
Yu et al. J Transl Med  (2015) 13:189 
DOI 10.1186/s12967-015-0546-5

METHODOLOGY
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Abstract 

In the conventional analysis of complex diseases, the control and case samples are assumed to be of great purity. 
However, due to the heterogeneity of disease samples, many disease genes are even not always consistently up-/
down-regulated, leading to be under-estimated. This problem will seriously influence effective personalized diagnosis 
or treatment. The expression variance and expression covariance can address such a problem in a network manner. 
But, these analyses always require multiple samples rather than one sample, which is generally not available in clinical 
practice for each individual. To extract the common and specific network characteristics for individual patients in this 
paper, a novel differential network model, e.g. personalized dysfunctional gene network, is proposed to integrate 
those genes with different features, such as genes with the differential gene expression (DEG), genes with the differ-
ential expression variance (DEVG) and gene-pairs with the differential expression covariance (DECG) simultaneously, 
to construct personalized dysfunctional networks. This model uses a new statistic-like measurement on differential 
information, i.e., a differential score (DEVC), to reconstruct the differential expression network between groups of nor-
mal and diseased samples; and further quantitatively evaluate different feature genes in the patient-specific network 
for each individual. This DEVC-based differential expression network (DEVC-net) has been applied to the study of com-
plex diseases for prostate cancer and diabetes. (1) Characterizing the global expression change between normal and 
diseased samples, the differential gene networks of those diseases were found to have a new bi-coloured topological 
structure, where their non hub-centred sub-networks are mainly composed of genes/proteins controlling various 
biological processes. (2) The differential expression variance/covariance rather than differential expression is new 
informative sources, and can be used to identify genes or gene-pairs with discriminative power, which are ignored by 
traditional methods. (3) More importantly, DEVC-net is effective to measure the expression state or activity of different 
feature genes and their network or modules in one sample for an individual. All of these results support that DEVC-net 
indeed has a clear advantage to effectively extract discriminatively interpretable features of gene/protein network of 
one sample (i.e. personalized dysfunctional network) even when disease samples are heterogeneous, and thus can 
provide new features like gene-pairs, in addition to the conventional individual genes, to the analysis of the personal-
ized diagnosis and prognosis, and a better understanding on the underlying biological mechanisms.
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Background
It is a challenging task to extract discriminative features 
from genes as relevant as possible for indicating differ-
ent phenotypes [1], and in particular, these elaborately 
extracted features are expected to improve the under-
standing on complex diseases [2]. Gene expression analy-
sis and gene network inference have been widely studied 
for extracting phenotype-related information in biologi-
cal systems [3], but they are generally based on a group 
of samples with the same phenotype rather than a sin-
gle sample, which prevents their applications to clinical 
data, e.g., disease diagnosis or prognosis on one sample 
from one individual. Therefore, how to infer discrimina-
tively interpretable features of genes and their network 
in one sample is becoming an attractive and also urgent 
problem.

On one hand, conventional differential expression 
analysis of complex diseases requires the genes to have 
differential expressions between control and case sam-
ples, which is under the assumption that a gene in case 
samples would have consistent up-regulation or down-
regulation than its expressions in control samples, or 
vice versa. But, recent studies indicate that many relevant 
(disease associated) genes are missed or hard observed 
from the analysis [4]. A key reason is that, different from 
the previous assumptions, the disease samples tend to be 
in different sub-clones, stages or subtypes, which result 
in heterogeneous expression patterns. Under this com-
plicated situation, some genes would show up-regulation 
in a part of disease samples but down-regulation in the 
other part of disease samples, which are non-consistently 
compared to control samples (e.g., heterogeneity of dis-
eases [5]). These genes are always rejected by the sig-
nificance test in the conventional differential expression 
analysis. Thus, the first important task is how to care-
fully select feature genes and gene-pairs for deep disease 
studies in a network manner. Particularly, analyzing the 
differential expression variance of genes (i.e., nodes of a 
gene network) and differential expression covariance of 
gene-pairs (i.e. edges of a gene network) is expected to be 
able to effectively extract the informative gene features of 

network [4], which improves the interpretability of net-
work features.

On the other hand, the differential gene expression 
analysis can be applied to a group of samples (e.g. T test 
used) or a single sample (e.g. fold-change used). Mean-
while, the expression variance of a gene or expression 
covariance of a gene-pair is a statistic on samples or 
populations. These two kinds of features of gene expres-
sion or gene network are usually used on multiple sam-
ples rather than one sample. However, in clinical practice 
on cancer diagnosis or treatment [6], only one sample is 
usually available for each patient [7]. For example, there 
is one sample (e.g., a sample from blood drawn) obtained 
in the physical examination when diagnosing some sus-
pected victims or onset patients; or, a sample will be 
collected at a planed time after surgery when taking the 
follow-up of therapy-treated patients. Under these bio-
logical or physical constraints in actual situation, the sec-
ond important task is to elaborately select feature genes 
and their network in a single-sample manner, for improv-
ing the discriminative ability by considering personalized 
characteristics.

To address the above two problems together, a novel 
differential network model is proposed to integrate 
Differential gene Expression, differential expression 
Variance and differential expression Covariance by a 
differential score DEVC. DEVC-net (DEVC-based dif-
ferential expression network, and see Figure  1c) can be 
constructed for groups of patients by the divergent differ-
ential expression and network features, and also rebuilt 
for each patient as the personalized dysfunctional gene 
network.

Note that, as basic elements of DEVC-net, the gene-
pairs rather than individual genes are generalizable 
to cases of biomarkers or other biological signatures. 
Firstly, an important evidence of gene-pair (e.g. edge 
or interaction) signatures is the discovery of ‘edget-
ics’ diseases, and the study of ‘edgetics’ also revealed 
the malfunctions of interactions [8] as the key molecu-
lar mechanisms relevant to complex diseases. Secondly, 
by a data-driven method, the concept of the expression 

(see figure on next page.)
Figure 1  Overview of DEVC-net on extracting discriminatively interpretable features of a gene network by combining gene expression, and 
expression variance/covariance. a The framework of conventional differential expression analysis (DEA). Only differential expression is considered in 
the conventional DEA, which can be estimated in a multiple-sample manner (e.g., P-value from statistic test) or in a single-sample manner (e.g., fold-
change). b The framework of conventional differential expression network (DEN). In the conventional DEN, the information of differential expression 
variance has not been considered. c The framework of the proposed DEVC-net. Compared to the conventional network-based approaches, DEVC-
net has two advantages: one is to use differential expression variance and the other is to design the measurements of differential expression vari-
ance/covariance in a single-sample case. Obviously, DEVC-net can be easily applied in a multiple-sample case. Note that, the gene is labeled in red 
if it has differential expression between case or control, and in green if has differential expression variance; The gene is labeled in black if there is no 
significant difference between case and control; The gene pair is labeled in red if the two genes have differential expression covariance, otherwise 
black; Besides, PPI means protein–protein interaction, and PCC means Pearson correlation coefficient.
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reversal of gene-pairs has been used to identify putative 
determinants (e.g. toggle-switch circuits) of cell fate [9], 
which reveals gene-pair expression signatures of line-
age control. Thirdly, although there are many underlying 
biological processes (e.g. transcriptional factors, regula-
tory genes, etc.) that can modulate the gene-pairs, these 
regulatory elements are usually not significant enough to 
be biomarkers or signatures due to biological natures or 
limits of bio-technology. For example, the network-based 
activity of TP53 rather than original expression can cor-
rectly indicate the disease status and treatment status 
[10]; and from non-differentially expressed genes, many 
gene-pairs have been found to display significantly dif-
ferential expression correlations [4], although the regu-
latory mechanism behind them are still unclear or hard 
detected. All these facts suggest that the gene-pair based 
approach (i.e. DEVC-net) is actually necessary and suit-
able in disease study or other general phenotype study, in 
addition to the conventional gene-based methods.

A proof-of-concept study of DEVC-net has been 
mainly conducted on the investigation of prostate can-
cer. Firstly, we show that the differential network has 
a new bi-coloured topological structure, characteriz-
ing the global expression changes between normal and 
diseased samples. DEVC-net has a sub-network that is 
mainly composed of genes/proteins controlling various 
biological processes, and particularly displays a non hub-
centred structure in keeping with the pathway structure. 
Secondly, by compared to genes with differential expres-
sion used in the traditional methods, the genes with 
the differential expression variance or gene-pairs with 
the differential expression covariance are shown to be 
new informative sources of local expression changes of 
a given patient, and can be used to identify discrimina-
tive genes and gene-pairs which are ignored previously. 
More importantly, DEVC-net quantitatively measures 
the expression levels or activities of different kinds of 
feature genes and their network or modules in one sam-
ple, which cannot be obtained in a traditional way. In 
particular, we found a significant differential module 
including genes/proteins with alternative splicing func-
tions, which is known as a key factor of the heterogene-
ity of prostate cancer. Therefore, DEVC-net indeed has 
clear advantages to effectively extract discriminatively 
interpretable features of gene/protein network for one 
sample, e.g., personalized dysfunctional gene network, 
even when disease samples are heterogeneous. Thus, 
DEVC-net can provide new features like gene-pairs, in 
addition to individual genes, to the analysis of the per-
sonalized diagnosis and prognosis from the perspective 
of systems medicine or precision medicine, and a better 
understanding on the underlying biological mechanisms 
(Additional files 1, 2, and 3).

Methods
The DEVC-net (Figure 1c) is proposed to model the dif-
ferential expression patterns among different samples 
with particular phenotypes (e.g., dissimilar patients) 
by integrating genes with the differential expressions 
(DEG), genes with the differential expression variances 
(DEVG) and gene-pairs with the differential expres-
sion covariances (DECG). Firstly, three measurements 
are designed to evaluate differential information: (1) the 
original expression level indicating DEG; (2) the absolute 
relative expression level indicating DEVG; and (3) the co-
expression level indicating DECG. Secondly, a differential 
score (DEVC) based on such divergent differential infor-
mation is proposed to quantify the differential network/
module. Then, a novel bi-coloured differential expression 
network, i.e. DEVC-net, can be constructed for groups 
of patients. The genes of DEG and DEVG stand for two 
kinds of nodes in the differential expression network 
(DEN) [11], and the gene-pairs of DECG are a group of 
edges in the network.

Obviously, the new numerical measurement DEVC can 
discriminatively quantify the expression state of different 
kinds of feature genes and their network in one sample, 
and DEVC-net can thus provide interpretable clues of 
diseases as a personalized dysfunctional gene network 
for each individual. Note that, the DEVC-net demands 
the case/control cohorts (e.g., each cohort should have 
at least two samples which ensure the availability of the 
estimated statistical values of the transcripts) although it 
would be difficult on rare diseases. All details are given as 
follows.

It should be emphasized that the DEVC-net mainly 
focuses on the extraction of novel features on gene net-
work level to characterize the disease, especially the dis-
ease state of individuals. By DEVC-net, we can obtain at 
least four kinds of features: the conventional genes with 
the differential expression; the new genes with the differ-
ential expression variance; the new gene-pairs with the 
differential expression covariance; and the new network 
module combined of the above three kinds of feature 
genes. In addition, the numerical measurements for these 
four kinds of features are also proposed and evaluated. 
Therefore, similar to the DEGs used in the traditional 
works, such output of DEVC-net can also be directly 
used in diagnosis and prognosis as quantitative criteria. 
In fact, DEVC-net exploits additional new information 
(e.g., absolute relative expression level and co-expres-
sion level) rather than only the expression level to iden-
tify new feature genes (e.g., DEVG and DECG), which 
can better separate case and control groups. Therefore, 
DEVC-net is actually a robust collection of feature genes 
(e.g., potential biomarker genes or gene-pairs). For a test 
sample to make a diagnosis, one only needs to identify 
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the genes with particular differential expression features 
based on the corresponding measurements (i.e., original 
expression level for DEG, absolute relative expression 
level for DEVG, co-expression level for DECG, and even 
differential score for differential module), and compare 
these genes or gene-pairs with the ones comprising the 
differential network.

To evaluate these new features derived from DEVC-
net, we have conducted a proof-of-concept study on 
real disease data: (1) We compared DEG and DEVG on 
discriminating/clustering disease samples by different 
numerical measurements, which demonstrates that the 
combination of DEG and DEVG with their correspond-
ing measurement has better performance (significance 
evaluated by P-value) than themselves (see the detail 
comparison study between DECG and DEG in previ-
ous work [4]); (2) Based on network modules, we fur-
ther compared different combinations of DEG, DEVG 
and DECG, and found that the best performances (sig-
nificance evaluated by P-value) were achieved when all 
three kinds of feature genes were combined together, 
which supports that DEVG and DCCG are meaningful 
and complementary to the conventional DEG; (3) Fur-
thermore, a representative network module is illustrated 
with DEG, DEVG and DECG, and their expression pat-
terns in individual patients, which reveals the dysfunc-
tional individual network; (4) As an important biological 
mechanism associated to such a representative network 
module, alternative splicing related to module genes is 
discussed in an independent dataset. In all, in addition to 
the individual genes, DEVC-net can provide new features 
like gene-pairs to the analysis of the personalized diag-
nosis and prognosis, and a better understanding on the 
underlying biological mechanisms. As one future work, 
we will apply the general classification or prediction 
model, e.g., logistic regression or decision tree, to learn/
train these new features for diagnosis and prognosis by 
balancing the sensitivity and specificity of disease test.

The analysis approach of DEVC-net has been imple-
mented as a package of Matlab scripts, and alternative R 
scripts will be available in near future. All codes can be 
requested from the authors.

Differential score based on differential expression, 
variance and covariance (DEVC)
A few notations are defined for convenience. For an 
expression network or a module, it has a node (gene) 
set V and an edge (gene-pair) set E; and a sample set is S 
including all control and case samples. The expression of 
gene n is en. Meanwhile, the sign of the regulation trend 
of gene n is sign(n) which is +1 when this gene is up-reg-
ulated and −1 when this gene is down-regulated; and the 
sign of the regulation trend of interacted genes m and n is 

sign(m, n) which is +1 when these two genes’ expression 
covariance/correlation increases and −1 when expres-
sion covariance decreases.

Differential gene expression
Given a gene x that has expression profiles in control sam-
ples as X and in case samples as X′, the expression vari-
ance of this gene in control condition is E((X − u)2) and 
in case condition is E((X′ − u′)2). Here, u and u′ are means 
of the expressions of gene x in control and case samples, 
respectively. Then, the conventional criterion and meas-
urement of a gene with differential expression (DEG) are:

where X or X′ is the original expression level, e.g., esn rep-
resents the expression of a gene n in a sample s from sam-
ple set S.

Differential expression variance
Differential expression of a gene requires the gene’s 
expressions under different conditions to distribute 
around different mean expression levels. Meanwhile, dif-
ferential expression variance can be defined as the dis-
tance between a gene’s original expression level and its 
mean expression level (e.g., deviation) that are signifi-
cantly different under different conditions, such as:

 Notice that how to measure the differential expression 
variance in one sample is one difficult problem. For exam-
ple, it cannot or is hard to determine which expression 
mean of u and u′ would be used to test the expression of 
a test sample. However, given a few genes in non-DEGs 
with the same u and u′, this set of genes can be quanti-
fied in one sample by the distances from their expression 
values to the same prior-estimated mean expression level. 
Therefore, the criterion and measurement of a gene with 
the differential expression variance (DEVG) for one sam-
ple analysis are:

where X or X′ is the original expression level, meanwhile 
|X − u| or |X′ − u′| is the absolute relative expression 

level, e.g., |esn −

∑

τ∈S

eτn

|S| | represents the absolute relative 

expression of a gene n in a sample s from sample set S.
Actually, given X or X′ satisfying normal distribution, 

|X − u| or |X′ − u′| will be folded normal distribution. 
Then the Wilcoxon rank sum test instead of Student’s 
T-test is used in significance test to reject or accept the 
null hypothesis.

(1)H0 : E(X) = E
(

X ′
)

; H0 rejected

H0 : E(|X − u|) = E
(

|X ′ − u′|
)

; H0 rejected

(2)

H0 : E(|X − u|) = E
(

|X ′ − u′|
)

; H00 : E(X) �= E
(

X ′
)

;

H0 and H00 rejected
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Differential expression covariance
Given two genes (x and y) that have expression profiles 
in control samples as X and Y and in case samples as X′ 
and Y′, the expression covariance of these two genes in 
control condition is E((X − u)(Y − v)) and in case condi-
tion is E((X′ − u′)(Y′ − v′)). Here, the u and u′ are the 
means of the expressions of gene x in control and case 
samples, respectively; meanwhile the v and v′ are the 
means of the expressions of gene y in control and case 
samples, respectively. The expression covariance between 
two genes will have a significant change when E((X − u)
(Y −  v)) and E((X′ −  u′)(Y′ −  v′)) are non-equivalent. 
Thus, the co-expression level C of a gene-pair (x and y) 
is introduced as the product of these two genes’ normal-
ized expression in one sample, e.g., C just equals (X − u)
(Y − v) in control condition and C′ is (X′ − u′)(Y′ − v′) 
in case condition. This roughly gives a criterion to judge 
the differential expression covariance of a gene-pair 
(the involved gene is DECG, e.g., gene with the differ-
ential expression covariance): the co-expression value of 
a gene-pair is significantly different in control and case 
conditions, e.g., E(C) = E(C′) rejected.

Obviously, the co-expression level can be conveniently 
used to support the conventional differential network 
analysis on multiple samples by indicating the differen-
tial correlation of a gene-pair under different conditions, 
but, it still has the difficulty to measure the differential 
gene-pairs in one sample [4]. This is because the average 
expressions of a gene x (or gene y) under control and case 
conditions are generally different (e.g., u ≠ u′), and thus, 
it cannot determine which estimated mean expression 
level u and u′ (or v and v′) would be used to normalize 
the expressions of a test sample. Using a strategy similar 
to the above DEVGs, we can find two special sub-sets 
of gene-pairs to make full use of differential expression 
covariance in single samples. One set contains gene-
pairs whose two genes have differential covariance but 
both do not have significant differential expressions (i.e., 
u = u′ = u*, and v = v′ = v*), and obviously this kind of 
gene-pairs can uncover new genes missed in the con-
ventional differential expression analysis. The other set 
has gene-pairs whose two genes have differential expres-
sion covariance and differential expression but satisfy: 
E((X − u*)(Y − v*)) = E((X′ − u*)(Y′ − v*)) rejected by 
the significance tests, where u* is the mean of the expres-
sions of gene x in all control and case samples and v* is 
the mean of the expressions of gene y in all samples. Thus, 
for a test sample, its expressions can be normalized by the 
estimated u* and v*. Therefore, the criterion and measure-
ment of a gene-pair (DECG) for one sample analysis is:

(3)

H0 : E
((

X − u∗
)(

Y − v∗
))

= E
((

X ′ − u∗
)(

Y ′ − v∗
))

;

H0 rejected

where X  −  u* or X′  −  u* (Y  −  v* or Y′  −  v*) is the 
relative expression level, C  =  (X−u*)(Y  −  v*) or 
C′ =  (X′ − u*)(Y′ −  v*) is the co-expression level, e.g., 

(esm −

∑

τ∈S e
τ
m

|S| )(esn −
∑

τ∈S e
τ
n

|S| ) represents the co-expres-
sion level of a gene pair between two genes m and n in a 
sample s from sample set S.

Actually, given X, X′, Y, or Y′ satisfying the normal dis-
tribution, (X − u*)(Y − v*) or (X′ − u*)(Y′ − v*) will be 
normal product distribution [12], and thus, the Wilcoxon 
rank sum test instead of Student’s T-test is used in signifi-
cance test to reject or accept the null hypothesis.

Differential score (DEVC)
Based on the above measurements for one gene’s expres-
sion, one gene’s expression variance and two genes’ 
expression covariance in individuals (as formula  1–3), 
an additive score DEVC is designed to measure the dif-
ferential expression of a group of genes as a network or 
sub-network/module in one sample (Note that, the addi-
tive score is a common strategy to measure the expres-
sion status or activity of network/module [13, 14]). The 
measurement of differential expression for a sub node-
set DEG is mDEG (formula 4); the measurement of dif-
ferential expression variance of a sub node-set DEVG 
is mDEVG (formula  5); the measurement of differential 
expression covariance of a sub edge-set DECG is mDECG 
(formula 6); thus, the integrative measurement of the dif-
ferential expression of whole network is differential score 
DEVC calculated as formula 7. In formula 4–7, V repre-
sents a set of nodes/genes; E represents a set of edges/
gene-pairs; S represents a set of all samples; and s rep-
resents a particular sample. Therefore, such four formula 
calculate different measurements/scores on nodes/genes 
and/or edges/gene-pairs on one sample, respectively.

(4)
mDEG(V ,E, s) =

∑

n∈V ,n∈DEG

sign(n)esn

(5)

mDEVG(V ,E, s) =
∑

n∈V ,n∈DEVG

sign(n)|esn −

∑

τ∈S

eτn

|S|
|

(6)

mDECG(V ,E, s) =
�

(m,n)∈E,(m,n)∈DECG

× sign(m, n)



esm −

�

τ∈S

eτm

|S|







esn −

�

τ∈S

eτn

|S|





(7)

DEVC(V ,E, s) = mDEG(V ,E, s)+mDEVG(V ,E, s)

+mDECG(V ,E, s)
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Note that, for a single score like mDEG/mDEVG/
mDECG, a network with more nodes tends to have a 
higher score value, and thus, it is necessary to include a 
normalization term (1/k or 1/sqrt(k) where k is the num-
ber of nodes or edges in this network) because there is 
a possibility to compare networks with different number 
of nodes, especially in those fields like network decom-
position or sub-network extraction [15]. However, in our 
work, we use the three measurements (i.e., formula 4–6) 
to evaluate the same network in different conditions (e.g., 
samples) rather than network comparison, so that the 
normalization term is not necessary here. In addition, if 
including the normalization terms, the combined score 
DEVC would be changed as a weighted form defined in 
formula 7, which is worthy of careful study in future.

Differential expression network quantified  
by differential score (DEVC‑net)
Particularly, DEVC can enhance the differential expres-
sion network (DEN) [11], which models differentially 
expressed genes as nodes and differentially correlated 
gene-pairs as edges on the network level. The so-called 
DEVC-net (Figure  1c) rather than DEN (Figure  1b) can 
analyse and measure differential expression of genes and 
gene-pairs in one sample simultaneously. The construc-
tion of DEVC-net includes the following three steps, 
which assumes to have a background network (e.g., PPI 
network) and expression data for case and control (e.g., 
disease and normal) samples.

1.	 Extracting DEVC-based differential interactions 
(Step c5 in Figure  1c): a gene pair as edge from a 
background network, e.g., PPI network, is selected 
only if its corresponding two genes have significant 
differential expression covariance (e.g., for DECG, 
the P value of Wilcoxon rank sum test for signifi-
cance on the co-expression level between case and 
control samples is no larger than 0.05).

2.	 Extracting DEVC-based non-differential interactions 
(Step c3 and c4 in Figure 1c): a gene pair from a back-
ground network is selected only if its corresponding 
two genes both have significant differential expres-
sion or differential expression variance (e.g., for DEG, 
the P value of T-test significance on the original 
expression level between case and control samples 
is no larger than 0.05; for DEVG, the P value of Wil-
coxon rank sum test on the absolute relative expres-
sion level between case and control samples is no 
larger than 0.05).

3.	 Constructing the DEVC-based differential expres-
sion network (DEVC-net in Step c6 in Figure 1c): The 
union of aforementioned two kinds of interactions 
can construct a novel differential expression network, 

which is able to characterize the alterations of genes’ 
expression, expression variance and expression 
covariance among case and control samples simulta-
neously.

Results
A proof‑of‑concept study of DEVC‑net on real gene 
expression datasets
As a proof-of-concept study of DEVC-net on complex 
diseases, we mainly carried DEVC-net analysis on the 
investigation of prostate cancer [16]. The gene expres-
sion dataset of prostate cancer was downloaded from 
NCBI GEO [17] with access ID GSE6099 [16]. It contains 
84 tissue samples with 8247 genes after pre-procession. 
This is a benchmark in feature study [18]. These previous 
researches focus on the differential expressions of indi-
vidual genes. By contrast, DEVC-net can discover those 
genes with differential expression variance or gene-pairs 
with differential expression covariance in one sample on 
the differential network level, which are generally previ-
ously disregarded. Specifically, we design an analysis and 
evaluation framework as follows:

1.	 Selecting genes with the differential expression 
(DEGs); genes with the differential expression variance 
(DEVGs); and gene-pairs with the differential expres-
sion covariance (DECGs). To select DEGs or DEVGs, 
the P-value of the significance of differential expres-
sion or differential variance is calculated and ranked 
from the least to the largest, and the Top-ranked N 
genes are chosen (where N is set to 1000 as the same 
as the previous study [18]). Match these genes with 
known disease genes from GeneCards database [19].

2.	 Constructing DEVC-net and obtain differential mod-
ules by MCL [20], where MCL has only one param-
eter I (inflation), which is set as 1.8 according to the 
empirical value [21, 22]; Note that, MCL algorithm 
(Markov Clustering) is a conventional network (mod-
ule) decomposition method [20], designed specifi-
cally for simple graphs (e.g., only network topology 
focused) and weighted graphs (e.g., both network 
topology and biological significance focused), whose 
basic assumption is that random walks on a graph will 
infrequently go from one natural cluster to another 
depending on estimated graph transition probability; 
Analyzing the network centralities of global and local 
topological structures of DEVC-net, e.g., closeness 
and betweenness [23, 24] or graph entropy [25, 26].

3.	 Measuring the expression state of differential mod-
ules in each sample by differential score DEVC and 
it’s several components; Use the quantified modules 
as new features to recognize disease samples from 
normal ones.
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Based on the selected genes and their measurements 
(e.g., expression level of DEGs or absolute relative expres-
sion level of DEVGs), the samples can be clustered into 
two groups (22 samples in the early stage v.s. 62 samples 
in the advanced stage [16]) by K-means. We run K-means 
on these genes’ corresponding expression profiles by 
1,000 times to avoid the bias in K-means analysis and the 
influence of parameters. And the accuracy of K-means 
is used to evaluate the efficiency of the extracted gene 
features. Given the known samples in n different pheno-
types that are:

While the gene clustering gives m gene clusters corre-
sponding to m candidate phenotypes:

Then, the identification accuracy, or the efficiency of 
extracted gene features, is calculated as:

where τ : [1,m]− > [1, n] is any map function. Obviously, 
the selected genes are the main factors to determine the 
downstream analysis performance, and the accuracy is 
used for performance evaluation.

Besides, a toy model has been given to show the con-
ventional features and our new ones in a simulated data 
with heterogeneous expression patterns (Figure S1), and 
the evaluations are also given on other datasets related to 
diabetes [27]. All these additional results can be seen in 
the supplementary files (Additional files 1, 2, and 3).

Bi‑coloured structure of dysfunctional gene network 
revealed by DEVC‑net
Different from conventional DEN [11], DEVC-net 
shows a bi-coloured topological structure, which con-
sists of one set of nodes representing DEGs and the 
other set of nodes representing DEVGs. Notice that 

{Si}
n
i=1

{Cj}
m
j=1

A =

max
τ([1,m])

m
∑

j=1

|Cj ∩ Sτ(j)|

n
∑

i=1

|Si|

there are a few genes as DECGs but they have no dif-
ferential expressions on genes/nodes. Focusing on 
genes/nodes, the DEGs induced sub-network in DEN 
(i.e., DEG-subnet using DEGs as nodes), the DEVGs 
induced sub-network (i.e., DEVG-subnet using DEVGs 
as nodes), and DEGs & DEVGs induced bipartite sub-
network (i.e., DD-subnet using edge to connect one 
DEG and one DEVG) are further investigated from the 
viewpoint of network centrality [24] of their topological 
structures. Notice that, these induced sub-networks are 
all based on the prior-known protein interaction net-
works [28]. Table 1 shows a significant characteristic of 
such a bi-coloured differential expression network: its 
component DEVG-subnet has the largest degree cen-
trality but the least closeness centrality, compared to 
the global or other local network structures. This phe-
nomenon indicates that the interactions among DEVGs 
prefer to link as a path rather than hub-centred struc-
ture in a general biological network (Figure 2c), which 
means that DEVGs would have long-term interactive 
pattern to achieve complicated control mechanism on 
a biological network involved in disease development 
and progression. Although DD-subnet has a particu-
lar bipartite topological structure (Figure 2d), its many 
centralities are similar to those of global DEVC-net 
(Figure  2a) or local DEG-subnet (Figure  2b), and thus 
this kind sub-network is still hub-centred. Besides, this 
characteristic of topological structure of DEVC-net has 
also been observed in the additional analysis on diabe-
tes in supplementary files.

As known, the degree centrality, or most other network 
centralities usually indicate an average effect. The high 
degree centrality means many nodes in a network would 
have high degree. By contrast, hub-centred structure 
expects only one or very few nodes with extremely high 
degree than others. In our experimental case, that means 
it is possible no one or so many nodes with extremely 
high degree than others, i.e. no node can be thought as 
a hub with significance. In addition, a simple example 
about such relation between degree centrality and hub-
structure have been illustrated and discussed in supple-
mentary document.

Table 1  The comparison of network centrality among different sub-networks of DEVC-net on prostate cancer dataset

# Node # Edge Degree Closeness Betweenness Entropy

DEVC-net 1,836 3,182 0.00189 0.15908 0.00163 6.90187

DEG-subnet 889 1,582 0.00400 0.17885 0.00323 6.23422

DEVG-subnet 112 95 0.01528 0.03202 0.00334 4.55011

DD-subnet 641 790 0.00385 0.11991 0.00467 6.03607
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New informative sources of disease genes and gene‑pairs 
extracted by the features of differential expression 
variance/covariance
Table  2 illustrates that, for the selected similar number 
of different gene features (e.g., top-1000 DEGs or DEVGs 
here), the original expression level of DEGs (DEG_ori) 
is naturally better than those of DEVGs (DEVG_ori) 
because the average accuracy of the sample-clustering 
based on DEGs (DEG_ori) for 1000 times is significant 
higher than that based on DEVGs (DEVG_ori), where 
P-value of T-test approaches zero. By contrast, the abso-
lute relative expression levels of DEVGs (DEVG_rel) are 
better than those of DEGs (DEG_rel), i.e., the P-value 
of T-test on the clustering accuracies for 1,000 times is 
close to zero too. This supports that the differential vari-
ances of genes are indeed important to indicate pheno-
types even though these genes would not be differentially 
expressed in the conventional analysis. It also indicates 
that the absolute relative expression level would be an 
appropriate measurement of DEVGs in a single sample. 
Particularly, the simple combinations of such two kinds 
of genes (DEG_ori & DEVG_rel, e.g., the combined top-
500 DEGs and top-500 DEVGs here) tend to achieve the 
best performance (i.e., this combined feature has the 
largest average accuracy is significant compared to other 

features), and thus DEVG and DEG would be comple-
mentary kinds of gene features, and capture the differ-
ential expression and differential expression variance for 
genes, respectively.

The enrichment of the known disease associated genes 
from GeneCards database [19] provides additional evi-
dence that genes with differential expression variance 
are also effective to catch the potential pathogen mecha-
nism. Totally, 1661 prostate cancer related genes were 
extracted from GeneCards; and 188 DEGs in Top-1000 
(P = 0.8615, which is calculated by hypergeometric test 
with the population as the above pre-processed 8247 
genes, and the same in bellows) were found to be pros-
tate cancer associated, while 225 DEVGs in Top-1000 
(P = 0.0223) were detected. Thus, in addition to the con-
ventional DEGs, new gene features (e.g., DEVGs) would 
lead to effective disease gene identification.

The DECGs (i.e., the genes from differentially corre-
lated gene-pairs in the previous edge biomarker study 
[4]) also represent complementary gene expression 
information (e.g., discriminate information in non-dif-
ferentially expressed genes), and the feature of expres-
sion covariance also represents new information [4]. In 
the analysis of DEVC-net, the original expression level of 
DEGs, absolute relative expression level of DEVGs, and 

Figure 2  Topological structures of DEVC-net and its sub-networks. a DEVC-net. b DEG-subnet, i.e., DEGs induced sub-network, which uses only 
DEGs from DEVC-net as nodes. c DEVG-subnet, i.e., DEVGs induced sub-network, which uses only DEVGs from DEVC-net as nodes. d DD-subnet, i.e., 
DEGs & DEVGs induced bipartite sub-network, in which every edge connects one DEG and one DEVG.

Table 2  The comparison on DEG and DEVG with particular measurements on prostate cancer dataset

Italic value indicates the best performance in method comparison.

* DEG_ori means that we selected genes with differential expression as features, and the original/raw expression values as measurements of these conventional fea-
tures used in the sample-clustering evaluation; Meanwhile, DEG_rel means that we selected genes with differential expression as features, but the proposed abso-
lute relative expression values as measurements of these conventional features. Similarly, DEVG_ori means that we selected novel genes with differential expression 
variances as features, but the original/raw expression values as measurements of these new features; DEVG_rel means that we selected novel genes with differential 
expression variances as features, and absolute relative expression values as suitable measurements of these new features. There are six strategies evaluated, and each 
strategy applied particular feature genes and corresponding measurements for sample-clustering. For each strategy, the sample–clustering has been rerun 1,000 
times, and the mean and variance of accuracies are the final performance of such a strategy.

Methods* DEG_ori DEG_rel DEVG_ori DEVG_rel DEG_ori & DEVG_ori DEG_ori & DEVG_rel

Mean of accuracy 0.7803 0.5825 0.5965 0.6262 0.7592 0.8871

Std of accuracy 0.0309 0.0520 0.0229 0.0217 0.0375 0.0918
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co-expression level of DECGs are used respectively by 
default.

Advanced discrimination on phenotypes indicated by the 
quantified personalized dysfunctional gene network 
and module
In addition to individual genes with the differential 
expressions, DEVC-net provides a new expression-
weighted (differential) sub-network [29] describing mal-
functions of a biological system in diseases. Although 
conventional differential network analysis [11, 29–31] 
is limited to indicate the network differences between 
groups of samples (e.g., normal and disease samples), 
DEVC-net can further indicate the network differences 
among individual samples by the personalized dysfunc-
tional gene network, and thus, it can enhance the pheno-
type identification, e.g., disease diagnosis or prognosis.

DEVC-net can be decomposed into differential mod-
ules by MCL approach as shown in Table S1. Based on 
these modules, the differential scores (e.g., activities of 
modules) instead of expression level of single genes are 
used to cluster samples. Compared to the conventional 
module-based methods, the differential score DEVC 
(mDEG + mDEVG + mDECG) and its six kinds of com-
ponents have been respectively used to classify the binary 
phenotypes, e.g., normal and prostate cancer samples.

In Table  3, the clustering performances demonstrate 
that: (1) the differential information involved in DEVGs 
or DECGs has observable discrimination ability on phe-
notype identification, although it is not better than the 
conventional DEGs when these different gene features 
are separately used to measure differential modules; (2) 
the combination of different gene features on quantifying 
network modules effectively promotes the clustering per-
formance, particularly, the clustering accuracy achieves 
the largest and most robust when combining DEGs, 
DEVGs and DECGs together, e.g., DEVC score.

To illustrate the personalized dysfunctional networks/
modules for individual patients and their ability on dis-
ease classification, a number of representative examples 
are shown in Figure  3. A prostate cancer related mod-
ule was investigated (due to its significant enrichment 

on KEGG prostate cancer pathway), which has DEGs as 
PDGFRB, PDGFB, SNX2, EGFR and DECGs as (PDG-
FRA, PDGFRB), (SNX4, PDGFRB), (PDGFB, PDGFRA), 
(SNX2, PDGFRA), (PDGFRB, PIK3R2), (EGFR, PIK3R2), 
(EGFR, AREG). Its personalized network structures 
for five normal samples and other 15 disease samples 
are displayed in Figure  3. Nodes with red/green colour 
represent genes with significantly high/low expression 
level; edges with red/green colour represent gene-pairs 
with significantly positive/negative co-expression. Obvi-
ously, the DEGs as PDGFB, SNX2, EGFR can discrimi-
nate many normal and disease samples, e.g., these genes 
tend to have high expression levels for the same patients. 
A few samples (PIN_3, PCA_2, MET_HR_1) seem not to 
satisfy this rule on the expression pattern, however, they 
have other possible discriminative features on edges: 
(PDGFB, PDGFRA) have high co-expression in PIN_3 or 
PCA_2 but not in other normal ones; (SNX4, PDGFRB) 
or (EGFR, AREG) have high co-expression in MET_HR_1 
but not in other normal ones. Thus, this example strongly 
explains the rationality of combining multiple differential 
expression patterns for distinguishing individual patients, 
e.g., reconstructing the personalized dysfunctional gene 
networks/modules.

Alternative splicing as the key factor of disease 
heterogeneity unravelled by a significant differential 
module
A module has been found to have a significantly dis-
criminative score as mDEG  +  mDEVG  +  mDECG 
but not as mDEG. Thus, this module tends to be easily 
under-estimated in the conventional differential network 
analysis. This module, as shown in Figure 4, has signifi-
cant discriminative scores of samples from control and 
case groups. Particularly, in this module, SRPK1 and 
SFRS4 are DEGs and SFRS3 and SFRS21P are DEVGs; 
meanwhile, SFRS5 is DECG because it has significantly 
differential correlation with SRPK1. Obviously, in the 
conventional differential expression analysis, only SRPK1 
and SFRS4 are selected and measured in the downstream 
analysis, which will miss much other important differen-
tial information. More importantly, these genes/proteins 

Table 3  The comparison on different combinations of feature genes of DEVC-net on prostate cancer dataset

Italic value indicates the best performance in method comparison.

* DEG means that we used only mDEG score (formula 4) to measure modules and applied these quantified modules for sample-clustering; DEVG means that we used 
only mDEVG score (formula 5); DECG means that we used only mDECG score (formula 6); DEG & DEVG means that we used the combination of DEG and DEVG; DEG & 
DECG means that we used the combination of DEG and DECG; DEVG & DECG means that we used the combination of DEVG and DECG; DEG & DEVG & DECG means 
that we used the combination of all, i.e., DEVC score (formula 7). For each combination, the sample–clustering has been rerun 1000 times, and the mean and variance 
of accuracies are the final performance of such a strategy.

Methods* DEG DEVG DECG DEG & DEVG DEG & DECG DEVG & DECG DEG & DEVG & DECG

Mean of accuracy 0.8333 0.5800 0.6831 0.8571 0.8452 0.6359 0.8631

Std of accuracy 0.0357 0.0460 0.1481 0.0119 0.0238 0.1003 0.0060
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in the differential module all have biological functions 
related to alternative splicing (AS), and a key factor of the 
heterogeneity of prostate cancer is just AS mechanism 
[32]. Thus, we further checked the module genes’ exon 
expressions by other public dataset [33]. Each heatmap 
in Figure 5 shows the expression profiles of some genes’ 
exons on different samples (normal samples are labelled 
in yellow, and disease samples are labelled in blue). Obvi-
ously, these genes have different exon expression patterns 
in disease samples, and the exons for one gene also have 
differential expression behaviours.

Discussion and conclusions
As a benchmark [18], the analysis on a prostate cancer 
dataset gave strong evidence: (1) the expression variance 
has additional new differential information comparing 
to the differential expression; (2) the DEVC-based differ-
ential expression network (DEVC-net) has a bi-coloured 
structure, in which DEVGs are particularly connected as 
a pathway rather than general hub-centred network; (3) 
the differential modules from DEVC-net can be quanti-
fied by a differential score in single samples, which have 
improved discriminative ability on phenotypes than the 

Figure 3  Personalized dysfunctional gene networks based on differential module related to prostate cancer. This module has its significant 
enrichment on KEGG prostate cancer pathway. It includes four DEGs as PDGFRB, PDGFB, SNX2, EGFR, and seven gene-pairs of DECGs as (PDGFRA, 
PDGFRB), (SNX4, PDGFRB), (PDGFB, PDGFRA), (SNX2, PDGFRA), (PDGFRB, PIK3R2), (EGFR, PIK3R2), (EGFR, AREG). The personalized network structures 
of this module have been displayed on five normal samples and other 15 disease samples, in which nodes with red/green colour represent genes 
with significantly high/low expression level, and edges with red/green colour represent gene-pairs with significantly high/low co-expression level.

Figure 4  A module with a significantly discriminative score as 
mDEG + mDEVG + mDECG but not as mDEG. This module has 
significant discriminative scores of samples from control and case 
groups, whose DEGs are in red, DEVGs are in blue and DECGs are in 
pink. Particularly, in this module, SRPK1 and SFRS4 are DEGs; SFRS3 
and SFRS21P are DEVGs; meanwhile, and SFRS5 is DECG because it 
has significantly differential correlation with SRPK1. Obviously, in the 
conventional differential expression analysis, only SRPK1 and SFRS4 
are selected and measured in the downstream analysis, meanwhile 
other feature genes would be under-estimated.
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conventional DEGs based methods. Meanwhile, DEVC-
net also achieves consistently superior performances on 
the diabetes dataset (seeing supplementary files).

In fact, the module or gene set based quantification of 
differential gene expression has been known to have the 
effect for avoiding the false-positive observation on sin-
gle genes. Meanwhile, the divergent differential meas-
urements on gene expression (e.g., expression variance 
and expression covariance) can further extract differen-
tial information of gene network/module, and thus the 
DEVC-net can have strong discriminative ability on phe-
notypes by combining the power of network inference 
and its measurements in single samples.

To extract the personalized dysfunctional gene net-
work, DEVC score and its based network analysis DEVC-
net were proposed. The gene expression, expression 
variance and expression covariance all characterize diver-
gent expression patterns involved in the gene network 
and its modules, which provide interpretable clues on 
characterizing complex diseases. The differential score 
DEVC can effectively quantify the differential expres-
sions of a gene network by combining original expression 
levels (for DEGs), absolute relative expression levels (for 
DEVGs) and co-expression levels (for DECGs), which 
extract the discriminative features of the gene network in 
one sample as the personalized dysfunctional gene net-
work for identifying diseases. As a future topic, it is worth 
further studying the optimal classification model based 
on DEVC-net for network biomarker [2] or dynamical 
network biomarker (DNB) [34, 35], which are necessary 
to the translational medicine, especially the personalized 
medicine or precision medicine.
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