTGAGGC

cebpb F: ATGCGCAACTTGGAGACTCA 60 95.5 -

R: GATTAGACAAGCGGCCCAGT

fib1a F: CGGTAATAACTACAGAATCGGTGAG 60 96.7 FG262933

R: CGCATTTGAACTCGCCCTTG

mgp F: TGTGTAATTTATGTAGTTGTTCTGTGGCATCTCC 68 101.1 AY065652

R: CGGGCGGATAGTGTGAAAAATGGTTAGTG

on F: GTGGTGGTTCAGGCAGGGATTCTCA 68 94.3 AY239014

R: AGGAGGAGGTCATCGTGGAAGAGCC

op F: AAAACCCAGGAGATAAACTCAAGACAACCCA 68 91.9 AY651247

R: AGAACCGTGGCAAAGAGCAGAACGAA

fas F: TGGCAGCATACACACAGACC 60 95.7 AM952430

R: CACACAGGGCTTCAGTTTCA

lpl F: GAGCACGCAGACAACCAGAA 60 108.3 AY495672

R: GGGGTAGATGTCGATGTCGC

hsl F: GCTTTGCTTCAGTTTACCACCATTTC 60 92.0 EU254478

R: GATGTAGCGACCCTTCTGGATGATGTG

cd36 F: GTCGTGGCTCAAGTCTTCCA 60 96.8 -

R: TTTCCCGTGGCCTGTATTCC

fatp1 F: CAACAGAGGTGGAGGGCATT 60 102.7 -

R: GGGGAGATACGCAGGAACAC

fabp11 F: CATTTGAGGAGACCACCGCT 60 107.5 -

R: ACTTGAGTTTGGTGGTACGCT

b-actin F: TCCTGCGGAATCCATGAGA 60 106.9 X89920

R: GACGTCGCACTTCATGATGCT

ef1a F: CTTCAACGCTCAGGTCATCAT 60 97.4 AF184170

R: GCACAGCGAAACGACCAAGGGGA

rps18 F: AGGGTGTTGGCAGACGTTAC 60 107.3 AM490061

R: CTTCTGCCTGTTGAGGAACC

Primers used for real-time quantitative PCR. F, forward primer; R, reverse primer; Tm, annealing temperature; Acc. Num., GenBank accession number.

https://doi.org/10.1371/journal.pone.0215926.t001
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the immediate effects of these fatty acids at a transcriptional level inducing changes on cell

metabolism.

Fatty acids effects in gene expression

The gene expression of runx2, the key transcription factor of the osteogenic process, was sig-

nificantly down-regulated by all fatty acids, either applied individually or combined, compared

to the control condition, although differences were not observed among treatments (Fig 3A

and 3B). Contrarily, the principal genes involved in the first steps of adipogenesis, were up-

Fig 1. Dose response of fatty acids on lipid accumulation. (A) Quantification of lipid content normalized by protein

and (B) representative phase-contrast images of gilthead sea bream bone-derived cells after staining with Oil red O.

Cells were treated at day 4 with different concentrations of individual fatty acids, or were left untreated as control

(dashed line in A) for 48 h. In (A) data are shown as mean + SEM (n = 3–4). Significant differences (p<0.05) among

concentrations are indicated by different letters. Asterisks indicate significant differences (p<0.05) with the control. In

(B) magnification 20x and enlarged views, arrow indicates lipid droplets. EPA: eicosapentaenoic acid; DHA:

docosahexaenoic acid; LA: linoleic acid; ALA: α-linolenic acid.

https://doi.org/10.1371/journal.pone.0215926.g001
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Fig 2. Time course of lipid accumulation by fatty acids. (A) Quantification of lipid content normalized by protein and (B)

representative phase-contrast images of gilthead sea bream bone-derived cells stained with Oil red O. Cells were treated at

day 4 with selected individual or combined fatty acids (200 μM), or were left untreated as control (CT, dashed line in A) for

6, 24, 48 and 72 h. In (A) data are shown as mean + SEM (n = 3–4). Significant differences (p<0.05) among time-points are

indicated by different letters. Asterisks indicate significant differences (p<0.05) with the control. In (B) magnification 20x,

arrows indicate lipid droplets. EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid; LA: linoleic acid; ALA: α-linolenic

acid.

https://doi.org/10.1371/journal.pone.0215926.g002
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regulated after EPA treatment, significantly for pparg, cebpb and rxr, and the latter also by LA

treatment, when compared to the control. In addition, EPA-treated cells showed significant

differences with respect to those treated with LA or ALA for pparg gene expression and with

DHA as well in the case of rxr (Fig 3A). Furthermore, the different combinations caused pat-

terns of expression for these genes according to the fatty acids included in the mixture (Fig

3B). Namely, the combinations containing one (i.e. DHA) or specially the two fatty acids pres-

ent in fish oils, significantly up-regulated the transcript levels of the adipogenic genes pparg
and cebpb, compared to the control condition and the combination of LA+ALA. In addition,

Fig 3. Fatty acids effects on transcription factors gene expression. Relative expression of genes related to the

processes of osteogenesis (runx2) and adipogenesis (pparg, rxr and cebpb) normalized to b-actin and rps18 in gilthead

sea bream bone-derived cells. Cells at day 4 were treated with different (A) individual or (B) combined fatty acids or

were left untreated as control (dashed lines) for 6 h. Data are shown as mean + SEM (n = 3–4). Significant differences

(p<0.05) among treatments are indicated by different letters. Asterisks indicate significant differences (p<0.05) with

the control. EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid; LA: linoleic acid; ALA: α-linolenic acid.

https://doi.org/10.1371/journal.pone.0215926.g003
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the mRNA levels of rxr and cebpb were significantly lower in response to the combinations

containing LA (especially in the one of LA+ALA), respect to the EPA+DHA mixture (Fig 3B).

The expression analysis of osteogenic genes involved in ECM formation and/or mineraliza-

tion showed how these remained unaltered in cells in the presence of fatty acids either applied

alone or in combination. Nevertheless, the treatments with two fatty acids combined caused

on and op to have a lower, but not significant expression, compared to the control (Fig 4A and

4B). Moreover, genes encoding lipid metabolism-related enzymes and fatty acid transporters

were studied to unravel whether a possible regulation of pro-adipogenic genes was related to

the process of differentiation of MSCs into adipocyte-like cells. EPA treatment caused an

increase in hsl mRNA levels, although only significant when compared to DHA-treated cells,

while fas and lpl remained stable (Fig 5A). Concerning the fatty acid transporters, EPA, LA

and ALA significantly up-regulated the mRNA levels of fabp11 compared to the control (Fig

5B). Even applying combinations of the different fatty acids to the cells, the gene expression of

fas, lpl, hsl and cd36 remained unaffected (Fig 5C and 5D). Nevertheless, the combination of

the two fatty acids more common in vegetable oils (LA+ALA), significantly up-regulated the

transcript expression of fabp11 in comparison to the combination with the fatty acids EPA

+DHA and the control condition. On the other hand, fatp1 levels were significantly higher in

response to LA+ALA when compared to the combinations containing EPA and either one of

these two fatty acids from vegetable oils, but not with the control (Fig 5D).

Effects of PPARγ antagonists in gene expression

Two different antagonists of PPARγ were applied to cells treated with either EPA or LA, to elu-

cidate the potential different mechanism of action of these fatty acids inducing the differentia-

tion of the bone-derived MSCs into adipocyte-like cells. First, viability assays were performed

to assure non-toxicity of the products (S1 Fig). Next, taking into account that the transcrip-

tional effects of each fatty acid alone in comparison to the control were already reported, the

condition of each fatty acid in the absence of antagonists was used as the corresponding con-

trol in this set of experiments. Cells treated with EPA and T0070907 showed an overall

decrease in expression for the genes studied, which was significant in comparison to the treat-

ment with the other antagonist, GW9662 for rxr and cebpb and, to the control condition for

the fatty acids transporters cd36, fatp1 and fabp11 (Fig 6A). Contrarily, the cells treated with

LA and either one of the two antagonists, did not show any significant changes in gene expres-

sion (Fig 6B).

Discussion

This study has focused on the characterization of the likely differential effects of fatty acids typ-

ical from fish oil (EPA and DHA) and those most commonly found in vegetable oils (LA and

ALA) on cellular plasticity and metabolism. To this end, we used as a model an in vitro culture

of MSCs derived from vertebra bone of gilthead sea bream (S. aurata), one of the most culti-

vated species in Mediterranean aquaculture. The main objective was to evaluate the lineage-

induction potential over the MSCs of these fatty acids, not only for its possible relevance in

fish nutrition and welfare, but also to validate the cell system to further study the multipotenti-

ality of piscine MSCs and their regulation.

The first step was to check that the incubation with the fatty acids was not causing any dele-

terious effect on the cells. Thus, an MTT assay was run showing that none of the fatty acids sig-

nificantly affected bone-derived MSCs viability at concentrations up to 200 μM, although a

slight rise in viability could be seen with the 100 μM concentrations, maybe related to the

increased metabolic activity of the cells along the induced process of differentiation. These
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results coincide with those in another study, where fatty acid treatments were performed on

human MSCs grown in osteogenic media, to see their possible effect on osteoblastogenesis

[44]. Also, cell viability was verified after applying different fatty acids (e.g. EPA, DHA and ara-

chidonic) at a 100 μM concentration on the skeletal VSa16 cell line of gilthead sea bream, dem-

onstrating that such treatments can stimulate proliferation without signs of toxic effects [45].

Bone marrow MSCs in mammals retain a high degree of plasticity and their fate is affected

by cell culture medium composition [23]. In the present study, accumulation of lipid content

induced by fatty acids added to the media was dose-dependent as confirmed through

Fig 4. Fatty acids effects on osteogenic genes expression. Relative expression of genes related to the process of

osteogenesis (fib1a, mgp, on and op) normalized to b-actin and rps18 in gilthead sea bream bone-derived cells. Cells at

day 4 were treated with different (A) individual or (B) combined fatty acids or were left untreated as control (dashed

lines) for 6 h. Data are shown as mean + SEM (n = 3–4). Significant differences (p<0.05) among treatments are

indicated by different letters. Asterisks indicate significant differences (p<0.05) with the control. EPA:

eicosapentaenoic acid; DHA: docosahexaenoic acid; LA: linoleic acid; ALA: α-linolenic acid.

https://doi.org/10.1371/journal.pone.0215926.g004
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quantification and microscopy observation of the morphological changes, and the intensifica-

tion of the red aura occupied in the cells by ORO staining. Previously, the ability of MSCs

derived from bone to differentiate, in addition to osteoblasts, into adipocyte-like cells was

demonstrated, by applying adipogenic media containing two different concentrations of lipid

mixture; thus, confirming their multipotentiality [35]. The presence of fatty acids in such spe-

cific media seems to be critical to shoot the adipogenic process in undetermined fish cells [37],

[46], [47], [48], and this has also been observed in avian adipocyte precursor cells [49]. Accord-

ingly, in the present study, the cells began to accumulate lipids potentially inducing adipocyte-

like differentiation in response to the fatty acid treatments. However, LA and the combinations

containing this fatty acid were those that produced a greater effect, whereas the combination

of the two fatty acids mainly present in fish oil (EPA+DHA) caused lower lipid deposition.

Similarly, in mature salmon adipocytes it was observed that fatty acids from vegetable oils (i.e.

oleic acid) were able to induce more triacylglycerol accumulation than fatty acids characteristic

of fish oils [50]. Other studies have also shown this lower capacity of fatty acids from fish oils

to be stored in adipose cells, such as those performed on 3T3-L1 pre-adipocytes, where DHA

reduced dose-dependently fat deposition likely by suppressing lipid filling [51]. Overall, the

data suggest that the n-6 PUFA LA may stimulate the uptake and depot of extracellular fats in

these adipocyte-like cells, more than the other treatments tested.

Fig 5. Fatty acids effects on adipogenic genes expression. Relative expression of genes related to lipid metabolism, including (A, C) enzymes (fas, lpl
and hsl) and (B, D) fatty acid transporters (cd36, fatp1 and fabp11) normalized to b-actin and rps18 in gilthead sea bream bone-derived cells. Cells at

day 4 were incubated with different (A, B) individual or (C, D) combined fatty acids, or were left untreated as control (dashed lines) for 6 h. Data are

shown as mean + SEM (n = 3–4). Significant differences (p<0.05) among treatments are indicated by different letters. Asterisks indicate significant

differences (p<0.05) with the control. EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid; LA: linoleic acid; ALA: α-linolenic acid.

https://doi.org/10.1371/journal.pone.0215926.g005
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Next, to further evaluate the effects of fatty acids on MSCs lineage determination, expres-

sion of relevant driving genes was analyzed. runx2 codifies for a key transcriptional activator

that promotes osteoblastogenesis thus, inhibiting the determination and subsequent differenti-

ation of MSCs into other cell lineages [24]. On the other hand, PPARγ, a member of the hor-

mone nuclear receptors family, after interaction with specific ligands such as LC-PUFA,

activates the transcription of genes involved in adipogenesis and lipid metabolism determining

Fig 6. PPARγ antagonists effects in adipogenic genes expression. Relative expression of genes related to

adipogenesis and lipid metabolism (pparg, rxr, cebpb, lpl, cd36, fatp1 and fabp11) normalized to b-actin and rps18 in

gilthead sea bream bone-derived cells. Cells at day 4 were incubated with the fatty acids (A) EPA or (B) LA in the

absence (dashed line, used as control) or presence of a PPARγ antagonist (T0070907 or GW9662) for 6 h. Data are

shown as mean + SEM (n = 3–4). Significant differences (p<0.05) among treatments are indicated by different letters.

Asterisks show significant differences (p<0.05) with the control. EPA: eicosapentaenoic acid; LA: linoleic acid.

https://doi.org/10.1371/journal.pone.0215926.g006
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the adipocyte phenotype of MSCs [25]. Moreover, induction of pparg expression can result in

the inhibition of differentiation toward osteoblasts, as it has been described in some mamma-

lian studies by acting as a suppressor of runx2 [23], [52], [53]. Besides, overexpression of runx2
in rat MSCs derived from adipose tissue produces a decrease in the expression of pparg [54];

consequently, these two transcription factors seem to act by negatively regulating each other.

In Atlantic salmon, pparg is also silenced when the culture medium used is osteogenic, while

runx2 has its expression inhibited in the presence of an adipogenic medium [39]. In agreement

with these observations, in our study, all fatty acid treatments, either alone or in combination,

down-regulated runx2, although only EPA was able to significantly increase pparg gene expres-

sion. In fact, when treating the gilthead sea bream osteoblast-like VSa16 cell line with EPA, a

decrease in the mRNA levels of runx2 was also reported [45]. Accordingly, an increase in the

transcript levels of pparg was also caused in human MSCs due to EPA treatment [44]. Despite

significant differences were not observed with DHA alone, up-regulation of this key adipo-

genic gene was found with all combinations containing this fatty acid. Interestingly, both EPA

and DHA had been considered for years, natural ligands of pparg, and to have greater potency

on activating this transcription factor, compared to the n-6 PUFA (i.e. LA) [55]; so, these find-

ings propose a direct effect of these n-3 LC-PUFA stimulating adipogenesis, as previously

described in mammalian models [25]. Furthermore, cebpb expression was also up-regulated in

response to EPA and by the combination EPA+DHA, supporting that the initiation of the adi-

pogenic process is taking place upon those treatments. In fact, at least in mammals, cebpb con-

tributes to stimulate pparg expression during early adipogenesis [56], [57]. Moreover, similar

results were found when the gene expression of rxr was analyzed, since EPA, but also LA,

could significantly up-regulate it. The nuclear receptor RXR forms a heterodimer among oth-

ers with PPARγ, to regulate the transcription of genes related to lipid metabolism, thus also

driving adipocyte differentiation [58]. Nevertheless, knowledge on the PPARγ-RXR heterodi-

mers, as well as their response to fatty acids in fish is very limited.

To further evaluate if the bone-derived MSCs are deviated from the osteogenic process

when the fatty acid treatments are applied, the expression of various genes related to both early

osteogenesis and late mineralization of bone ECM was determined [36]. The mRNA levels of

fib1a, mgp, on, and op remained constant in response to all the treatments, similarly as in [38],

in the same cell model after addition of a standard adipogenic medium. With these results, we

could suggest that the osteogenic process, to which these cells were previously predestined in

their tissue microenvironment, has stopped. This deregulation of MSCs determination and/or

trans-differentiation has been related not only in mammals, but also in fish, with developmen-

tal disorders or disease states, such as distraction osteogenesis in rats [59], bone loss in osteo-

porotic human patients [60] and reduced or malformed vertebrae in Atlantic salmon [61],

[62], [63], [64], in which, diet specifically, has been shown as a causative factor [65].

Regarding expression of adipocyte markers, specifically genes that codify for key enzymes

such as fas, involved in the synthesis of fatty acids, remained stable, maybe due to a direct inhi-

bition of de novo synthesis caused by the addition of fatty acids into the culture medium. Simi-

larly, differences could not be found in lpl or hsl gene expression during differentiation into

adipocytes of rainbow trout cultured pre-adipocytes when the whole transcriptional profile of

this process was analyzed [66]. Nevertheless, increased gene expression in the late phases of

adipocyte differentiation has been reported for lpl in red sea bream [47] and Atlantic salmon

[50].

Concerning the genes involved in the uptake and transport of fatty acids, cd36 is, among

others, a target gene of PPARγ [25]. In this context, PPARγ activation was found to induce

cd36 expression and adipocyte differentiation of the arterial rat VSMCs line [67]. In our study,

the increased pparg mRNA levels at 6 h incubation in response to EPA, but not in cd36, suggest
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a possible delayed up-regulation of the latter. Furthermore, in Atlantic salmon and rainbow

trout, the mRNA levels of fatp1 increased during the differentiation of pre-adipocytes, at ear-

lier stages than fabp11, indicating that the former has an important role in the induction of

adipogenesis and in the uptake of fatty acids from the environment [27], [68]. In our study, the

combination of LA+ALA or LA alone caused an increase in fatp1 and fabp11 mRNA levels

compared to other combinations. Altogether, these results indicated a more direct stimulation

of fat transporters expression by fatty acids of vegetal origin, especially LA, suggesting a possi-

ble mechanism of action to induce adipogenesis through enhancing fatty acid uptake. These

observations together with the elevated capacity of lipid accumulation when cells were treated

with LA are in agreement with a previous study in gilthead sea bream, in which diets with high

content in vegetable oils induced adipocyte hypertrophy [12]. On the other hand, DHA and

more remarkably EPA, showed a higher potential to stimulate adipogenesis via up-regulation

of pparg gene expression, thus inducing the adipocyte-like phenotype but with lower lipid con-

tent. Hence, since smaller adipocytes have the metabolic advantage of retaining insulin sensi-

tivity and protect other tissues from lipotoxicity according to works in mammals [69], further

studies would be of great interest to demonstrate if fish oil-derived fatty acids would lead to

healthier cells as well in fish.

To corroborate the differential action of EPA and LA driving adipocyte-like development

of bone-derived MSCs through PPARγ activation, their effects in combination with two

PPARγ antagonists were evaluated. According to the results, LA action was unaffected, dem-

onstrating the direct effect of this fatty acid on the transport of lipids due to fabp11 and fatp1
up-regulated gene expression. With regards to EPA treatment, the antagonist GW9662 did not

cause any change, but the use of the specific antagonist T0070907, triggered a remarkable

down-regulation on transcript levels of the three fatty acid transporters and the factors rxr and

cebpb, although not of pparg. Accordingly, in mammals GW9662 shows negligible effects on

transcription compared to T0070907, which displays properties of an inverse agonist, showing

effects on transcription opposite to well-known PPARγ agonists such as [40], [41]. Similarly,

the antiobesogenic effect of these antagonists has been shown in zebrafish larvae in vivo,

although without performing transcriptomic analyses [42], [70]. Overall, the current data

would suggest an inhibition of the adipogenic process, including lipid internalization, medi-

ated at least in part by the incapability of EPA to activate PPARγ and the companion transcrip-

tion factors. In agreement with this hypothesis, other authors using this same antagonist

showed a decrease in cd36 mRNA levels not depending on the increased gene expression of

pparg, but elevated PPARγ activity [71]. Thus, blockage of EPA action by T00709007 indicates

that via the action of this transcription factor, EPA may also up-regulate fat transporters to

ultimately stimulate adipocyte differentiation of MSCs. These results agree with the capacity of

n-3 LC-PUFA to promote the formation of healthy new adipocytes [72]. An example of a simi-

lar scenario may be the antidiabetic treatment with the full PPARγ agonists, the thiazolidine-

diones (i.e. troglitazone or pioglitazone), which have been shown, at least in rodent models, to

favor remodeling of the adipose tissue by promoting pre-adipocyte recruitment for hyper-

plastic growth [73], [74].

Conclusions

Gilthead sea bream bone-derived MSCs treated with one or two combined fatty acids undergo

morphological and transcriptional changes, increasing lipid accumulation as well as the

expression of adipogenic genes while decreasing or maintaining stable those related to the

osteogenic process. This confirms the plasticity of these cells and supports their use as a model

to study MSCs fate modulation. Besides, these findings should be also considered when
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studying fish bone structure and function, since at least in humans, there is a correlation

between the appearance of bone marrow fat and the reduced bone forming capacity observed

during diabetes and aging [75], [76]. Our data also suggest that fatty acids might be inducing

adipogenesis potentially through different pathways, with fish oil-derived fatty acids such as

EPA causing mainly formation of new adipocytes through activation of PPARγ, whereas vege-

table fatty acids like LA appear to rather induce a process of fat accumulation in committed

pre-adipocytes (Fig 7). These results advise that fatty acids from plant origin should be wisely

used in aquafeeds, as they could induce the formation of less sensitive and functional hypertro-

phic adipocytes as previously suggested [12]. While we should be cautious because most of our

data is based on a transcriptional level, and further studies are required to validate these obser-

vations; overall, this needs to be considered in feeds formulation to carefully find a balance

according to the nature of the oil sources to ensure a healthy and high-quality fish.

Supporting information

S1 Fig. Effects of ethanol, fatty acids and antagonists treatments on cell viability. Viability

of gilthead sea bream bone-derived cells at day 4 determined by means of the MTT assay. Cells

were treated (A) for 24 h with different concentrations of ethanol; or for 6 h (B) with different

concentrations of selected fatty acids (EPA and LA) or were left untreated as control (dashed

line), and (C) with the fatty acids EPA or LA in the absence (dashed line) or the presence of a

PPARγ antagonist (T0070907 or GW9662). Data are shown as mean + SEM (n = 3). Significant

differences (p<0.05) among concentrations are indicated by different letters. Asterisks indi-

cate significant differences (p<0.05) with the corresponding control. EPA: eicosapentaenoic

Fig 7. Summary of fatty acids effects on gilthead sea bream bone-derived cells. Schematic representation summarizing the effects of fatty acid (FA) treatments over

bone-derived mesenchymal stem cells (MSCs) of gilthead sea bream. The fatty acids produce an inhibition of the osteogenic process through causing a down-regulation of

runx2 and a stabilization of the osteogenic genes relative expression. On the other hand, fatty acids induce adipogenesis, with those fatty acids characteristic from fish oils

apparently via up-regulating pparg mRNA levels and in contrast, those typical from vegetable oils increasing the relative gene expression of fatty acid transporters (fabp11
and fatp1), thus potentially enhancing cell lipid accumulation.

https://doi.org/10.1371/journal.pone.0215926.g007
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acid; LA: linoleic acid.

(TIF)

S1 File. Submit R1.zip contains the files with the complete raw data.
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