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Abstract: Striated muscle has especially large energy demands. We identified 97 genes preferentially
expressed in skeletal muscle and heart, but not in aorta, and found significant enrichment for
mitochondrial associations among them. We compared the epigenomic and transcriptomic profiles of
the 27 genes associated with striated muscle and mitochondria. Many showed strong correlations
between their tissue-specific transcription levels, and their tissue-specific promoter, enhancer, or
open chromatin as well as their DNA hypomethylation. Their striated muscle-specific enhancer
chromatin was inside, upstream, or downstream of the gene, throughout much of the gene as a
super-enhancer (CKMT2, SLC25A4, and ACO2), or even overlapping a neighboring gene (COX6A2,
COX7A1, and COQ10A). Surprisingly, the 3′ end of the 1.38 Mb PRKN (PARK2) gene (involved in
mitophagy and linked to juvenile Parkinson’s disease) displayed skeletal muscle/myoblast-specific
enhancer chromatin, a myoblast-specific antisense RNA, as well as brain-specific enhancer chromatin.
We also found novel tissue-specific RNAs in brain and embryonic stem cells within PPARGC1A
(PGC-1α), which encodes a master transcriptional coregulator for mitochondrial formation and
metabolism. The tissue specificity of this gene’s four alternative promoters, including a muscle-
associated promoter, correlated with nearby enhancer chromatin and open chromatin. Our in-depth
epigenetic examination of these genes revealed previously undescribed tissue-specific enhancer
chromatin, intragenic promoters, regions of DNA hypomethylation, and intragenic noncoding RNAs
that give new insights into transcription control for this medically important set of genes.

Keywords: skeletal muscle; heart; enhancer; epigenetics; DNA methylation; mitochondria; mitophagy;
Parkinson’s disease; PGC-1α/PPARGC1A; PRKN/PARK2

1. Introduction

Striated muscle consists of skeletal muscle (SkM), the largest organ in the body, and
heart muscle, whose malfunction is responsible for approximately 30% of deaths globally [1].
This type of muscle is characterized by repeated highly organized units, which are called
sarcomeres, and contain myosin and actin filaments that allow muscle to contract [2].
The sarcomere banding pattern in striated muscle fibers is absent from the other type of
muscle, smooth muscle, e.g., the muscle in aorta [3]. A major difference between human
cardiac muscle and SkM is that mature SkM cells are very highly multinucleated with
hundreds of nuclei in giant cells while the muscle-specific cells in heart (cardiomyocytes) are
predominantly mononuclear or binuclear and normally much smaller than SkM cells [2,4,5].
Although cardiomyocytes are not highly polyploid, they form an electrical syncytium to
facilitate coordinated heart contractions, unlike SkM cells, which are electrically isolated
from each other [2].

The progenitor cells for SkM formation and repair are myoblasts, which, upon differ-
entiation, can develop into multinucleated myotubes or fuse with multinucleated muscle
fibers [6]. Postnatally, myoblasts are a transient cell type that is generated upon induction
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of differentiation of adult muscle stem cells called satellite cells [5]. During embryogenesis,
cardiomyocytes are formed from precursor cells, and heart is the first organ to develop into
a recognizable and functional organ [7]. Multiple types of cardiac progenitor cells from
different developmental lineages are involved in heart formation [8] and these lineages
diverge according to the chamber of the heart [9]. Early embryonic cells that are multipotent
in the cardiopharyngeal field can differentiate into committed cardiac progenitor cells or
SkM cells of the head or neck [9]. In addition to the cells in the muscle lineages of SkM and
heart, both organs contain cells from other lineages, such as fibroblasts [4,10]. Moreover,
morphological and physiological differences in heart chambers and in SkM type (and fiber
type [11,12]) are accompanied by differences in transcription profiling, although cardiac
muscle forms one interrelated group distinct from several SkM subgroups [3].

Most of the energy required for muscle contraction comes from oxidative phosphory-
lation rather than from glycolysis [12]. Cardiac muscle and, to a lesser extent, fast oxidative
muscle fibers are particularly rich in mitochondria because of the large amounts of ATP
required continuously by heart and during exercise by SkM [13,14]. The mitochondrion
is a dynamic double-membraned organelle enabling ATP production and transport. It
also contributes to apoptosis, autophagy, production of reactive oxygen species (ROS),
calcium handling, and cell fate decisions in stem cells [11,13]. Besides having a critical role
in differentiation, physiological changes, and response to stress, mitochondrial dysfunc-
tion contributes to aging and to many diseases, including inherited myopathies, cardiac
dysfunction, and cancer [13,15–18]. Although the mitochondrion is self-replicating and
possesses its own genome, most proteins in mitochondria are encoded by the nucleus [15].
The master regulator of mitochondrial biogenesis is the nuclear-encoded transcription
coregulator peroxisome proliferator-activated receptor coactivator 1A (PPARGC1A/PGC-
1α) [19]. Balancing mitochondrial biogenesis is the selective autophagy of mitochondria,
called mitophagy. Mitophagy removes dysfunctional mitochondria and thereby helps to
maintain the capacity to synthesize sufficient ATP, to generate needed levels of intermediate
metabolites, and to decrease levels of reactive oxygen species (ROS) [20].

Given the central role of epigenetics in differentiation, homeostasis, and disease,
in general, and to striated muscle in particular [21–25], we studied the epigenetics of
genes associated with both types of striated muscle. We first identified a set of genes
that are preferentially expressed in SkM and heart at similar levels (but not in aorta) and
then determined which functional groups are most overrepresented in this set of genes.
We found that nuclear genes encoding proteins resident in mitochondria or controlling
mitochondrial biogenesis or degradation were the most abundant subgroup of SkM- and
heart-preferentially transcribed genes. Our study of the relationship of the epigenomics
and transcriptomics of these genes and their gene neighborhoods using profiles from
the ENCODE and Roadmap Epigenomics Projects [26,27] provides new insights into the
control of striated muscle gene transcription by a variety of types of epigenetic regulation
at promoters, intragenic and intergenic enhancers, and enhancers in neighboring genes.

2. Results
2.1. Gene Selection Strategy

We identified protein-coding nuclear genes that are preferentially expressed in SkM
and cardiac muscle, but not in smooth muscle, using the GTEx poly(A)+ RNA-seq
database [28] that includes hundreds of replicate samples for each of dozens of human
tissues. First, we obtained all the protein-coding genes with TPM > 2 in SkM and then
selected for those with ratios of TPM in SkM (gastrocnemius muscle) to the median TPM for
heterologous tissues (34 types) > 2 (Figure 1). From the 825 genes that met this criterion, we
retained only genes that also exhibited a ratio of TPM in heart (left ventricle) to the median
TPM for heterologous tissues ≥ 2 and a ratio of TPM in SkM to TPM in heart (left ventricle)
between 0.5 and 2.0. When we used the GTEx RNA-seq data for right atrial appendage, the
only other heart tissue in this database, similar ratios of expression in SkM to heart (atrial
appendage) were obtained (Table S1; MYL2 was the sole exception). Our last transcription
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criterion was to require a ratio of TPM in SkM to TPM in aorta (a non-striated muscle-rich
tissue [3]) >3, which gave a total of 97 genes (Table S1) that are highly expressed in SkM
and heart at similar levels with much lower expression in aorta and most other tissues.

Figure 1. Flow scheme showing the strategy for selection of genes preferentially expressed in SkM
and heart and associated with mitochondrial function, structure, biogenesis, or mitophagy.

Next, we determined which categories of genes (gene ontology, GO, or other func-
tional gene groups) are overrepresented among the 97 genes. GO analysis using DAVID
(Database for Annotation, Visualization and Integrated Discovery v6.8; Table S2) showed
the strongest enrichment for the terms mitochondrion (P = 1 × 10−9; 27 genes) and transit
peptide: mitochondrion (P = 1 × 10−10; 18 genes most of which were included in the
“mitochondrion” GO term) consistent with a previous transcriptomic and proteomic study
of striated muscle [29]. We excluded three genes, AGAP2, MYOM1, and TNNC1, from
further consideration because, they are only weakly associated with mitochondrial function.
The remaining genes in these two gene sets were combined (Table 1). Eleven of the 27 genes
that had the strongest correlations between preferential expression in striated muscle and
their tissue-specific epigenetics were examined in detail. As expected, after mitochondrial
categories, the next most overrepresented GO terms for genes preferentially expressed
in SkM and heart were “muscle protein” and “M band” (Table S2), but genes in those
categories were not included in this study.
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Table 1. Genes that are preferentially expressed in both skeletal and heart and are associated with
mitochondria a.

Gene TPM b SkM TPM Heart TPM Ratios:
SkM/Heart

TPM Ratios:
SkM/Aorta

Median
TPM of
Other

Tissues

TPM Ratios:
SkM/Median

Other
Tissues

TPM Ratios:
Heart/Median

Other
Tissues

ACADS c 112.8 60.1 1.9 5.2 30.7 3.7 2.0
ACO2 (Fig. S4) 272.4 252.4 1.1 5.4 53.8 5.1 4.7

CHCHD10 c 229.7 248.5 0.9 7.5 45.7 5.0 5.4
CKMT2 (Fig. 5) 441.9 652.4 0.7 17.7 5.6 79.5 117.4

COQ10A (Fig. 3) 65.1 79.1 0.8 5.0 14.0 4.6 5.6
COX5A c 389.6 421.1 0.9 5.4 88.3 4.4 4.8

COX6A2 (Fig. 2) 2283.9 1593.7 1.4 556.2 1.0 2263.4 1579.4
COX7A1 (Fig. S1) 704.8 584.3 1.2 4.3 56.5 12.5 10.3

COX10 c 28.6 19.1 1.5 3.8 9.5 3.0 2.0
CPT1B (Fig. 4) 100.5 144.6 0.7 13.8 20.9 4.8 6.9

G0S2 c 65.0 84.9 0.8 3.6 22.8 2.8 3.7
GOT1 c 212.3 304.6 0.7 10.5 32.7 6.5 9.3
GOT2 c 280.0 251.9 1.1 4.7 74.9 3.7 3.4

HADHB (Fig. S2) 375.3 307.5 1.2 5.6 77.1 4.9 4.0
IDH2 c 442.8 311.5 1.4 13.5 54.1 8.2 5.8

LDHD c 47.1 58.5 0.8 4.5 12.0 3.9 4.9
MDH2 c 361.2 210.3 1.7 3.4 104.6 3.5 2.0

NDUFB9 c 299.5 188.2 1.6 3.2 82.8 3.6 2.3
NDUFS1 c 50.6 42.4 1.2 3.1 16.3 3.1 2.6

NNT c 69.7 52.5 1.3 4.2 16.4 4.3 3.2
OGDH c 222.2 201.4 1.1 3.1 65.6 3.4 3.1

PPARGC1A (Figs.
7, 8, S7 and S8) 11.0 9.4 1.2 24.5 2.7 4.2 3.5

PRKN/PARK2
(Figs. 6 and S5) 8.7 4.8 1.8 3.4 2.4 3.6 2.0

SLC25A4 (Fig. S3) 370.5 563.8 0.7 3.4 24.6 15.0 22.9
TMEM143 c 34.2 21.1 1.6 4.9 8.5 4.0 2.5
UQCRFS1 c 133.8 102.0 1.3 4.0 39.5 3.4 2.6

VDAC1 (Fig. S6) 390.9 199.3 2.0 3.7 91.0 4.3 2.2
a Preferential expression defined by flow scheme (Figure 1); b TPM, transcripts per kilobase millions; SkM, skeletal
muscle; other tissues, 34 tissues other than SkM or heart; Fig., Figure; c not very tissue-specific epigenetics.

2.2. COX6A2 and COX7A1, Highly and Preferentially Expressed Genes in SkM and Heart, Are
Embedded in Promoter Chromatin Surrounded by Enhancer Chromatin in These Tissues

COX6A2 and COX7A1 are very small genes (0.6 and 1.5 kb, respectively) that encode
subunits of the mitochondrial cytochrome c oxidase [30] and exhibit the highest expression
in SkM of all the 26 studied striated muscle/mitochondria-associated genes (Table 1). Their
expression in heart is only a little less than in SkM (COX6A2 TPM: SkM, 2284 and heart,
1593; COX7A1 TPM: SkM, 704 and heart 584). COX6A2 has the highest specificity for
SkM of all the striated muscle/mitochondria-associated genes. The specificity of COX7A1
for striated muscle is also high but lower than that of COX6A2, which is reflected in
the epigenetic profiles of these two genes (Figures 2 and S1). Two of the eleven other
genes encoding subunits of cytochrome c oxidase (COX5A and COX10) were preferentially
expressed in SkM and heart but with less specific transcription and epigenetics than for
COX6A2 and COX7A1 (Table 1) [31].
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Figure 2. COX6A2 displays striated muscle-specific epigenetic marks including in its gene neighbors.
(A) COX6A2 gene neighborhood (chr16:31,430,114–31,456,585) with chromatin state segmentation
profiles (18-state; Roadmap Epigenomics [27]; Prom, promoter chromatin; Enh, enhancer chromatin,
Txn-chrom, H3K36me3-enriched chromatin; SkM1, psoas muscle; SkM2, upper leg muscle; Heart1,
left ventricle; Heart2, right atrium; NHEK, embryonic kidney cells; ESC, embryonic stem cells
(H1); LCL, lymphoblastoid cell line (GM12878). (B) H3K27ac and (C) H3K4me1 signal profiles.
(D) Transcription factor (TF) ChIP-seq and DNase-seq; tick marks, sites bound by SkM-associated
MyoD in myoblasts or heart-associated GATA4 in iPSC-derived cardiomyocytes that overlapped
DNaseI hypersensitive sites (DHS) in SkM or heart, respectively. HAND1 TFBS, strongly predicted
binding sites for HAND1, which lacks ChIP-seq data. (E) Bisulfite-seq (BS-seq) and SkM and heart
DMRs (vs. aorta, lung, monocytes, adipose, and macrophage). Dark blue bars, hypomethylated
DMRs; light blue bars, regions of significantly lower methylation relative to the whole genome for
the same tissue. (F) RNA-seq bar graph for 36 tissues showing median TPM in linear scale [28];
horizontal black line under the graph, the region evaluated. (G) Cell culture RNA-seq [26] shown as
an overlay of the indicated four cell types (log scale). All tracks are horizontally aligned in this and
subsequent figures and are from the UCSC Genome Browser [32].

Only SkM (both psoas and leg muscle) and heart (both left ventricle and right atrium)
had promoter chromatin (red segments) throughout the COX6A2 gene body and strong
enhancer chromatin nearby (orange or yellow-green segments; Figure 2A). Relative to the
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other tissues, SkM and heart had the strongest enhancer-determining histone H3 lysine
27 acetylation (H3K27ac) plus H3 lysine 4 monomethylation (H3K4me1) upstream and
downstream of the gene (Figure 2B,C). Remarkably, the downstream enhancer chromatin
in striated muscle extends into ITGAD, an integrin subunit-encoding gene with negligible
expression in tissues other than spleen (Table S3). In addition, ZNF843, the uncharacterized
upstream gene neighbor of COX6A2, harbored enhancer chromatin in intron 1 specifically
in SkM and heart, although this gene, like ITGAD, displayed negligible RNA levels in these
two tissues (Table S3). In the 1-Mb neighborhood of COX6A2, only one other gene, TRIM72,
which plays a major role in cell membrane repair [30], displays specific expression in SkM
(data not shown). Upstream of COX6A2, the most DNaseI hypersensitivity was seen in
SkM, heart, myoblasts, and myotubes (Figure 2D and data not shown).

COX6A2 in aorta (TPM, 4) had more DNaseI hypersensitivity and enhancer chromatin
upstream of the gene than did most other non-striated muscle tissues (median TPM, 1)
but less than in SkM and heart. Aorta also differed from striated muscle in its DNA
methylation profile in this gene region. We used two quantitative measures of differential
DNA methylation. One of these shows regions that had significantly lower methylation
than in the same genome as a whole [33], which we refer to as low methylated regions
(LMRs, horizontal light blue bars over individual bisulfite-seq profiles, Figure 2E). The
other is statistically significant, hypomethylated differentially methylated regions (DMRs,
dark blue bars above all the bisulfite-seq tracks) determined by comparing bisulfite-seq
profiles of SkM to those of lung, aorta, adipose, monocytes, and heart (SkM DMRs) or heart
to lung, aorta, adipose, monocytes, and SkM (heart DMRs) [22]. COX6A2 had negligible
levels of DNA methylation over much of the CpG-rich region (CpG island) that covered
this small gene in all tissues. However, there was significantly less DNA methylation at the
5′ end of the gene and immediately upstream in SkM and heart compared with aorta and
other tissues (Figure 2E). In addition, SkM-specific hypomethylated DMRs were observed
downstream of COX6A2 overlapping the 3′ end of ITGAD (Figure 2E).

COX7A1, unlike COX6A2, displayed enhancer chromatin bordering promoter chro-
matin over the gene in many tissues (Figures 2A and S1), consistent with the differences
in the median TPM for expression of these genes in non-striated muscle tissues (56 and
1, respectively, Table 1). Larger tissue-specific differences in epigenetics of COX7A1 were
seen for DNA methylation (Figure S1). A CpG island that overlaps COX7A1 displayed
tissue-specific DNA methylation, unlike most CpG island promoters, with the least methy-
lation in SkM, heart, and aorta (TPM, 704, 584 and 163, respectively). In addition, DNA
hypomethylation in SkM and heart extended from upstream of COX7A1 to the 3′ end of the
downstream gene, CAPNS1 (Calpain Small Subunit 1). CAPNS1, which encodes a subunit
of cysteine proteinase, is broadly expressed with no specificity for SkM (Table S3). This
suggests that the SkM/heart hypomethylated DMRs at its 3′ end favor transcription of
COX7A1, and not CAPNS1.

COX7A1 and COX6A2 are also preferentially expressed in myoblasts and myotubes
(Figures 2E,F and S1; Table S4). However, myoblasts and myotubes lack the gene-downstream
enhancer chromatin for both genes (Figures 2A,G and S1). We looked at genome-wide
profiles of binding of MyoD [34], a myogenesis-associated TF [6] that is involved in adult
SkM function as well as in embryonic SkM formation and SkM regeneration [35]. The gene
(MYOD1) encoding the specificity-determining subunit of MyoD has negligible expression
in 52 examined adult tissues [28] other than SkM (TPM, 22) and testis (TPM, 1). Binding
sites for MyoD in myoblasts were seen 0.1 kb upstream of the transcription start site (TSS)
of COX6A2 and of COX7A1 (Figures 2D and S1).

We looked for binding of the heart-associated TFs [9,36] GATA4 and TBX5 in iPSC-
derived cardiomyocytes and for stringently predicted binding sites for NKX2-5 and HAND1
(for which heart-related ChIP-seq profiles were not available) at heart DHS near COX6A2
and COX7A1. We chose these four cardiogenesis-associated TFs because their expres-
sion [28] is specific for postnatal heart (ratios of TPM in left ventricle or right atrial ap-
pendage/median TPM for 35 heterologous tissues were >100). DNA binding sites for
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SMARCD3 and MEF2C, TFs that are also important for cardiogenesis [7], were not exam-
ined because the genes that encode them lack preferential expression in postnatal heart
(ratios of TPM for left ventricle or right atrial appendage/median TPM of 35 non-striated
muscle tissues = 0.5–1.6). GATA4, TBX5, NKX2-5 and HAND1 are not only involved in
embryonic heart morphogenesis but also in postnatal heart function [37–39]. We found
evidence for HAND1 sites in the striated muscle-associated DHS within 0.2 kb of the
COX6A2 TSS (Figure 2D) and for a MyoD site and three HAND1 sites overlapping DHS
near the TSS of COX7A1 (Figure S1).

2.3. COQ10A, HADHB, and CPT1B Have Adjacent Mitochondria-Associated Genes That Share
Enhancer or Promoter Chromatin with Them in Skeletal Muscle and Heart

COQ10A (Coenzyme Q10A; Figure 3) codes for a mitochondrial redox respiratory
electron and proton transport protein [30] (Table S5). Its functionally related downstream
neighbor CS (Citrate Synthase, Mitochondrial; ENSG00000062485) encodes a Krebs cycle
enzyme [30]. The 3′ ends of COQ10A and CS are only 0.7 kb apart. Like COQ10A, CS is
expressed at its highest levels in SkM and heart but with insufficient specificity to meet
our criteria for preferential expression in striated muscle (Table S3). Strong enhancer
chromatin segments (orange or yellow-green, Figure 3A) bordering promoter chromatin
(red, Figure 3A) were observed for COQ10 and CS but the enhancer chromatin was more
specific for striated muscle in the case of COQ10A. Enhancer chromatin that spanned the
adjacent 3′ ends of COQ10A and CS is much closer to the promoter of COQ10A than to the
promoter of the CS gene. This might help explain the higher striated muscle specificity
for expression of COQ10A relative to CS. SkM-associated peaks of H3K27ac signal, MyoD
binding at two DHS, and SkM-hypomethylated DMRs near the COQ10A TSS may also
contribute to the SkM-preferential expression of this gene (Figure 3B–E). In contrast to
its SkM-preferential expression, COQ10A is not preferentially expressed in myoblasts vs.
other cell cultures (Figure 3F). This could be due partly to the lower amounts of enhancer
chromatin at the gene in myoblasts than in SkM. In cardiomyocytes, COQ10A and CS
bound heart-related TFs GATA4 or TBX5 in a region overlapping a constitutive promoter
DHS (Figure 3C).

A different type of sharing of epigenetic marks was observed for the bidirectional
promoter of HADHA and HADHB (Figure S2). These genes encode subunits of a tetrameric
hydroxyacyl-CoA mitochondrial dehydrogenase [30] and, therefore, their coregulation is
clearly advantageous. Although both HADHA and HADHB have their highest expression
in striated muscle, only HADHB met the expression ratio requirements for SkM-and-heart
preferential expression (Tables 1 and S3). Accordingly, strong enhancer chromatin and
DNA hypomethylation in intron 1 was more specific for SkM and heart at HADHB than at
HADHA (Figure S2).

Unlike the 3′ to 3′ or 5′ to 5′ juxtapositions of COQ10A with CS and HADHB with
HADHA, the 5′ end of CPT1B (Carnitine Palmitoyltransferase 1B) is adjacent to the 3′ end of
its broadly expressed neighbor CHKB (Choline Kinase Beta). CPT1B encodes an enzyme that
is required for transport of long-chain fatty acids from the cytoplasm to the mitochondria
while CHKB codes for an enzyme involved in phospholipid metabolism [30]. The main
CPT1B TSS is only 0.6 kb from the 3′ end of CHKB (Figure 4). The 5′ end of CPT1B displayed
SkM/heart-associated promoter chromatin and DNaseI hypersensitivity unlike the 5′ end
of CHKB (Figure 4A,B). SkM or heart hypomethylated DMRs in the body of the gene were
seen only in CPT1B (Figure 4C). In contrast to the preferential expression of CPT1B in
striated muscle, CHKB is expressed at lower levels in SkM and heart than in most other
tissues (Figure 4D). However, the CHKB RNA levels are still considerable in SkM and heart
(TPM, 18 and 28), which is consistent with CHKB being linked to myopathies [30]. Inverse
correlations between levels of CPT1B RNA and CHKB RNA were seen for many tissues in
addition to SkM and heart (Figure 4D).
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Figure 3. COQ10A (Coenzyme Q10A) and its neighbor, CS (Citrate Synthase) share epigenetic features
consistent with their coordinated preferential expression in striated muscle. The region shown is
chr12:56,653,687–56,696,821. (A–F), similar to panels in Figure 2 except that the H3K4me1 tracks are
not shown, and panel (C) shows binding of TBX5 and GATA4 in iPSC-induced cardiomyocytes cells
at DHS seen in heart. In panel (E), different linear scales are used for the two genes. The median TPM
for heart is shown for the left ventricle (with the atrial appendage bar to its left) and, in the case of
adipose tissue, for subcutaneous adipose (with the bar for visceral adipose tissue to its right). Brain
PFC, prefrontal cortex.

Myoblasts transcribe much more CHKB than CPT1B but embryonic stem cells (ESC)
highly express exons from both genes despite only the CHKB 5′-region displaying promoter
chromatin (Figure 4E). There is a read-through RNA transcript from CHKB through CPT1B
(CHKB-CPT1B) that is predicted to be a noncoding RNA (Figure 4A) due to nonsense-
mediated RNA decay [30]. RNA-seq data for ESC and the lack of promoter chromatin at
the 5′ end of CPT1B but its presence at the 5′ end of CHKB in these cells indicate much
formation of the CPT1B-CHKB read-through transcript in pluripotent embryonic cells
(Figure 4A,E). Myoblasts apparently have little or no read-through transcription, possibly
due to their weak enhancer chromatin (yellow segment) at the 5′ end of CPT1B favoring
termination of the CHKB RNA (Figure 4A,E).
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Figure 4. Upstream enhancer chromatin and promoter chromatin are associated with preferential
expression in striated muscle of CPT1B but not its neighbor CHKB. The region shown is chr22:51,003,006–
51,026,789. The 5′ end of CHKB-DT (lncRNA gene) is seen. (A–E), like Figure 3 except that the RNA-seq
profiles for myoblasts and the ESC are shown separately. CB, cerebellum; PFC, prefrontal cortex.

2.4. Highly Specific Expression in Striated Muscle of CKMT2, SLC25A4 and ACO2 Is Associated
with a Super-Enhancer over the Gene Body

CKMT2 (Mitochondrial creatine kinase), SLC25A4/ANT (Solute Carrier Family 25 Member
4), ACO2 (Aconitase 2) encode mitochondrial proteins involved in transfer of phosphate
from ATP, translocation of ATP from the mitochondrial matrix to the cytoplasm, or inter-
conversions in the TCA cycle. They are highly expressed in SkM and heart (TPM > 250)
and have higher expression than in 34 other tissue types (Tables 1 and S1). Over much of
the gene body, these three genes had extensive clusters of enhancer chromatin adjacent
to promoter chromatin specifically in SkM and heart (Figures 5A, S3 and S4, dotted blue
line). Such clusters of strong enhancer chromatin (usually adjacent to promoter chromatin)
are called super-enhancers and can be detected by tissue-specific enrichment in histone
H3K27ac over a >5 kb region [40]. Super-enhancers are most often found at genes expressed
at high levels in a strongly tissue-specific manner [40], as observed for these genes. DNA
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hypomethylation and DNaseI hypersensitivity associated with striated muscle and as well
as MyoD binding in myoblasts and GATA4 and TBX5 binding in cardiomyocytes were
seen at the super-enhancers (Figures 5A–C, S3 and S4). CKMT2, SLC25A4 and ACO2 are
expressed in myoblasts but only CKMT2 shows preferential expression relative to other cell
cultures (Table S3). Myotubes had ~200-fold more expression of CKMT2 than myoblasts
with parallel increases in promoter and enhancer chromatin (Figure 5; Table S4).

Figure 5. CKMT2 exhibits a striated muscle-specific super-enhancer containing SkM and heart
DMRs. CKMT2, RASGRF2, ZCCH9 and the CKMT2-overlapping non-coding antisense transcript
(chr5:80,502,017–80,618,428). (A–E), similar to Figure 3. Dotted line over the chromatin state tracks,
super-enhancer in SkM and heart.

2.5. PRKN/PARK2, a Gene Important for Mitophagy, Has Striated Muscle-Associated and
Brain-Associated Enhancer Chromatin and Encodes Myoblast/Skeletal-Related Antisense RNA at
Its 3′ End

PRKN (PARK2, Parkin RBR E3 Ubiquitin Protein Ligase; Figure 6) is an unusually
large gene that codes for an E3 ubiquitin ligase (Parkin), which plays a major role in
mitochondrial quality control as well as other regulatory roles [41]. Recessive loss-of-
function mutations in this gene cause a juvenile form of Parkinson’s disease, which results
in abnormal mitochondrial function in the substantia nigra, in skeletal muscle, and in
platelets [10]. SkM and frontal cortex of brain were the tissues exhibiting the highest
expression of this gene although their median expression levels were only TPM 9 and
8, respectively, and the gene is expressed in many other tissues (Figure 6A). Given the
modest levels of expression of PRKN in SkM and heart (Table 1) and its 1.38-Mb size, it
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is not surprising that enhancer chromatin associated with the gene in these tissues looks
sparse when viewing the whole gene in the UCSC Genome Browser [24]. Examination
of subregions of the gene revealed distinctive enhancer chromatin, DHS, MyoD sites
overlapping DHS, and DNA hypomethylation at the 3′ end of PRKN in SkM and myoblasts
(Figure 6B, left and Figure S5) and in intron 1 in SkM and heart (Figure 6B, right). The
epigenetic findings for myoblasts are consistent with their selective expression of this gene
relative to heterologous cell cultures (Table S4).

Figure 6. Epigenetic profile for PRKN/PARK2 shows tissue-specific regulatory chromatin at the 5′-
and 3′ ends of this 1.38-Mb gene. (A) The entire PRKN gene and part of the 5′ overlapping PACRG
gene (chr6:161,720,965–163,176,926) with chromatin state and RNA-seq tracks. Purple or orange lines
beneath the gene structure, regions amplified in the lower panels. (B–E) Left side, 3′ end (156 kb) of
PRKN (chr6:161,765,976–161,922,054); right side, 5′ end (31 kb) (chr6:163,125,655–163,157,029). Pink
highlighting in panel (C), DHS profiles specific to SkM, myoblasts, or brain. See Figure S5 for more
details about boxed regions in panels (B,E). SN, substantia nigra; FC, frontal cortex.
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We found that two regions of enhancer chromatin at the 3′ end of PRKN in myoblasts
were associated with novel antisense (AS) intronic transcripts (Figure 6E, boxes, and
Figure S5). Several polyadenylated AS transcripts from the distal end of the gene were
indicated by the multiple promoter chromatin regions (Figure 6B, left), strand-specific
RNA-seq profiles (Figure S5) and CAGE profiles (not shown). A myoblast-associated AS
transcript aligned with the 15-kb myoblast-specific enhancer in this region (Figure 6B,E
dotted boxes and Figure S5). In addition, other AS transcripts were seen preferentially in
both SkM and myoblasts that align with the myoblast/SkM enhancer/promoter region
near the end of the gene (Figure 6B,E, black box and Figure S5). Seven postnatal brain areas
displayed enhancer and promoter chromatin similar to that of SkM. Importantly, there was
also a region of brain-specific enhancer/promoter chromatin closer to the 3′ end of the gene
that was seen in all seven brain regions (Figure 6B, left, blue box and Figure S5).

PRKN shares a bidirectional promoter with the 59-kb PACRG (Parkin-coregulated gene)
(Figure 6A). Their TSS are only 0.2 kb apart. PACRG protein suppresses cell death caused
by the accumulation of an unfolded protein substrate of Parkin [30]. Although the name of
PACRG indicates coregulation with PRKN, we found only a few tissues that share similar
expression profiles (notably brain and testis).

Functionally related to PRKN is another striated muscle and mitochondria-associated
gene VDAC1 (Voltage-Dependent Anion Channel 1; Figure S6). VDAC1 encodes a major
component of the outer mitochondrial membrane and is a substrate for poly-ubiquitination
by Parkin. It is required for Parkin’s role in mitophagy in neural cells [42]. VDAC1 displayed
more intragenic DHS, enhancer chromatin (a super-enhancer), and DNA hypomethylation
in SkM and heart than did heterologous tissues, findings that are consistent with striated
muscle displaying the highest expression of this gene (Figure S6).

2.6. PPARGC1A, a Key Gene for Mitochondrial Biogenesis, Generates Multiple RNA Isoforms
Whose Tissue Specificity Is Elucidated by Tissue-Specific Epigenetics and Novel Transcripts

PPARGC1A (PGC-1α, PPARG Coactivator 1 Alpha), is another striated muscle/mitochondria-
associated gene involved in Parkinson’s disease [43]. PGC-1α is a transcriptional coac-
tivator that controls transcription initiation, pre-mRNA elongation, and RNA splicing
to regulate mitochondrial biogenesis, homeostatic glucose utilization in striated muscle
and liver, brown adipocyte differentiation, and various other pathways [44,45]. Much of
the versatility of this co-regulator in its tissue-specific roles can be ascribed to its multi-
ple tissue-specific mRNA isoforms and corresponding protein isoforms. PGC-1α protein
isoforms differ in biochemical properties, protein-protein interactions, stability, and sub-
cellular localization [46–49]. Isoform formation depends partly on the choice of one of
the following promoters for transcription initiation: the proximal (Prox) promoter (en-
coding the canonical 797-aa PGC-1α1), the 14-kb upstream alternate (Alt) promoter, the
downstream liver-associated promoter, and a ~0.6-Mb upstream brain-associated promoter
(distal promoter) (Figures 7A and S7) [43,46]. Despite documentation of the SkM-associated
Alt promoter [46,50], the corresponding TSS is not indicated by any RefSeq (Figure S7A) or
Ensembl (V38) gene structure. Usage of the Alt promoter affects not only the N-terminal
polypeptide sequence, but also determines alternative splicing and stop codons to gener-
ate diverse polypeptides, e.g., PGC-1α2 (379 aa), PGC-1α3 (370 aa) or PGC-1α4 (266 aa).
Promoter chromatin was observed at the Alt TSS specifically in the psoas sample (SkM1)
while enhancer chromatin at the same location was seen in the leg-muscle sample (SkM2,
Figure 7B). A DHS and DNA hypomethylation were observed at the Alt TSS in SkM
(Figure 7C,D). The lack of MyoD binding to the Alt prom in myoblasts (Figure 7C) may be
attributable to their very low level of expression of this gene (Table S4) in contrast to its
higher expression in SkM and heart than in most other tissues.



Epigenomes 2022, 6, 1 13 of 23

Figure 7. The tissue specificity of the epigenetic profiles at three of the four alternate promoter regions
of PPARGC1A/PGC-1α. (A) Canonical isoform of PPARGC1A (NM_013261), a liver-associated isoform
(NM_001330753), and part of two of the long isoforms are shown (chr4:23,766,778–23,961,817). The
previously assigned names of the four alternative promoters for this gene are given. (B–E) Panels
are as in Figures 2 and 4. The liver-associated, proximal (Prox), and alternate (Alt) TSS are indicated
by color-coded broken arrows. Although no CpG island was identified, there was a high CpG
content at the Prox TSS for this gene. (F) RNA-seq for the minus-strand on tissues from the Roadmap
Epigenomics Project for a 34-yo male, 30-yo female, and 3-yo male psoas; left and right ventricles
of a 3-yo male, and technical duplicate liver samples from a 3-yo male. See Figure S7 for the
full-length gene.

Strand-specific RNA-seq indicated more usage of the Alt prom in three psoas muscle
samples than in other tissues (Figure 7F and data not shown) consistent with the previous
association of this promoter with SkM, especially in certain physiological states [49,51,52].
Transcription from the Alt promoter can give protein isoforms that upregulate mitochon-
drial biogenesis or ones that only upregulate other pathways. Two psoas samples (34-yo
male and 30-yo female) used the Alt and Liver promoters as well as the Prox promoter
and the third (3-yo male) used only the Prox TSS and Alt promoters, as indicated by their
RNA-seq profiles (Figure 7F). Near the four promoter regions of PPARGC1A were enhancer
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chromatin segments, DHS, DNA hypomethylation, and myoblast or cardiomyocyte TF
binding sites that were consistent with the SkM-, heart-, liver-, or brain-associated usage of
these promoters (Figures 7, 8A and S8).

Figure 8. The far-distal end of PPARGC1A associated with brain isoforms contains novel antisense
promoter chromatin in embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) and
novel exon-like signal from the sense strand in brain samples. (A) Chromatin state segmentation
tracks in the 178-kb far-distal 5′-region of PPARGC1A (chr4:24,295,195–24,482,165; from 7 kb upstream
of the distal TSS) that contains the brain-associated distal promoter and non-coding exons B1, B2,
and B3 [53]. The distal TSS is ~0.6 Mb upstream of the Prox, Alt, and Liver TSS in Figure 7. Profiles
from four ESC cell lines and three iPSC derived from fibroblasts are shown. (B) Roadmap Epigenome
Project-derived strand-specific RNA-seq using poly(A)+ RNA as in Figure 7. (C) ENCODE Project-
derived RNA-seq using poly(A)+ RNA including the prominent ESC AS RNA.

Surprisingly, strand-specific RNA-seq suggests that the distal TSS, which is ~0.6 Mb
upstream of the three other TSS and has been associated with brain [43], initiates some of
the PPARGC1A transcripts in certain SkM and heart samples as well as being the major
promoter for PPARGC1A in ESC (Figures 8, S7 and S8). Possibly related to this ESC
finding, ESC displayed a novel lncRNA specifically from the AS strand (plus-strand) 148 kb
downstream of the distal TSS and immediately downstream of ESC-specific AS promoter
chromatin and an ESC-specific DHS (Figures 8A,C and S7). Moreover, this promoter
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chromatin region which apparently drives expression of the intragenic ESC AS transcript
was also seen in all examined induced pluripotent stem cell (iPSC) lines (Figure 8A; iPSC
RNA-seq, not available). It was not observed in 17 other cell cultures including ESC-derived
mesenchymal stem cells and ESC-derived endodermal cells but was in HeLa cells, ESC-
derived ectodermal cells, and, to a small extent, in astrocytes, neuronal progenitor cells,
and brain anterior caudate (Figure 8A and data not shown).

Approximately 29 kb upstream of the PPARGC1A distal TSS, Soyal et al. [53] noted a
spliced expressed sequence tag (EST; CX755957) from a human blastocyst-derived pluripo-
tent stem cell line (upstream of the region shown in Figure 8). In the four ESC and two
iPSC cultures, but not in other cell or tissue types, we found promoter chromatin upstream
of CX755957 near enhancer chromatin (data not shown). In the one ESC with available
strand-specific RNA-seq profiles, there was a plus-strand transcript in the same region,
although not with the same exonic structure, as for CX755957 (not shown). Soyal et al.
also described a minus-strand ESC-derived spliced EST (CN283176) encoded by a 1.3-kb
sequence and overlapping the first exon (noncoding exon B1 [53]) at the distal TSS. As
seen in Figures 8 and S8, there was poly(A)+ RNA-seq signal at exon B1 in ESC but it was
broader than exon B1 and extended further downstream. This additional minus-strand
RNA signal immediately downstream of the B1/B2 exons in ESC and also in some striated
muscle samples is of uncertain significance.

We also examined the far-distal region of PPARGC1A for brain-specific isoforms [53].
From fetal (20-week) cerebellum and germinal matrix samples, the two brain tissues for
which strand-specific RNA-seq was available, minus-strand RNA-seq revealed many novel
exon-like signals in addition to the previously reported exon B1, B4, and B5 signals [53] in
the 0.5-Mb region downstream of the distal promoter (Figures 8B and S7). In contrast, negli-
gible signal in this region was seen from plus-strand-specific RNA-seq profiles (Figure 8B).
None of the other >40 examined tissue or cell samples exhibited these novel sense-strand
exon-like RNA signals except for a neurosphere sample (15 wk embryo originated from
ganglionic eminence; data not shown). The novel RNA signals showed little overlap with
enhancer or promoter chromatin in brain (Figure 8A). One additional poly(A)+ RNA-seq
brain profile was available, namely for hippocampus from an 80-yo, but this RNA analysis
was done without strand separation. This sample displayed many exon-like transcribed
regions similar to those of the two fetal samples in the 0.3-Mb region downstream of the
distal TSS (Figures 8B and S7). Therefore, the novel sense exon-like RNA signals are found
in postnatal brain as well as fetal brain.

3. Discussion

The overrepresentation of mitochondrial GO associations for genes preferentially
expressed in both SkM and heart but not aorta (Figure 1) is consistent with the special
importance of mitochondria to striated muscle [11,21,24,25,29,54] and the frequent pos-
itive or negative disease-associations of these genes (Table S5; [55–60]). Many of the
27 striated muscle/mitochondria-associated genes displayed SkM/heart-associated en-
hancer chromatin that was intragenic, promoter-upstream, intergenic and downstream,
or a super-enhancer spanning the gene (Figures 2–7 and S1–S8). Moreover, there were
strong associations of the tissue-specific enhancer and promoter chromatin profiles with
tissue-specific expression profiles. This epigenetic/transcription correlation indicates that
transcription control plays a major role in determining the steady-state levels of mRNA for
the studied genes. If this were not the case and tissue-specific posttranscriptional control
had been superimposed on broad transcription profiles, we would not have seen the many
examples of tissue-specific promoter/enhancer/open chromatin/DNA methylation pro-
files corresponding to expression profiles. Reports of epigenetic changes correlated with
disease or altered physiological states usually focus on changes at promoters, which are
easier to locate on the genome (e.g., [24,61–64]), although there are noteworthy exceptions
(e.g., [65]). Our study reinforces the importance of testing for disease- and physiology-
linked changes in chromatin and DNA epigenetics also at enhancers, which can show
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more extensive tissue-specific differences correlated with expression than do promoters
(Figures 3, 6, S3, S4 and S6).

We studied not only the epigenomics and transcriptomics of the SkM/heart/mitochondria-
associated genes but also of their neighboring genes. Important intergenic epigenet-
ics/transcription relationships were thereby discovered. For the striated muscle-specific
COX6A2, SkM/heart-associated enhancer chromatin was found at two adjacent genes
(ITGAD and ZNF843) that are not expressed preferentially in SkM or heart (Figure 2).
This suggests that intragenic enhancer chromatin from ITGAD and ZNF843 upregulated
the adjacent COX6A2 rather than ITGAD and ZNF843 [23]. The gene neighbors (5′-to-3′)
CPT1B and CHKB displayed an inverse correlation between their expression in most tissues,
including SkM and heart, unlike a previous report about five mouse tissues [66]. Myoblasts
express mostly just CHKB (which fosters formation of the inner mitochondrial membrane)
while ESC cells predominantly express the read-through CHKB-CPT1B transcript initiated
at the CHKB promoter (Figure 4). In contrast, SkM and heart express much more CPT1B
(essential for fatty acid oxidation and contributing to ATP synthesis) but still have consider-
able levels of CHKB RNA (Figure 4D,E). We propose that a highly active CPT1B promoter
in striated muscle inhibits read-through transcription from the upstream CHKB gene and
downmodulates CHKB promoter activity but still allows production of enough mRNA
from both genes for their critical roles in skeletal muscle and heart [30,66].

Among the 27 striated muscle/mitochondria-associated genes (Table 1), four (COX6A2,
COX5A, COX10 and COX7A1) encode subunits of cytochrome c oxidase, the terminal
enzyme of the electron transport chain [67]. Mutations of these four genes are associated
with various congenital syndromes that include SkM and/or cardiac abnormalities [30]
(Table S5). COX6A2 and COX7A1 have paralogs on different chromosomes, COX6A1
and COX7A2, respectively. COX6A1 and COX7A2 encode similar polypeptides to those
of COX6A2 and COX7A1, but they have a much broader tissue expression profile and
lack specificity for striated muscle [28,30,68]. The striated muscle specificity and level of
expression of COX6A2 is exceptionally high (Table 1) in contrast to its paralog COX6A1,
which has its lowest levels of expression among adult tissues in SkM and heart [28]. This
illustrates the need for muscle-specific paralogs of some genes with highly muscle-specific
roles. For the striated muscle-specific COX7A1 (Figure S1), advanced age is significantly
associated with lower expression and increased methylation in exon 1 at a CpG island [64].
This finding may reflect genome-wide increases in CpG island methylation with age
observed in human leukocytes [69]. Steady-state levels of COX7A1 mRNA in SkM are
significantly associated with glucose uptake and total-body aerobic capacity [64]. These
reports and the correlation between tissue-specific profiles of gene expression and DNA
hypomethylation at and adjacent to the COX7A1 CpG island (Figure S1) suggest that DNA
methylation changes in response to aging and physiological alterations help regulate or
stabilize transcription levels at this gene.

Some of the genes that we studied which are preferentially expressed in striated
muscle are not predominantly localized to the mitochondria. Prominent among these are
PPARGC1A, which encodes transcription coregulator PGC-1α, whose main function is
enabling mitochondrial biogenesis and optimal mitochondrial function, and PRKN/PARK2,
which codes for Parkin, a ubiquitin ligase whose main function is to upregulate a major
pathway for mitophagy [42,46]. Mitophagy is critical to maintaining proper SkM function
and to restorative processes after cardiac or SkM stress or injury and in response to sar-
copenia [17,70,71]. There are also biochemical PRKN-PPARGC1A connections, e.g., Parkin
polyubiquitinates ZNF746, a repressor of PPARGC1A expression, which marks the repressor
for degradation and, thereby, promotes transcription of PPARGC1A [72]. Mutations in
PRKN cause a form of autosomal recessive Parkinson’s disease, which is characterized by
cytoplasmic inclusions in the brain. These inclusions contain aggregation-prone proteins
and sometimes organelles, including mitochondria [42,73]. Although the primary target of
Parkin-associated Parkinson’s disease is the brain, this enzyme also has special importance
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for SkM and cardiac muscle and, like PGC-1α, has regulatory roles that are not restricted to
mitochondria [41,46,47,74].

The prominent and varied functions of Parkin and PGC-1α are reflected in the intricate
and tissue-specific transcriptomics and, in our study, in the epigenomics of their genes. At
the 1380-kb PRKN gene, chromatin state, DNaseI hypersensitivity, MyoD binding, DNA
methylation profiles, and transcription profiles suggest that that the little-studied [65]
~100 kb region in the 3′ end of the gene plays a more important role in transcription control
than does the central gene region. We propose that a novel myoblast-specific AS RNA
from the distal myoblast-specific 15 kb enhancer chromatin region in intron 9 of PRKN
(Figures 6 and S5) is involved in upregulating the PRKN promoter ~1.3 Mb upstream to fill
a requirement for large amounts of Parkin in the early stages of myoblast differentiation to
myotubes. Myoblasts need to prepare for a transition from a highly glycolytic state to a
state where they rely mainly on oxidative phosphorylation (OXPHOS) for their increased
energy needs in myotubes. This change in energy needs is accompanied by mitochondrial
clearance via mitophagy followed by mitochondrial biogenesis to provide mitochondria
that are more active in OXPHOS during myoblast differentiation [75]. Although cardiomy-
ocyte differentiation from precursor cells was found to use a mitophagy pathway not
involving Parkin and those precursor cells contained no detectable PRKN RNA before
or after differentiation [76], we found preferential expression of PRKN in myoblasts vs.
heterologous cell types. Moreover, the Parkin pathway has been implicated in mitophagy
in myoblasts as well as in SkM [77]. It is likely that the mixed enhancer and promoter chro-
matin region that we found in myoblasts near the 3′ end of PRKN and the myoblast-specific
AS transcription in this region upregulate PRKN transcription, as generally observed for
some other enhancer regions that generate unidirectional poly(A)+ lncRNAs [78].

Additional enhancer/promoter regions in the 3′ end of the PRKN gene displayed tissue
specificity, most notably for brain. Enhancer chromatin in various subregions in the last
three introns of PRKN as well as the SkM/heart-specific enhancer chromatin immediately
downstream of the TSS (Figures 6 and S5) might be critical not only for tissue/cell type-
specific differences in expression of this gene, but also for its responses to alterations in
cell or tissue physiology. These findings are of clinical interest in view of evidence for
PRKN dysregulation contributing to idiopathic Parkinson’s disease and other neurological
diseases [79].

PPARGC1A/PGC-1α, as a master regulator of energy metabolism [45], has regulatory
interactions with products of some of the SkM/heart/mitochondria genes that we studied,
e.g., PKRN, COQ10A and CPT1B [20,80,81]. The PGC-1α protein isoforms derive partly
from the alternative use of four different promoters in a 0.6 Mb region, which influences
splicing patterns and stop-codon usage (Figures 7 and S7). Specific isoforms of PGC-1α can
differentially change both levels of transcription and types of splicing of target genes [48,52].
PGC-1α is a cofactor for various TFs and regulates mitochondrial biogenesis and respi-
ration, fatty acid oxidation [80], and muscle fiber-type composition [82]. It also controls
angiogenesis, muscle hypertrophy through downstream effects on myostatin levels (PGC-
1α4 isoform from the Alt promoter), inhibition of apoptosis (PGC-1α4), innate immunity
(PGC-1α4), gluconeogenesis (PGC-1α1 isoform from the Prox promoter), fasted-liver associ-
ated transcription (Liver promoter), and brain-associated gene expression (especially from
the distal promoter; Figure 7A) [46–48]. Physiological effects on PPARGC1A transcription
and epigenetics are illustrated by the finding that one round of strenuous exercise in the
mouse was found to increase transcription from the Alt promoter but not the Prox promoter
and to increase H3K4me3 methylation significantly in a 2-kb region centered around the
Alt TSS [63].

We found RNA-seq evidence for the unexpected use of the Liver promoter and the
0.6-Mb upstream brain-associated distal promoter of PPARGC1A in several SkM samples.
This is consistent with epigenetic marks and SkM- or heart-associated TFs binding in their
vicinity in progenitor muscle cells (Figures 7B,C, S7 and S8). In addition, in embryonic cells,
we observed an ESC-associated (and iPSC-associated) AS promoter and a corresponding
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ESC-specific AS transcript (Figure 8) 148 kb downstream of the distal TSS and 0.43 Mb
upstream of the other three PPARGC1A TSS. The epigenomic and transcriptomic profiles
in ESC at this gene (Figures 8C, S7 and S8) suggest that the intragenic AS transcription
helps drive the predominant use of the distal promoter in ESC. We further propose that
there are special functions for PGC-1α encoded by PPARGC1A mRNA initiated at the distal
promoter in some non-neural cell types, including in early embryonic cells, in addition to
the documented brain-specific functions [48,53]. Because some promoter chromatin was
seen in the region of the intragenic ESC AS promoter in one brain sample (accompanied by
enhancer and transcription-type chromatin), in astrocytes, and in neuronal progenitor cells,
the intragenic AS promoter chromatin might also help regulate distal promoter usage in
some brain cells.

Novel brain-specific sense-strand poly(A)+ transcripts from PPARGC1A were also
observed in this study. They were seen at many exon-like regions scattered in a ~0.5 Mb
region downstream of the distal promoter (Figures 8 and S7) in addition to the previously
described brain-associated PPARGC1A exons B1–B5 in this region [53]. We propose that
these novel discrete RNA signals represent brain-specific lncRNAs that may originate at
brain-associated exon B1 but may not extend into the canonical part of the PPARGC1A gene
and so were not previously detected. These findings, the unexpected use of the distal and
Liver promoters supplementing the Prox and Alt promoters of PPARGC1A in SkM, and
the preferential use of the distal promoter in ESC need follow-up investigation given the
importance of PPARGC1A transcription levels and isoform usage to exercise, aging, SkM
hypertrophy, and disease, including facioscapulohumeral muscular dystrophy, Alzheimer’s
disease, amyotrophic lateral sclerosis, Huntington’s disease, and ischemia [50,51,63,83–86].

4. Materials and Methods
4.1. RNA-Seq for Tissues and Cells

RNA levels (TPM, transcripts per million) for human tissues were from the GTEx
RNA-seq database V8 [28], which contains 54 tissue types. Because tissues from brain are
overrepresented in the dataset, we excluded 11 brain tissues other than prefrontal cortex
(PFC) and cerebellum. We also excluded TPM values for two cell cultures and several partly
redundant tissue types. For genes with more than one isoform, except where otherwise
noted, only the main transcribed isoform is shown in the figures, as deduced from GTEx
isoform expression data. The quantitation of RNA-seq data (FPKM, fragments per kilobase
million) for human cell cultures was previously described for ENCODE data and for our
own data comparing RNA levels in myoblasts and myotubes [26,87]. RNA-seq tracks, like
all the tracks in gene figures, were visualized in the UCSC Genome Browser in hg19 [32]
with lift-over from hg38 for tracks available only there (tissue RNA-seq and UniBind).

4.2. Epigenomics

The 18-state Roadmap Epigenomics [27] chromatin state segmentation analysis
(chromHMM and AuxilliaryHMM) was used for determination of chromatin states. Strong
enhancer or promoter chromatin displays a moderate or strong signal for both H3K27ac
and H3K4me1 or for both H3K27ac and H3K4me3, respectively. Enhancer chromatin refers
to States 6–10 (orange or yellow-green) and weak enhancer chromatin to State 11 (yellow)
while promoter chromatin (red) is States 1, 2 or 4 and mixed promoter and enhancer chro-
matin (red) is State 3 [27]. Bisulfite-seq profiles of genome-wide CpG methylation and the
DNaseI-hypersensitivity profiles were also from the RoadMap Epigenomics Project [27].
The tissue sources for chromatin and DNA epigenetics were previously described [27,88].
SkM1 refers to psoas (combined 3 yo and 34 yo) and SkM2 and SkM3 to upper leg muscle
from a 72-yo female and a 54-yo male, respectively. Super-enhancers were assessed by
dbSUPER [40] or SEdb (SEdb-a comprehensive human Super-Enhancer database (licpath-
way.net, July 2021) and confirmed by looking at the H3K27ac track in the UCSC Genome
Browser [32]. Low methylated regions (LMRs) shown in the figures refer to regions with
significantly lower DNA methylation than in the rest of the same genome as determined



Epigenomes 2022, 6, 1 19 of 23

by Song et al. [33]. We determined SkM and heart DMRs by comparison of bisulfite-seq
(whole-genome bisulfite sequencing) data for SkM or heart vs. aorta, lung, monocytes, and
adipose tissue as previously described [22].

4.3. Transcription Factor Binding

MyoD, GATA4, and TBX5 binding sites in myoblasts were determined from UniBind
data tracks (Version 2021, robust) in the UCSC browser for hg38 [32]. The cardiomyocytes
used for GATA4 and TBX5 ChIP-seq in the UniBind database were induced pluripotent
stem cell (iPSC)-derived cardiomyocytes that were from cultures capable of spontaneous
contraction and were purified to give >90% cardiomyocytes as deduced from immunos-
taining for cardiac-specific troponin T2 [89]. Because of the lack of NKX2-5 and HAND1
ChIP-seq profiles for heart-related samples, we used a TF-binding prediction program
(Transfac https://portal.genexplain.com/ (Version 2021.2; vertebrate sites, all matrices,
and minimize false positives) for predicted binding sites within DNaseI hypersensitive
sites in left ventricle. The position weight matrix (PWM) for HAND1 binding sites was for
HAND1::E47; MYOD1 also can heterodimerize with E47 to give MyoD TF [35].

5. Conclusions

Genes associated with mitochondrial function, structure, biogenesis, or mitophagy
are overrepresented among the category of genes preferentially expressed in both skeletal
muscle and heart. Many of these genes are of great importance to metabolism, health,
aging and physiological changes. The tissue-specific epigenetic profiles of these genes often
paralleled their expression profiles and indicated some unexpected locations of positive
regulatory elements, such as, in the gene body 1.28 Mb downstream of the 5′ end of 1.38-
Mb PRKN/PARK2 gene or within the gene neighbor of a studied gene (e.g., COX6A2 and
ITGAD or ZNF843). In addition, novel intragenic antisense lncRNAs were found within
PRKN in myoblasts and skeletal muscle and within PPARGC1A/PGC-1α in embryonic stem
cells. This study exemplifies the need to look beyond canonical promoters to understand
the regulation of expression of genes, in general, and these 27 striated muscle-associated
genes, in particular.
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super-enhancer containing DNA hypomethylated subregions in skeletal muscle and heart. Figure S7:
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