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Abstract: Magnetic reduced graphene oxide (MRGO) sheets were prepared by embedding
Fe3O4 nanoparticles on polyvinylpyrrolidone (PVP) and poly(diallyldimethylammonium chloride)
(PDDA)-modified graphene oxide (GO) sheets for bacteria capture and destruction under a
high-frequency magnetic field (HFMF). The characteristics of MRGO sheets were evaluated
systematically by transmission electron microscopy (TEM), scanning electron microscopy (SEM),
zeta potential measurement, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), and
X-ray photoelectron spectroscopy (XPS). TEM observation revealed that magnetic nanoparticles
(8–10 nm) were dispersed on MRGO sheets. VSM measurements confirmed the superparamagnetic
characteristics of the MRGO sheets. Under HFMF exposure, the temperature of MRGO sheets
increased from 25 to 42 ◦C. Furthermore, we investigated the capability of MRGO sheets to capture
and destroy bacteria (Staphylococcus aureus). The results show that MRGO sheets could capture
bacteria and kill them through an HFMF, showing a great potential in magnetic separation and
antibacterial application.

Keywords: magnetic nanoparticles; reduced graphene oxide sheets; high-frequency magnetic field;
bacteria capturing

1. Introduction

Accelerating research on carbon nanostructures led to the discovery of graphene. Structurally,
graphene consists of a flat monolayer of carbon atoms tightly packed into a two-dimensional (2D)
honeycomb lattice. Graphene is the basic fundamental structure for the derivative graphitic materials
of all other dimensionalities including fullerenes, nanotubes, and graphite [1], and is also the thinnest
and strongest material. Its charge carriers exhibit giant intrinsic mobility, have zero effective mass,
and can travel for micrometers without scattering at room temperature [2]. Currently, graphene has
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attracted much attention in materials science [3], biotechnology [4], and bio-detection [5]. Significant
development has been conducted for the utilization of graphene in bio-applications. Bio-applications
of graphene and graphene oxide remain challenging and must be solved with effective collaborations
through multiple disciplines, including biotechnology and nanotechnology [6,7].

Among the types of graphene-based materials, graphene oxide (GO)-based materials display a high
specific surface area with an abundance of active oxygen-based functional groups including carboxylic,
carbonyl, epoxy, or hydroxyl groups around their plane edge and basal plane structure [8,9]. These
unique characteristics provide special sites for immobilization and functionalization by various moieties
including polymeric materials such as polyethylenimine [10], chitosan [11], poly(lactic acid) [12,13],
and inorganic nanostructures including gold [14], TiO2 [15], silver nanoparticles [16] and iron oxide
nanoparticles [8,14]. Specifically, iron oxide nanoparticles exhibited magnetic characteristics that could
be applied to various applications, especially for magnetic fluid hyperthermia [17], magnetic-based
bio-separation [18], diagnosis and treatment of infections of bacteria [19], and inductive heating-based
magnetic field exposure [20]. Currently, the combination of graphene-based materials and iron
oxide nanoparticles have attracted attention due to their potential characteristics as graphene-based
materials combined with magnetic nanoparticles [21]. The embedment of magnetite nanoparticles to
the graphene sheets could restrict the graphene sheets from the agglomeration and restacking between
each layer, promoting the stabilization of graphene layers and the enhancement of the surface area of
the graphene sheets.

Currently, graphene-based materials have been extensively studied for their antibacterial activity
against various types of bacteria such as E. coli, Colibacillus, S. aureus, or Candidia albicans [22–24].
Several features of graphene-based materials have been assessed to evaluate their antibacterial activity
such as sheet size and concentration, surface area, surface roughness, hydrophilicity, dispersibility,
and functionalization [25]. Bo Hu et al. have developed nanohybrid magnetic reduced graphene
oxide composed of reduced graphene oxide, Fe3O4 and a bimetal core-shell of gold/silver (Au-Ag-Au).
They proposed the capture, separation, and destruction of Escherichia coli by using near-infrared
photothermal treatment [26]. Rajni Singh et al. prepared nanocomposites of GO/Fe3O4 and investigated
their characteristics against several pathogenic bacteria and found that GO/Fe3O4 as an effective
bactericidal [8]. Moreover, various antibacterial mechanisms of graphene-based materials have been
proposed, such as oxidative stress [27], membrane stress [27], electron transfer [28,29] or wrapping
isolation [25]. Omid Akhavan and Elham Ghaderi have investigated the toxicity of graphene oxide
nanosheets against S. aureus and E. coli. They proposed that the edges of the GO nanosheets and the
charge transfer between bacteria have a significant effect to destroy the cell membrane of bacteria [30].

In respect to magnetic field exposures, a high-frequency magnetic field (HFMF) has been
widely used as a tool to generate a magnetic field for hyperthermia applications [31,32]. Magnetic
particles-based hyperthermia has been developed as a method that could potentially be applied to
biomedical applications such as tumor therapy [33,34]. Previously, L.-Z. Bai et al. investigated the
inductive heating property of GO–Fe3O4. They found that the temperature of a physiological saline
suspension containing GO–Fe3O4 hybrid could enhanced to 92.8 ◦C during the AC magnetic field
exposure [35]. Szabo et al. have prepared the magnetite/GO nanocomposites through the utilization of
strong electrostatic interactions between the magnetite and GO particles [36].

This study will focus on the preparation and characterization of magnetic reduced graphene
oxide (MRGO) and evaluate the antipathogenic behavior of MRGO in the exposure of HFMF.
Polyvinylpyrrolidone (PVP) and poly(diallyldimethylammonium chloride) (PDDA) were used to
modify the surface of GO and subsequently used as a substrate for the immobilization of iron
oxide nanoparticles, denoted as MRGO. MRGO sheets were systematically characterized, including
their structure, morphology, magnetic properties, and their interaction with bacteria. Specifically,
the capturing capability was evaluated against Staphylococcus aureus as the model for pathogenic
bacteria. The HFMF exposure was conducted to generate the inductive heating effects of MRGO
sheets. To the best of our knowledge, there have only been a few reports related to the development of
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magnetic graphene and investigating its capture of bacteria and hyperthermia treatment simultaneously.
Eventually, the combination of capturing and separating bacteria using an external magnetic field and
killing them with HFMF-induced effects could potentially be applied in bio-separation and therapy.

2. Materials and Methods

2.1. Materials

Graphite powder (<20 µm, synthetic), fuming nitric acid (HNO3), PVP, and PDDA (Mw < 100,000)
were purchased from Sigma Aldrich, St. Louis, MO, USA. Potassium permanganate (KMnO4) and
sulfuric acid (H2SO4) were purchased from J.T. Baker Chemical Company, Philipsburg, NJ, USA.
Hydrogen peroxide (H2O2) was purchased from Acros. Hydrochloric acid (HCl) was purchased from
Scharlau, Scharlab, Barcelona, Spain. High-purity water purified by a Milli Q Plus water purifier
system (Milipore, St. Louis, MO, USA), with a resistivity of 18.3 MΩcm was used in all experiments.
All the chemicals were used without further purification.

2.2. Preparation of Magnetic Reduced Graphene Oxide (MRGO)

GO was prepared via modified Hummers method using graphite as the precursor material
followed by the oxidation processes [37]. Surface modification of GO was conducted through the
direct mixing with PVP and PDDA, simultaneously. Herein, PVP (average molecular weight 10,000
Da) was used to improve the aqueous dispersibility of GO [38]. Briefly, PVP (10 mg/mL) was added
into the GO solution (1 mg/mL) as the dispersant. Furthermore, the above PVP-modified GO solution
was mixed with 10 mg/mL of PDDA (the stock concentration: 0.2 g/mL) solution and 0.625 M of KCl
in the 20 mL of deionized water. The GO-PDDA solution was then stirred for 10 min at 90 ◦C and
then stirred continuously for 12 h at 25 ◦C. The color change of the GO-PDDA solution confirms the
reduction process of GO (brown) transformed to GO-PDDA (black) [37].

FeCl2·4H2O and FeCl3·6H2O were used as the initial precursors for the co-precipitation of Fe3O4

on the GO surface. Briefly, FeCl2·4H2O (2.5 mmol) and FeCl3·6H2O (5 mmol), with a ratio of 1:2,
were briefly mixed homogeneously at room temperature [39]. The GO solution (1 mg/mL) was mixed
with the previous solution and then the temperature was increased to 80 ◦C. Furthermore, ammonia
solution (33%) was added dropwise into the solution to initiate the coprecipitation of Fe3O4 onto the
GO sheets. The final precipitation was denoted as MRGO (Figure 1a).
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Figure 1. Schematic diagram of (a) magnetically reduced graphene oxide (MRGO) preparation and
(b) bacteria capturing and separation assisted by magnetic field.

2.3. Characterization

The structure and morphology of MRGO were characterized by TEM (TEM-7650, Hitachi,
Chiyoda-ku, Japan) at an acceleration voltage of 100 kV. The binding energy characteristics of GO and
MRGO were investigated using X-ray photoelectron spectroscopy (XPS) (ESCALAB 250, Thermo VG
Scientific, West Sussex, UK), equipped with Mg Kα at 1253.6 eV at the anode. X-ray diffraction (XRD)
was conducted using a D2 Phaser BRUKER X-ray powder diffractometer to evaluate the phase of the
material by scanning dried powder in the 2θ range of 20–80◦ with Cu Kα (1.5406 Å) radiation. The
zeta potential of the graphene-based material before and after polymeric modification was determined
through electrophoretic mobility measurements (Horiba Instrument). Vibrating sample magnetometry
(VSM) (Lakeshore model 7400) was used to evaluate the magnetization of MRGO as a function of the
magnetic field (Oe) at room temperature.

The bacteria capture by MRGO was observed using scanning electron microscopy (SEM) (JSM
5510, JEOL, Tokyo, Japan).

2.4. Bacterial Culture Assessment and Bacteria Captured by MRGO

Figure 1b shows the schematic representation of the bacteria capturing experiments by the
permanent magnetic field. The bacteria capturing capability of MRGO was evaluated against S. aureus
(ATCC 43894). Briefly, frozen preserved stock was thawed at room temperature, 0.1 mL was then
pipetted and streaked into a quadrant on a nutrient agar plate. Nutrient agar was composed of 6 g
agar bacteriological (Agar No. 1) LP0011 powder mixed with 10 g DifcoTM LB (Luria–Bertani) Broth,
Miller powder and diluted with 400 mL deionized (DI) water, and cultured at 37 ◦C for 18–24 h to
allow the formation of colonies. Afterward, a single colony was scraped with a loop and swabbed onto
a 15◦-slant medium (nutrient agar) which was then incubated at 37 ◦C for 18–24 h. After 18–24 h of
culturing, at least 2 mL of NaCl solution (1 wt%) was added and stirred with a vortex mixer for 30 s.
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After mixing, 1 mL of the solution was added into 9 mL of nutrient broth (5 g Difco™ LB Broth, Miller
powder/200 mL DI-water) and mixed with a vortex mixer, then 1 mL of the first nutrient broth solution
was mixed into 9 mL of new nutrient broth. This process was repeated four times in a row. An aliquot
of 1 mL of nutrient broth containing bacteria (1 × 105 colony forming unit (CFU)/mL) was added to a
flask containing 1 mL MRGO, followed by shaking with a rotary shaker at 250 rpm for 20 min. The
separation process was conducted by exposing the solution to an external magnetic field for 10 min.
After 18–24 h of culturing, the surviving bacteria were counted.

2.5. Magnetic Inductive Heating (Hyperthermia) Experiment by HFMF

Magnetic field-induced heat generation of MRGO was generated through HFMF exposure with
a frequency of 15 KHz. Briefly, MRGO suspensions were subjected to the center of a copper coil in
the HFMF apparatus for 20 min. The temperature increases were recorded every minute using an
alcohol thermometer.

3. Results and Discussion

3.1. Physicochemical Characterizations

Figure 2a-2b shows the TEM images of GO and MRGO, respectively. GO displays the lamellar
structures with smooth and wrinkle surface. The diameter of GO is around a few micrometers (2–6
µm) (Figure 2a). Figure 2b shows that the round-like shaped iron oxide (Fe3O4) nanoparticles with a
size of around 8 to 10 nm were embedded onto the surface of GO-based sheets. GO provides the host
surface due to its high-surface area for the crystallization of Fe3O4 nanoparticles, which generated
MRGO [21]. Moreover, the oxygen-based functional groups on GO can act as the nucleation sites for the
coprecipitation of Fe2+/Fe3+ [21]. As shown in Figure 2b, the wrinkle structure of GO sheets disappear
after the crystallization of Fe3O4 nanoparticles, which further confirms the reduction process of GO
into magnetic reduced graphene oxide (MRGO). This is in accordance with the previous investigation
by Bo Hu et al. [26]. Figure 2c indicates the selected area electron diffraction (SAED) pattern of GO,
showing the hexagonal structure and the plane (1010) and (1210).
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Figure 3 shows the X-ray photoelectron spectra (XPS) of GO and PVP/PDDA-modified GO
(reduced graphene oxide, RGO). The C-1s spectra of XPS showed that the graphite contained spectra
of C-C at 284.01 eV and C-OH at 284.85 eV, respectively (Figure 3a). Further, the XPS spectra of GO
(C-1s) characteristics peaks were found at C-C (285.16 eV), C-O-C/OH (287.17 eV), C=O (287.99 eV),
and O-C=O (288.96 eV) (Figure 3b). The relative intensity of the oxygen-based functional group at the
C-1s spectra of GO was higher than for graphite. The results confirmed the formation of oxygen-based
functional groups, including hydroxyl, carboxylic, and carbonyl groups, on the basal or edge plane
of GO as a consequence of the oxidation process on the graphite. Furthermore, the deconvolution
C-1s XPS of GO-PDDA (RGO) spectra of C-C, C-O-C/OH, C−N, C=O, and O−C=O were observed at
284.71, 285.40, 286.01, 286.82, and 289.09 eV, respectively (Figure 3c). The presence of N-1s XPS spectra
confirmed the immobilization of PDDA (nitrogen-contained polymer) on the surface of GO, as shown
in Figure 3d.Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 14 
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(diallyldimethylammonium chloride) (PDDA) (RGO), and (d) XPS (N-1s) of GO-PDDA (RGO).

Figure 4a–c shows the results of XRD pattern, VSM, and the zeta potential measurement. XRD
patterns of Fe3O4 and MRGO show multiple peaks within the 2θ range of 20–80◦ (Figure 4a). Six
diffraction peaks at 2θ = 30.1◦ (220), 35.6◦ (311), 43.3◦ (400), 53.5◦ (422), 57.2◦ (511), and 62.9◦ (440) were
the characteristic peaks of the crystal plane, which was appropriated with the standard diffraction
spectrum (JCPDS: 85436). This indicated the formation of magnetite (Fe3O4) nanoparticles. The
XRD pattern of MRGO shows a similar pattern to the pattern of Fe3O4 nanoparticles, indicating the
formation of Fe3O4 nanoparticles on the graphene surface.

Figure 4b shows the measured saturation magnetization of MRGO and Fe3O4 nanoparticles by
VSM. The magnetization of MRGO was around 20 emu/g, which was strong enough to separate the
magnetic graphene from the aqueous solution. The decreasing saturation magnetization value of
MRGO in comparison to Fe3O4 nanoparticles (around 60 emu/g) could be due to the interference of the
graphene-based material in the magnetic field exposure. As shown in Figure 4b, the field-dependent
magnetization curves are reversible, which confirms that MRGO and Fe3O4 nanoparticles were
superparamagnetic materials with zero coercivity and zero remanence. MRGO could disperse well
in the aqueous solution in the absence of magnetic field exposure, which was generated due to
the presence of an oxygen-based functional group on the surface of MRGO. Further, MRGO could
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be collected in the presence of magnetic field exposure (Figure 4b) for the magnetic separation of
the microbes.
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as-prepared graphene and Fe3O4.

Figure 4c shows the zeta potential value of each component at pH 7. The zeta potential of Fe3O4

nanoparticles is −40 mV. This result might be caused by a number of hydroxyl groups (Fe-OH) [40].
GO exhibited negative charged of −60 mV suggesting the successful oxidation process of graphite
through the formation of the negatively charged moiety (hydroxyl, epoxy and carboxyl) on the surface
of GO. Surface modification of GO using PVP altered the zeta potential value to −70 mV. This may
be caused by PVP adsorbing onto the surface of the GO. A positive zeta potential value (+42 mV)
of MRGO was achieved after surface modification of PVP/GO by PDDA. PDDA could be tethered
onto graphene sheets to develop a net positive charge due to the anchoring of nitrogen-based moiety
on PDDA [41]. Eventually, the immobilization of Fe3O4 onto the PDDA/PVP/GO altered the net zeta
potential value to −65 mV, compared with the pristine Fe3O4 nanoparticles (−40 mV). Thus, highly
negatively charged MRGO also proved the high stability of MRGO due to the highly electrostatic
repulsion among nanoparticles, which will prevent the aggregation.

3.2. Capturing Capability of Bacteria

Figure 5a shows the optical images of bacteria capturing activity toward the supernatant of S.
aureus solution with various concentrations of MRGO. The supernatant of bacteria colony decrease
indicates that more bacteria was captured. The results show that higher concentrations of MRGO will
capture more bacteria. The optimal concentration of MRGO sheets is higher than 2.4 mg/mL, which is
enough to collect all of bacteria (105 CFU/mL) (Figure 5b). These results might be due to the higher
density of functional groups and surface area of MRGO that could enhance the potential contact and
interaction with S. aureus, followed by the settlement of bacteria on the surface of graphene-based
materials [30]. From the point of view of antibacterial activity, graphene-based materials could damage
or break the cell walls and cell membranes of bacteria through the interaction between the sharp
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edge of graphene-based materials and membranes of bacteria, causing the stress of the bacteria
membrane [22,27,42]. This interaction could induce the leakage of RNA and transfer of charge [26].
Previous investigation proposed that the appropriate charge transfer between the bacteria and the
more sharpened edges of the graphene-based materials could enhance the antibacterial activity of
the graphene-based materials [30]. Another possible mechanism is the isolation of S. aureus from the
surrounding medium during the incubation with the MRGO; therefore, blocking the consumption of
nutrients for proliferation leads to the cells’ death. In Figure 6, SEM images show that the morphology
of MRGO sheets and bacteria (S. aureus) were captured in the surface of MRGO. A large surface to
volume ratio of MRGO provided a space to capture bacteria for the interaction between the MRGO
and the cell walls of bacteria. The bacteria were embedded onto the surface of MRGO. On the other
hand, magnetic exposure could separate directly the captured bacteria on MRGO in the external
magnetic field.
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3.3. Hyperthermia Experiment and Bacteria Capturing and Removing Activity Assisted by HFMF Exposure

Finally, HFMF was conducted to investigate the magnetic inductive heating of MRGO and to
evaluate its capability for killing bacteria. Inductive heating is thermal energy induced from the
hysteresis loss of ferrites and is dependent on the type of re-magnetization process in the HFMF [31].
Figure 7a shows the results of the inductive heating ability of GO and MRGO. GO cannot heat up
during the exposure to HFMF and the temperature remained around 25 ◦C (room temperature).
Meanwhile, MRGO could increase in temperature up to ~42 ◦C, after the exposure to HFMF for 20
min. After HFMF was applied in MRGO, it could significantly decrease the colony number of bacteria,
in comparison to that in GO (Figure 7b). The bacteria decrease from 105 CFU/mL (control) to ~102

CFU/mL (MRGO) after exposure to HFMF for 20 min, and only 0.1% of bacteria can survive. The
calculated capability of MRGO to kill bacteria under HFMF is about 99.9% (Figure 7c). These results
confirmed that the temperature increase in the MRGO was closely related to the incorporation of
magnetic nanoparticles in the MRGO (Figure 7d). The generation of localized heat could disrupt the
surrounding microbes [43].Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 14 
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4. Conclusions

We developed an MRGO nanosheet through surface modification of GO using PDDA and
coprecipitation of Fe3O4 nanoparticles onto the graphene sheets for capturing and separating microbes.
TEM observation confirmed the formation of MRGO sheets, and Fe3O4 nanoparticles were able to
disperse onto the graphene sheets. MRGO sheets could capture bacteria efficiently. When the content of
MRGO reaches 2.4 mg/mL, the bacteria (1 × 105 CFU/mL) can be fully captured by MRGO. Furthermore,
the hyperthermia effect, due to the localized heating, could be generated by MRGO through HFMF
application and could kill the bacteria. These novel MRGO sheets have the potential to be developed
for capturing, separating, and disrupting microbes.
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