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We have generated a transgenic mouse where hVEGF-A165 expression has been silenced with loxP-STOP fragment, and we
used this model to study the effects of hVEGF-A165 over-expression in mice after systemic adenovirus mediated Cre-gene
transfer. Unlike previous conventional transgenic models, this model leads to the expression of hVEGF-A165 in only a low
number of cells in the target tissues in adult mice. Levels of hVEGF-A165 expression were moderate and morphological changes
were found mainly in the liver, showing typical signs of active angiogenesis. Most mice were healthy without any major
consequences up to 18 months after the activation of hVEGF-A165 expression. However, one mouse with a high plasma hVEGF-
A165 level died spontaneously because of bleeding into abdominal cavity and having liver hemangioma, haemorrhagic
paratubarian cystic lesions and spleen peliosis. Also, two mice developed malignant tumors (hepatocellular carcinoma and
lung adenocarcinoma), which were not seen in control mice. We conclude that long-term uncontrolled hVEGF-A165 expression
in only a limited number of target cells in adult mice can be associated with pathological changes, including possible
formation of malignant tumors and uncontrolled bleeding in target tissues. These findings have implications for the design of
long-term clinical trials using hVEGF-A165 gene and protein.
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INTRODUCTION
Vascular endothelial growth factor (VEGF-A) was the first

identified member of the family that now includes placental

growth factor (PIGF) and several other VEGFs (VEGF-B,-C,-D,-

E) [1,2]. Since then the VEGF family has been shown to play

a major role in vascular permeability, angiogenesis and lymphan-

giogenesis both during embryonic development and in adults.

VEGFs have also been used in clinical applications as recombinant

proteins or gene therapy [3,4]. However, long term effects of

moderate VEGF over-expression in adults have not been

characterized in the context of recombinant protein or gene

therapy.

Due to the fundamental requirement of VEGF-A in embryonal

development it has been impossible to create viable knockout

models for VEGF-A. Even by knockout of a single VEGF-A allele

mice were unable to survive [5–7]. Also, mice expressing only

VEGF-A120 but no longer isoforms die within two weeks after

birth because of the cardiac failure [8]. VEGF-C knockout mice

die due to the lack of lymphatic vessels, while VEGF-C+/2 mice

survive despite of the defects in lymphatic vessels [9.10]. In

contrast to VEGF-A and VEGF-C knockout mice VEGF-B,

VEGF-D and PIGF deficient mice are viable, and PIGF and

VEGF-B double-knockout mice showed no significant vascular

phenotype [11–13]. Several transgenic mouse models have been

generated using the members of the VEGF family. Transgenic

VEGF-A has been expressed in the skin, eyes, lungs, heart or liver

under tissue specific promoters [14–18]. Also, PIGF transgenic

mice have been described [19]. Similar results have been reported

from these models, showing that all mice have increased

vascularization and vascular permeability. In contrast, studies

with transgenic mice over-expressing VEGF-C and VEGF-D

under keratinocyte or pancreas specific promoters have demon-

strated the role of these growth factors mainly in lymphangiogen-

esis [20–22]. However, in all these models VEGFs are typically

expressed in every cell of the target tissue and the models may not

fully predict outcome after gene therapy applications where

transduction efficiency is typically ,1–5% of the cells in target

organ [23,24].

We have generated a transgenic mouse model containing in its

genome a loxP-STOP inactivated hVEGF-A165 expression

cassette, which can be activated by Cre gene transfer in any

tissue at any point during life [25]. The main reason for the

generation of the current transgenic model was to evaluate

potential long-term side effects of therapeutic hVEGF-A165 gene

transfer. In this construct we have used the same type of enhancer

as we have used in our previous gene transfer studies, but

employed a more methylation-resistant promoter in order to

achieve a long-term expression (CMV immediate early enhancer

and the chicken b–actin promoter) [23,26]. In the present study
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we have used this mouse model to study short and long-term

effects of hVEGF-A165 over-expression on the pathology of liver

and various other tissues. Systemic AdCre gene transfer was

chosen for the study since this leads primarily to the activation of

hVEGF-A165 in the liver, which is the most common site of

unintended biodistribution of adenoviruses after in vivo gene

transfer [27,28].

RESULTS AND DISCUSSION

Testing of the hVEGF-A165 expression cassette and

Short-term effects
Before creating transgenic mice the pFlox construct (Figure 1) was

tested in vitro and the cassette was found functional causing

a strong hVEGF-A165 expression after AdCre-mediated excision

of the STOP fragment. AdCre and pFlox treated cells expressed

hVEGF-A165 efficiently reaching the peak expression at 24 h after

the transduction. Cells transduced with pFlox alone or hVEGF-

A165 transgenic mice without gene transfer did not express any

detectable amounts of hVEGF-A165 during the follow-up time.

The functionality of the hVEGF-A165 transgene in vivo was

verified by MRI, where typical changes were seen as discrete

edema localized under the skin in all transduced muscles and their

fascia and also in the fat tissue due to increased vessel permeability

(Figure 2 and Table 1A). We used ELISA to measure the levels of

hVEGF-A165 in order to see total protein levels of the transgene

both in sera and tissues. The possible gross-reactivity was tested

after local gene transfer and no correlations were found between

mouse endogenous VEGF-A164 and hVEGF-A165 levels in the

control and the AdCre transduced transgenic mice (Figure 2).

Systemic AdCre gene transfer via tail vein was done to 31

transgenic mice and 10 control mice at the age of 2 months. Also,

10 additional transgenic mice were injected with saline or

AdLacZ. One week after activation a wide range of hVEGF-

A165 concentrations were detected in sera of the transgenic mice.

We estimate that only 0.1 to 5% of all cells in the liver were

transduced after the AdCre gene transfer and the levels of

Figure 1. Shematic representation of pFlox hVEGF-A165 cassette, where
VEGF expression is activated by Cre-mediated excision of STOP cassette
and expression of human hVEGF-A165 in vitro after AdCre mediated
transduction of NIH-3T3 cells with plasmid loxP-STOP-hVEGF-A165.
CAG = CMV-IE enhancer+chicken b-actin promoter; triangle = loxP,
a 34 bp long recombination sequence; STOP = DNA element to prevent
VEGF expression; hVEGF-A = human VEGF-A165 cDNA; pA = rabbit b-
globin polyadenylation signal.
doi:10.1371/journal.pone.0000013.g001

Figure 2. Edema after AdCre mediated local gene transfer detected by MRI and results from human and mouse ELISA analyses after local GT. Discrete
edema (white areas pointed with arrows) is clearly visible between day 1 and day 7 under the skin in T2 weighted MRI images in the transduced leg
muscles, their fascias, and in the fat tissue within the transduced muscles. ELISA assays were done as described in the Methods.
doi:10.1371/journal.pone.0000013.g002
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hVEGF-A165 were only moderate in comparison to the transgene

expression levels achieved in tissues in previously generated

transgenic VEGF-A models where all cells in a given tissue

express the transgene. For example Dor et al [18] were able to

achieve 7- to 11-fold increases in hVEGF-A165 expression as

compared with the level of endogenous mVEGF-A164 After 1 week

the levels of hVEGF-A165 in serum were ,50% of the levels

achieved after direct gene transfer with adenoviruses encoding

hVEGF-A165 [26]. During the next 3–4 weeks (Figure 3A) serum

hVEGF-A165 levels decreased. This could be due to the immune

response against adenovirus or toxicity of Cre, even if no signs of

pathological responses were found in clinical chemistry or

histological sections; apoptotic cells were present in all livers

transduced with AdCre, but also in the control mice (data not

shown) and no major abnormalities were seen (ASAT and CRP)

between the groups (Figure 3B and C). The promoter area was

selected to be more resistant to methylation (the chicken b–actin

promoter) and in contrast to serum levels, low expression of

hVEGF-A165 was present in many tissues even after 18 months as

analyzed with ELISA (Table 1) and RT-PCR (Figure 3D).

Adenoviral gene expression after systemic gene transfer is

typically seen in the liver, heart, kidneys, spleen and lungs [27].

Accordingly, changes in histology after hVEGF-A165 expression

were seen in the liver, heart and spleen in most mice, but usually

not in the lungs or in the kidneys (Table 1). This can be explained

by comparison of the human and mouse endogenous VEGF-A

protein levels in different tissues. In the lungs the maximal

hVEGF-A165 protein expression levels were only 2–8% of the

mVEGF-A164 levels and in the kidneys hVEGF-A165 protein

expression rapidly decreased to low or undetectable levels. At the

early time points, 1–4 weeks after the AdCre gene transfer,

histopathological changes were found only in the livers (Figure 4A–

C). An increased number of capillaries featured active angiogen-

esis: formation of glomeruloid bodies, increased sprouting and

branching, sac-like structures and focal hemangioma-like struc-

tures (Figure 4C). The number of capillaries correlated with the

number of proliferating hepatocytes (PCNA positive nuclei) and

the expression levels of hVEGF-A165 (Figure 4D). Similar results

have been seen in transgenic mice which express hVEGF-A165 in

the liver [18,29–30].

Long-terms effect of hVEGF-A165

Within 6–18 months after the AdCre gene transfer increased

vascularization and proliferation of hepatocytes persisted in the

livers, but morphological abnormalities and signs of active

angiogenesis were less common (Figure 5A). All mice were healthy

without any major consequences up to 13 months and only minor

changes were seen: Out of 19 mice in the long-term follow-up

group one mouse had a hepatic focal basophilic hyperplasia of

500 mm in diameter containing cells with a high amount of fat

(Figure 5B). In heart, we found discrete edema and in two mice

epicardial calcification was present (Figure 5C, E), which can be

explained by hVEGF-A165 capacity to increase bone formation

[31]. In one mouse the fallopian tube was highly vascularized

(Figure 5F) and in other mouse increased vascularization,

occasional focal fibrosis and paraductal lymphocytic infiltration

was found in pancreas. Also, testis of the same mouse was highly

vascularized (Figure 5G–J). No changes were found in ovaries and

kidneys. Generally, all angiogenic changes were found at the level

of capillaries and arterioles/venules and featured increased

Table 1.
A. Human and mouse VEGF-A ELISAs (pmol/mg) from tissue samples after systemic AdCre gene transfer (mean+/2SD)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hVEGF-A165 mVEGF-A164

tissues controls 2 weeks after GT 4 weeks after GT 6–18 months after GT controls after GT

kidney ,min 13.1+/24.9 4.5+/23.3 ,min 36.0+/215.4 33.2+/211.2

pancreas ,min 1.8+/20.3 2.0+/20.4 0.6+/20.2 27.4+/212.5 22.1+/210.0

spleen ,min 4.6+/20.4 4.7+/20.9 5.1+/22.7 16.2+/212.6 10.1+/26.8

liver ,min 54.6+/239.4 15.7+/218.9 11.2+/24.2 36.4+/233.3 29.3+/228.3

heart ,min 5.2+/21.0 3.4+/21.7 2.1+/20.9 19.5+/28.7 10.3+/23.9

lung ,min 5.2+/22.7 5.9+/21.5 4.5+/22.1 118.8+/260.8 128.0+/280.4

GT:gene transfer
DOI: 10.1371/journal.pone.0000013.t001

B. Summary of morphological changes in tissues after activation of hVEGF-A165 expression.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vasculature controls 2–4 weeks after GT (n = 12) 6–18 months after GT (n = 19)

Increased number NF liver liver, pancreas, testis, tuba uterina

dilatation NF liver liver, heart, testis

edema NF heart heart

hemangioma/angiomatous lesion NF NF liver, tuba uterina

peliosis NF NF spleen

Non-vasculature controls 2–4 weeks after GT (n = 12) 6–18 months after GT (n = 19)

cell prolifiration NF liver liver

calcification NF heart heart

malignancy NF NF liver, lungs

GT:gene transfer, NF: not found
DOI: 10.1371/journal.pone.0000013.t002..
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number of vessels, enlargement of vessels and local angiogenic

activity.

At the eighteen months follow-up after the gene transfer major

consequences were seen; one mouse developed a hepatocellular

carcinoma in the liver and another had a papillary adenocarci-

noma in the lungs (Figure 6A, B). Both of these mice had moderate

expression levels of hVEGF-A165 in serum after 1 week (240 and

710 pg/ml). We and others have previously seen spontaneous

carcinomas in the liver in many mouse models, especially in old

female mice with balb/C background [32] and also the transgenic

expression of hVEGF-A165 especially in the lungs was low (mouse

endogenous VEGF-A164 levels were 25 times higher than hVEGF-

A165). Still, we cannot exclude the possibility that hVEGF-A165

played a role in the formation of tumors by inducing the growth of

dormant tumors or by some other mechanism, especially in the

case of hepatocellular carcinoma. In contrast of activated trans-

genic mice only benign tumors were found in control mice with

the same age (wt with Ad gene transfer or transgenic mice without

activation); a thecoma in the fallopian tube and an adenoma in the

lungs. One hVEGF-A165 transgenic mouse died spontaneously

16 months after the gene transfer with abdominal cavity full of

blood and serum levels of hVEGF-A165 still over 500 pg/ml.

Many changes were seen macroscopically in different tissues of this

mouse (Figure 6C–E). Microscopically a pendulating cavernous

hemangioma (7 millimetres in diameter) was present in the liver

with weak focal hVEGF-A165 immunoreactivity (Figure 6F–H).

Also, the spleen showed a combination of fibrous scars, which

were reminiscent of Gandy-Gamna nodules described as a conse-

quence of focal haemorrhage and dilated cystic spaces which were

focally filled with blood resembling peliosis (Figure 6I–K). In the

same animal the whole paratubary area was highly vascularized

and revealed focal hVEGF-A165 positivity with signs of old

Figure 3. Expression of human and mouse VEGF-A after AdCre gene transfer in vivo. A. hVEGF-A165 ELISA from sera after AdCre gene transfer. B. ASAT
values in transgenic and control mice after AdCre gene transfer. C. CRP values in transgenic and control mice after AdCre gene transfer. D. Expression
of hVEGF-A165 mRNA using RT-PCR. Lanes; 1 = Aorta, 2 = pancreas, 3 = kidney, 4 = heart, 5 = spleen, 6 = liver, 7 = positive control and 8 = liver without
RT (500 bp pointed with an arrow). ,500 and .500 in B and C refer to hVEGF-A165 serum levels in two subgroups of transgenic mice.
doi:10.1371/journal.pone.0000013.g003

Figure 4. Short term histopathological changes in the liver four weeks after gene transfer. A. Increased number of capillaries showing branching and
sprouting (CD 34 immunostaining). Insert: PCNA immunostaining in nuclei correlated positively with the degree of angiogenesis. B. Control liver only
revealed weak positivity in hepatic vein branches (CD 34 immunostaining). C. Details of neovascularization in the liver: formation of glomeruloid
bodies and enhanced sprouting and branching (pointed with arrows, CD 34 immunostaining). D. Vascularization and proliferation in livers after AdCre
gene transfer. ELISA values refer to two subgroups of mice with low and high hVEGF-A165 levels in serum. Bar: A insert, C–50 mm; B–100 mm. GT: gene
transfer, cap/mm2: capillaries/mm2, NF: not found, * p,0,05.
doi:10.1371/journal.pone.0000013.g004
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haemorrhage and thrombus formation in dilated cystic paratubary

spaces. (Figure 6L–N). All of these findings can be connected with

local over-expression of hVEGF-A165.

In conclusion, we have created a transgenic mouse model which

over-expresses hVEGF-A165 after Cre-protein gene transfer. By

using different vectors, tissue specific promoters and local gene

transfer techniques hVEGF-A165 expression can be targeted in

desired tissues and cell types in adult mice. In this model the levels

of hVEGF-A165 expression were moderate and typical angioge-

netic changes were mostly found in the liver, but also in some

other tissues after systemic gene transfer. Most mice were healthy

without any major consequences up to 18 months. However, one

mouse died spontaneously because of bleeding into abdominal

cavity and having liver hemangioma, haemorrhagic paratubarian

cystic lesions and spleen peliosis. Also, two mice developed

malignant tumors (hepatocellular carcinoma and lung adenocar-

cinoma). Thus, we concluded that uncontrolled long-term

expression of hVEGF-A165 may cause significant pathological

changes in target tissues and tight regulation of the transgene

expression seems to be a prerequisite for all therapeutic

applications aiming at long-term expression of hVEGF-A165.

METHODS

Generation of the Cre controlled human VEGF-A165

expression cassette
An oligonucleotide containing restriction sites for Xho I and Sda I

was cloned into a Bgl II+Dra II2digested pcDNA3 vector

(Invitrogen). The resulting plasmid was named pcDNAmcs. A

Sal I and Pst I fragment containing CAG promoter (consisting of

the CMV immediate early enhancer and the chicken b–actin

promoter) and rabbit b-globin polyA from pCAGGS plasmid (a

generious gift from Prof. Jun-ichi Miyazaki) was cloned into XhoI/

SdaI cut pcDNAmcs. A loxP site containing an MCS oligo linker

was cloned into the EcoRI site of the plasmid. The resulting

plasmid was named pCaGGSmcs. A BamHI digested and blunted

STOP-cassette (consisting of the SV40 early polyadenylation

signal and a splice donor signal [33] from the pBS302 (RIKEN

DNA Bank) was incorporated into Pml I site of the pCAGGSmcs.

The resulted plasmid was digested with EcoRI and EcoRV and

ligated with hVEGF-A165 cDNA (digested by EcoRI and EcoRV

from pCMV-hVEGF-A165). The resulting plasmid was named as

pFlox (Figure 1) and first tested in NIH-3T3 cells which were

tranduced by Cre adenovirus (containing Cre gene under CMV

promoter) at MOI 500. 12 h after transduction, cells were

transduced with the pFlox plasmid. Medium samples were taken

for human VEGF-A ELISA analysis (R&D Systems, Minneapolis,

USA) at different time points.

Experimental animals
pFlox plasmid was digested with Sal I/Asc I and the resulting

fragment was microinjected into the CD2F1 hybrid mice (Balb/C

x DBA2). Transgenic mice were analyzed from tail genomic DNA

by PCR using specific primers for hVEGF-A165 (59-ccat-

gaactttctgctgtc-39 and 59-tcgtgagattctgccctc-39) and an internal

control gene (ApoB with primers 59-attgccttagatagtgcc-39 and 59-

tttgctagatttacacgg-39), F6 generation mice were used for the

experiments. hVEGF-A165 transgenic mice (n = 31) and control

Figure 5. Long-term histopathological changes after activation of hVEGF-A165 expression. A. Liver: Dilated hepatic vein branches and mild dilatation
of the sinuses (marked with *) (Haematoxylin-eosin). B. Liver: focal basophilic hyperplasia consisting of fat-filled hepatocytes (pointed with arrows),
(Haematoxylin-eosin). C. Heart: epicardial calcification in ventricular myocardium (pointed with an arrow), (Haematoxylin-eosin, insert Alizarin RedS
staining specific for calcium). D. Control heart. (Haematoxylin-eosin). E. Heart: ventricular myocardium revealed discrete edema and dilatation of
subepicardial vessels (CD 31 immunostaining). F. Tuba uterina revealed high vascularization and focally dilated venules and arterioles (pointed with
arrows), (CD 31 immunostaining). G. Pancreas with focally increased vasculature (Haematoxylin-eosin). H. Control pancreas. (Haematoxylin-eosin). I.
Testes with increased and dilated vasculature (pointed with arrows), (CD 31 immunostaining). J. Control testes. (CD 31 immunostaining). Bar: A, B, C,
D, I,J - 200 mm, G, H, E- 100 mm, F- 500 mm.
doi:10.1371/journal.pone.0000013.g005
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mice without the transgene (n = 10) were injected via tail vein with

recombinant E1-partial E3-deleted first generation serotype 5 Cre

adenovirus (16109 pfu). Another group of transgenic mice (n = 10)

were also injected with saline and served as additional controls. A

subgroup of animals were sacrificed 1 to 4 weeks after the gene

transfer and the rest of the mice were sacrificed 6 to 18 months

after the gene transfer. Diet and water were provided ad libitum.

Blood samples were taken and circulating hVEGF-A165 and

endogenous mVEGF-A164 levels were measured from tail vein

plasma samples at various time points after the gene transfer with

enzyme-linked immunoassays (R&D; Quantikine, human VEGF-

A and mouse VEGF-A). Routine clinical chemistry assays for

aspartyl aminotransferase (ASAT) and C-reactive protein (CRP)

were done with EcolineR25 (Merck Diagnostica) and Quickread

CRP (Orion Diagnostica kits). During gene transfers animals were

anesthetized using s.c. fentanyl-fluanisone (3.15 and 10 mg/kg)/

midazolam (5 mg/kg). Mice were sacrificed using carbon dioxide.

The arterial tree was perfused with PBS. Tissues samples were

Figure 6. Major changes after 16-months after activation of hVEGF-A165 expression. A. Liver: Encapsulated hepatocellular carcinoma was highly
necrotic and focally calcified (Haematoxylin-eosin). B. Lung: Papillary adenocarcinoma. (Haematoxylin-eosin). C. Macroscopical changes in liver (box
shows the area of the microscopical sections in F–H). D. Macroscopical changes in spleen, control spleen on the left (microscopical sections in I–K). E.
Macroscopical changes in paratubarian area (microscopical sections in L–N). F. Cavernous hemangioma featuring focal hyalinization. G. The same
tumor mass area with higher magnification (haematoxylin-eosin). H. Weak focal hVEGF-A165 immunoreactivity was present in the same area (True
Blue as a chromogen), arrows indicate positive cells. I–K. Fibrous scars formed by collagenous and elastic fibres surrounded by dilated cystic spaces,
focally filled with blood and revealing inconsistently CD34 positive lining. I. Hematoxylin-eosin. (an arrow points to an area shown in K) J. CD34
immunostaining. K. The same area as in I with higher magnification (stained with Masson Trichrom). Asterix in I and J indicate the same area. L.
Cystically dilated paratubarian spaces with signs of old haemorrhage and thrombus formation (marked with *), an open circle points to an area which
was highly vascularized as shown in M. (CD31 immunostaining) and a box indicates an area which revealed focal hVEGF-A165 immunopositivity
shown in N. (hVEGF-A165 immunostaining). Bar: F, I, J - 500 mm, G, H, K - 100 mm, A, B, M, N - 200 mm L - 1000 mm.
doi:10.1371/journal.pone.0000013.g006
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collected for the analysis of transgene expression [34] and either

post fixed for 2 h (4% paraformaldehyde) and embedded in

paraffin or frozen in liquid nitrogen for RNA and protein analyses.

All animal experiments were approved by the Animal Care and

use Committee the University of Kuopio.

MRI and ELISA cross-reaction test
Another group of transgenic (n = 8) and control (n = 4) mice were

transduced by AdCre or Ad-Tie-Cre or Ad hVEGF-A165

(161010 pfu/ml) in a total volume of 100 ml distributed into the

distal hind limb and into the calf of the left hind limb. Right hind

limbs served as controls. Only mice which were transduced by

AdCre were followed up with MRI, others were used to evaluate

possible cross-reaction by ELISA. MRI was performed at 1, 4, 7,

14, 21, 28, and 42 days after the gene transfer. Mice were

anesthetized and positioned with straight-tighten hind limbs inside

a surface coil. MRI was performed at 9.4 T vertical Oxford

magnet (Oxford Instruments, Eynsham, UK) interfaced to a SMIS

console (Surrey Medical Imaging Systems, Guilford, UK). Fat

saturation was used in all MRI experiments. T2-weighted imaging

was performed using a spin echo sequence with two adiabatic

refocusing pulses. Total echo time (TE) was 44 ms, repetition time

(TR) 2000 ms, resolution 2566128, field-of-view (FOV)

22622 mm2 with 4 averages.

Immunohistochemistry
For immunohistochemical analysis, serial sections (6 mm) were cut

and used for stainings. Sections were routinely stained with

hematoxylin-eosin and in selected cases with Masson Trichrom,

PAS, and Alizarin Red S method for calcium in order to analyze

basic changes in different tissues. Tissue vascularization was

assessed by immunostaining with CD34 antibody (HyCult

biotechnology BV, clone MEC 14.7, dilution 1:20). Antigen was

visualized by avidin-biotin-HRP system (Vectastain ABC kit,

Vector Laboratories). Endogenous avidin-biotin activity in liver

was blocked by avidin/biotin blocking kit (Avidin/biotin Blocking

kit, Vector Laboratories). Additionally, anti-CD 31 rat anti-mouse

monoclonal antibody (PECAM-1, BD Pharmingen, clone

MEC13.3, 1:50) and LYVE-1 primary rabbit anti-mouse mono-

clonal antibody (dilution 1:1000) were used to assess the vascular

system [35]. Both antigens were detected using tyramide signal

amplification (TSA Biotin System, PerkinElmer). Hepatocellular

proliferation was analyzed by immunostaining for proliferating cell

nuclear antigen (PCNA, Neomarkers, clone PC 10, dilution

1:500). Antigen was detected using the DAKO ARK kit

(DakoCytomation Denmark A/S, Glostrup, Denmark). Human

VEGF-A (polyclonal goat, R&D Systems, 1:500) was detected

using avidin-biotin-HRP system (Vectastain ABC kit, Vector

Laboratories). The signal was visualized with DAB (Zymed, South

San Francisco, CA) or True Blue (KPL, Maryland, USA) as

a chromogen. ApoTaq kit was used to evaluate apoptosis in

livers after the gene transfer. Number of capillaries and apoptosis

in the liver sections was counted in five randomly selected fields at

200x magnification using Olympus AX70 microscope [26]

(Olympus Optical, Japan) and AnalySIS software (Soft Imaging

System).

RT-PCR and protein extractions
Total RNA was isolated with TRIzol compound (Invitrogen).

RNA was DNAse treated and digested before cDNA synthesis

with Eco 130I, which cuts the DNA in the middle of the

amplification area in order to get rid of possible genomic

contamination. cDNA was synthesized from the total RNA with

Superscript II (Invitrogen) using random primers. Amplification of

the transgene was performed using inner primers for hVEGF-A165

as described [36]. Proteins were extracted with T-PER Tissue

Protein extraction reagent including HaltTM protease inhibitors

and total protein contents were assayed with BCATM Protein Assay

kit (Pierce, USA).

Statistical analysis
All statistical analysis were done using modified t-test (SPSS 7.5,

SPSS Inc). Data are expressed as mean6SD and value of P,0.05

was considered significant.
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