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Abstract

Non-alcoholic fatty liver disease (NAFLD) is causally linked to type 2 diabetes, insulin resistance and dyslipidemia. In a
normal liver, insulin suppresses gluconeogenesis and promotes lipogenesis. In type 2 diabetes, the liver exhibits selective
insulin resistance by failing to inhibit hepatic glucose production while maintaining triglyceride synthesis. Evidence
suggests that the insulin pathway bifurcates downstream of Akt to regulate these two processes. Specifically, mTORC1 has
been implicated in lipogenesis, but its role on hepatic steatosis has not been examined. Here, we generated mice with
hepatocyte-specific deletion of Tsc1 to study the effects of constitutive mTORC1 activation in the liver. These mice
developed normally but displayed mild hepatomegaly and insulin resistance without obesity. Unexpectedly, the Tsc1-null
livers showed minimal signs of steatosis even under high-fat diet condition. This ‘resistant’ phenotype was reversed by
rapamycin and could be overcome by the expression of Myr-Akt. Moreover, rapamycin failed to reduce hepatic triglyceride
levels in models of steatosis secondary to Pten ablation in hepatocytes or high-fat diet in wild-type mice. These observations
suggest that mTORC1 is neither necessary nor sufficient for steatosis. Instead, Akt and mTORC1 have opposing effects on
hepatic lipid accumulation such that mTORC1 protects against diet-induced steatosis. Specifically, mTORC1 activity induces
a metabolic shift towards fat utilization and glucose production in the liver. These findings provide novel insights into the
role of mTORC1 in hepatic lipid metabolism.
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Introduction

NAFLD represents a spectrum of changes in the liver that are

closely associated with obesity, type II diabetes and other

manifestations of the metabolic syndrome [1][2]. The accumula-

tion of triglycerides (TG) in the liver, known as steatosis, is the

initial and requisite event in the pathogenesis of NAFLD [1]. Over

time, steatosis may progress to steatohepatitis, which is becoming a

major contributor to chronic liver disease including cirrhosis and

primary liver cancers in the United States. Weight reduction

(including bariatric surgery) and exercise are the only widely

accepted treatments for patients with NAFLD. Recent study

suggests that vitamin E and pioglitazone may be beneficial, but

their long-term effects are not known [3].

The widely recognized association between NAFLD and insulin

resistance suggests a role of the insulin signaling pathway in

hepatic steatosis. As a growth factor, insulin activates PI3K

through its interaction with the insulin receptor and its substrate,

IRS1/IRS2 [4]. The catalytic function of PI3K generates second

messengers (e.g., PIP3) to promote PDK1- and mTORC2-

dependent phosphorylation of Akt, while PTEN inhibits this

process by reducing PIP3 through its phosphatase activity [5][6].

Once activated, Akt phosphorylates FoxO1 and inhibits the

transcription of genes required for gluconeogenesis (e.g., phos-

phoenolpyruvate carboxykinase [PEPCK]). Insulin also stimulates

lipid synthesis in the liver via SREBP1c-mediated transcription of

lipogenic genes. In type 2 diabetes, hepatic glucose production

becomes insensitive to insulin while TG production remains

responsive resulting in selective hepatic insulin resistance [7].

Consequently, this leads to the classic triad of hyperinsulinemia,

hyperglycemia and hypertriglyceridemia found in the metabolic

syndrome.

Recent studies highlight the role of mTORC1 in lipogenesis and

provide an understanding for the selective hepatic insulin

resistance in type 2 diabetes [8]. Firstly, it was shown that Akt-

dependent lipogenesis is mediated by mTORC1 through its effects

on SREBP-1c [9]. This is supported by the work of Duvel et al.

showing increased lipogenesis in Tsc22/2 cells, and the work of

others highlighting the effects of rapamycin on the inhibition of

multiple lipogenic enzymes (e.g., FASN, ACC, SCD-1) [10] [11]

[12]. Secondly, mTORC1 participates in adipogenesis by

promoting the translation of C/EBP-a, and PPAR-c, which

further direct the transcription of lipogenic genes [13]. Thirdly,

SREBP1c, but not PEPCK, expression was stimulated by

mTORC1 in the liver suggesting that mTORC1 may be the

bifurcation point for insulin action on lipid and carbohydrate

metabolism [14]. Fourthly, published reports show that events up-

stream (i.e., loss of PTEN [15,16] and LKB1 [17], activation of

Akt [18]) and down-stream (i.e., loss of 4E-BP1/2 [19], activation

of SREBP1 [20]) of mTORC1 can induce steatosis. Finally,

animal models of obesity and type II diabetes such as the Zucker

rat and the ob/ob mouse, as well as diet-induced models of
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steatosis all share in the dysregulation of the Akt/mTOR pathway

[21] [22] [23]. Collectively, the current view suggests that

mTORC1 promotes SREBP1-dependent lipogenesis while it

suppresses Akt-mediated effects on gluconeogenesis; however,

direct evidence causally linking mTORC1 to the pathogenesis of

steatosis remains lacking.

mTOR (mammalian target of rapamycin) is a highly conserved

serine/threonine kinase that plays a central role in the regulation

of cell growth in response to environmental cues: energy, nutrients,

stress, and oxygen [24]. It forms two known multi-protein

complexes: mTORC1 consisting of mTOR, mLST8, Raptor,

Deptor and PRAS40, and mTORC2 containing mTOR, mLST8,

mSin1, Rictor, Deptor and Protor-1. Upon activation by Rheb-

GTPase, mTORC1 enhances protein translation and ribosomal

biogenesis in a rapamycin-sensitive manner. In contrast,

mTORC2 phosphorylates Akt, SGK1, and PKC, and is

insensitive to rapamycin. Studies have identified a central role of

the tuberous sclerosis complex (TSC1/TSC2) in negatively

regulating mTORC1 function by serving as a GTPase activating

protein to suppress the activity of Rheb [25] [26] [27] [28].

Phosphorylation of TSC2 by Akt, ERK and RSK in response to

growth factors results in mTORC1 activation [29]. TSC1

functions to stabilize TSC2 and maintains its proper subcellular

localization [30] [31]. Hence, the loss of either TSC1 or TSC2

gives rise to persistent mTORC1 activity, which initiates a

negative feedback via S6K1 phosphorylation of IRS to suppress

PI3K signaling [32]. In the absence of TSC1 or TSC2, cells

possess high mTORC1 and low Akt activities; this provides a

unique opportunity to examine the function of mTORC1 without

the concomitant influence of Akt.

In this study, we examined the in vivo consequence of mTORC1

activation in the liver by genetically ablating Tsc1 in hepatocytes.

To our surprise, liver-specific Tsc12/2 mice not only failed to

show evidence of steatosis, but also were resistant to triglyceride

accumulation in the liver when challenged with a high-fat diet. We

further demonstrate that mTORC1 is neither sufficient nor

necessary for steatosis, and that Akt and mTORC1 activities have

opposing effects on hepatic accumulation of TG. These findings

provide additional insights into the role of the Akt/mTORC1

pathway in hepatic lipid metabolism.

Methods

Ethics Statement
All animal work was conducted in accordance with national

guidelines and has been approved by the Institutional Animal

Care and Use Committee (IACUC) at the University of

Washington under protocol 3051-03. Euthanasia was performed

using compressed carbon dioxide (CO2) from gas cylinders or

cervical dislocation under anesthesia. We adhered to all policies

and recommendations from the American Veterinary Medical

Association.

Chemicals and antibodies
Rapamycin was obtained from Calbiochem (now EMD,

Gibbstown, NJ). Antibodies for HA tag, Tubulin, and Actin were

purchased from Sigma (St. Louis, MO). Antibodies for Adipophi-

lin and b-galactosidase were purchased from Promega (San Luis

Obispo, CA). The Tsc2 antibody was purchased from Santa Cruz

Biotechnology Inc. (Santa Cruz, CA) and the antibody for Total

GSK-3b was purchased from BD Biosciences (San Jose, CA). All

other antibodies were purchased from Cell Signaling Technology

(Danvers, MA).

Animals
Tsc1flox/flox mice were obtained from David Kwiatkowski at

Brigham and Women’s Hospital (Boston, MA). Ptenflox/flox

(#006068) and Alb-Cre (#003574) mice were purchased from

Jackson laboratories (Bar Harbor, ME). Tsc1flox/flox and Ptenflox/flox

mice were bred with Alb-Cre mice to generate progeny with

hepatocyte-specific Tsc1 and Pten deletion respectively. Wild-type

littermates were used as controls. All experiments were done in

accordance with the IACUC at the University of Washington,

Seattle.

For characterization of the Tsc1-null and Pten-null livers, mice

were fasted overnight (less than 12 hours). For acute rapamycin

treatment, mice received an intraperitoneal injection of rapamycin

(2 mg/kg) or vehicle control six hours prior to sacrifice. For

rapamycin-treated Pten2/2 mice, male mice were treated with an

intraperitoneal (IP) injection of 2 mg/kg of rapamycin (diluted in

DMSO) or DMSO vehicle once daily Monday through Friday for

two weeks, starting at 12 weeks of age. For Tsc12/2 mice

challenged on high-fat diet, six-week old, female mice were placed

on either the Surwit high fat diet (HFD) or normal chow diet (NCD)

for six weeks. The rapamycin treated cohort of Tsc12/2 mice on

HFD was administered 2 mg/kg of rapamycin or vehicle control

(M,W,F) starting at week eight for four weeks. Body weights were

monitored weekly and animals were fasted before sacrifice.

Diet-induced Steatosis
Male, wild-type C57BL/6J mice were purchased from Jackson

Laboratories (Bar Harbor, ME). At eight weeks of age mice were

placed on either NCD (PicoLab Rodent Diet 20, 5053) composed

of 25% protein, 13% fat, and 62% carbohydrate, from LabDiet or

the Surwit HFD, (D12330, 16.4% protein, 25.5% carbohydrate,

58% fat) purchased from Research Diets Inc. (New Brunswick,

NJ). Mice were divided into five groups: NCD for six weeks, HFD

for six weeks, HFD for 4 weeks with reversion to NCD for two

weeks, NCD for six weeks with rapamycin treatment for last two

weeks, and HFD for six weeks with rapamycin treatment for the

last two weeks. Mice were treated with 2 mg/kg of rapamycin (M,

W, F) for two weeks.

Adenovirus Injection
Tsc12/2 mice were injected with 16107 plaque-forming units

per gram of body weight of either Myr-HA-Akt1 or b-gal control

adenovirus (Vector Biolabs, Philadelphia, PA) in 200 ml of saline

via tail vein injection. Four days after injection fasted mice were

sacrificed and tissues procured for analysis.

Glucose Tolerance Test and Insulin Sensitivity Tests
For Glucose Tolerance Test (GTT), mice were fasted for sixteen

hours and weighed. After sixteen hours, fasting blood glucose was

obtained from venous blood via tail nick and measured with

OneTouch blood glucose monitoring system and test strips from

LifeScan, Inc. (Milpitas, CA). Mice received an IP injection of

glucose (1 mg/g body weight). Blood glucose values were obtained

at 15, 30, 60, and 120 minutes. At 30 minutes 50 ml of blood was

procured for insulin assay. For the Insulin Sensitivity Tests (IST)

mice were fasted for four hours and weighed. After fasting, a blood

glucose level was obtained at time 0 and then 0.5 mU/g of insulin

was given via IP injection and additional blood glucose values were

obtained at 15, 30, 60, and 120 minutes.

Systemic and hepatic insulin response
Tsc12/2 and Tsc1+/+ mice were fasted for eight hours before

insulin injection. Thirty minutes prior to insulin injection mice
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were anesthetized with ketamine/xylazine. Mice were given

0.5 mU/g of insulin (Lilly, Indianapolis, Indiana) in 500 ml of

saline or just 500 ml of saline alone via IP injection. Ten minutes

after injection, mice were euthanized via cervical dislocation.

Tissues were procured immediately upon sacrifice and processed

for protein analysis.

Western Blot
Mouse liver, white adipose tissue (WAT), and muscle were

homogenized in ice-cold radioummunoprecipitation (RIPA) buffer

(1% Nonidet P-40, 1% sodium deoxycholate, 0.1% SDS, 0.15 M

NaCl, 10 mM Tris (pH 7.2), 0.025 M b-glycophosphate (pH 7.2),

2 mM EDTA, and 50 mM sodium fluoride) with protease and

kinase inhibitors (0.05 mM AEBSF, 10 mg/ml aprotinin, 10 mg/

ml pepstatin, 1 mM orthovanadate, 10 mg/ml leupeptin, 1 mM

microcystin LR). The protein concentration was measured using

the BCA Protein Assay (Pierce, Rockford, IL). Equal amounts of

protein were separated by SDS-PAGE, transferred to Immobilin-P

membranes (Millipore, Bedford, MA) and blotted with antibodies

according to manufacturer recommendations.

Histology
Slides were deparaffinized, rehydrated, and washed before

staining with hematoxylin QS and eosin (Vector Laboratories,

Burlingame, CA) and mounting with Permount (Fischer Scientific,

Santa Clara, CA). For Oil Red O staining, 5 micron thick frozen

sections were cut and stained with Oil Red O diluted in propylene

glycol.

Plasma Metabolic Parameters
Blood was extracted via cardiac puncture immediately after

sacrifice. Blood was spun for 15 minutes at 3000 rpm at 4uC.

Plasma was analyzed for glucose, triglycerides, leptin, adiponectin,

and insulin. Plasma insulin, leptin, adiponectin were quantified

using Luminex and Linco Elisa Kits (Millipore, Billerica, MA).

Plasma triglycerides were quantified via a colorimetric assay using

a triglyceride assay kit from Roche Diagnostics.

Liver Triglyceride Analysis
Lipids were extracted from 100 mg of liver tissue using

chloroform:methanol and solubilized in 1% triton X-100/

chloroform (v/v) [33]. Liver triglycerides were quantified via a

colorimetric assay using a triglyceride assay kit from Roche

Diagnostics.

Real-time PCR
Total RNA was extracted from fresh/frozen liver tissue using

TRIzol (Invitrogen, Carlsbad, CA) according to the manufacture’s

instructions. Three micrograms of RNA was reverse transcribed

using Promega M-MLV Reverse Transciptase. PCR for sterol

regulatory element binding protein 1c (SREBP1c) (PrimerBank ID

14161491a1), adipose triglyceride lipase (ATGL), fatty acid

synthase (FASN) (PrimerBank ID 309119099a1), glucokinase

(GK) (PrimerBank ID 31982798a1), phosphoenolpyruvate car-

boxykinase1 (PEPCK) (PrimerBank ID 7110683a1), peroxisome

proliferator activated receptor gamma (PPARg) (PrimerBank ID

6755138a1), PPAR gamma co-activator (PGC1) alpha (Primer-

Bank ID 6679433a1), apolipoprotein B (ApoB) (PrimerBank ID

930134a1), microsomal triglyceride transfer protein (Mttp) (Pri-

merBank ID 6678960a1) ribosomal protein L32 (L32 sybr)

(PrimerBank ID 25742730a1) genes were performed using the

primer sequences listed in Table 1.

Statistical analyses
Quantitative data were analyzed by unpaired t-test. A p-value of

less than 0.05 was considered significant.

Results

A. Liver-specific ablation of Tsc1 leads to hepatomegaly
and insulin resistance

To investigate the biologic effects of mTORC1 in the liver, we

ablated a key negative regulator of mTORC1, Tsc1, in

hepatocytes by crossing Albumin-Cre mice with animals carrying

floxed alleles of Tsc1. The resulting Tsc1flox/flox;Alb-Cre mice (a.k.a.

Tsc12/2) showed liver-specific loss of Tsc1 that was accompanied

by a reduction in steady-state Tsc2 expression secondary to the

known influence of Tsc1 on Tsc2 stability [30] (Figure 1A).

Consequently, the Tsc12/2 livers possessed constitutively active

mTORC1 as shown by increased expression of phospho-

S6K1(Thr389) and phospho-S6(Ser235/236), and this activity

was inhibited by rapamycin (Figure 1B).

The Tsc12/2 mice developed normally and were fertile. At 20

weeks of age, average total body weight of the mutant mice was

not statistically different from the wild-type mice (29.7 g vs. 27.2 g,

Table 1. Primer sequences used in qRT-PCR.

Gene Name Forward Reverse

ACLY 59-CAGCCAAGGCAATTTCAGAGC-39 59- CTCGACGTTTGATTAACTGGTCT-39

ATGL 59- TGTGGCCTCATTCCTCCTAC-39 59- TGCTGGATGTTGGTGGAGCT-39

FASN 59- GGAGGTGGTGATAGCCGGTAT-39 59- TGGGTAATCCATAGAGCCCAG-39

GK 59- TGAGCCGGATGCAGAAGGA-39 59- GCAACATCTTTACACTGGCCT-39

PEPCK 59- CTGCATAACGGTCTGGACTTC-39 59- CAGCAACTGCCCGTACTCC-39

PPARg 59- TCGCTGATGCACTGCCTATG-39 59- GAGAGGTCCACAGAGCTGATT-39

SREBP1c 59- GCAGCCACCATCTAGCCTG-39 59- CAGCAGTGAGTCTGCCTTGAT-39

PGC1alpha 59-TATGGAGTGACATAGAGTGTGCT-39 59-TATGGAGTGACATAGAGTGTGCT-39

ApoB 59-TTGGCAAACTGCATAGCATCC-39 59-TCAAATTGGGACTCTCCTTTAGC-39

Mttp 59-CTCTTGGCAGTGCTTTTTCTCT-39 59-GAGCTTGTATAGCCGCTCATT-39

L32 SYBR 59- TTAAGCGAAACTGGCGGAAAC-39 59- TTGTTGCTCCCATAACCGATG-39

doi:10.1371/journal.pone.0018075.t001
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p = 0.13), while their absolute liver weights (1.17 g vs. 0.91 g,

p = 0.002) and liver:body weight ratios (3.9% vs. 3.4%, p = 0.002)

were significantly higher compared to wild-type littermates

consistent with hepatomegaly. The weights of the white adipose

tissue (WAT) were comparable between the two groups (0.87 g vs.

0.75 g, p = 0.63). To determine systemic insulin response in these

animals, glucose tolerance tests and insulin sensitivity tests were

performed. Following systemic administration of glucose, both

male and female Tsc12/2 mice exhibited mild but significant

glucose intolerance compared to Tsc1+/+ mice (Figure 1C). This

was accompanied by a slight reduction in systemic insulin

sensitivity (Figure 1C). Fasting plasma glucose and insulin levels

were not significantly different between the Tsc1+/+ and Tsc12/2

mice, while the insulin levels at 30 minutes following glucose

administration were higher in the mutant mice (Figure 1D). These

observations suggest that the hepatic-specific Tsc12/2 mice are

insulin resistant.

To further examine the response to insulin in the liver, WAT

and muscle tissues, fasted mice were given 0.5 U/kg of insulin 10

minutes before sacrifice. As expected, insulin led to a significant

Figure 1. Hepatocyte-specific deletion of Tsc1 leads to mild insulin resistance. A. Liver-specific ablation of Tsc1. Tsc1fl/fl mice were crossed
to CreAlb mice resulting in Tsc1fl/fl; Cre+/+ (a.k.a. Tsc1+/+) and Tsc1fl/fl; CreAlb (a.k.a. Tsc12/2) littermates. Tissues from eight-week old Tsc12/2 and
Tsc1+/+ animals were analyzed for the expression of Tsc1, Tsc2 and S6K by immunoblot analyses using the indicated antibodies. WAT, white adipose
tissues. Note the reduced Tsc2 expression secondary to its diminished stability in the absence of Tsc1 [30]. B. The loss of Tsc1 in hepatocytes resulted
in increased mTORC1 activity (based on the expression of phospho-S6K and phospho-S6) that was sensitive to rapamycin. Tsc12/2 mice were fasted
and treated with or without rapamycin (2 mg/kg IP, 6 hrs). Liver lysates were analyzed by SDS-PAGE and blotted with the indicated antibodies. Note
the effect of rapamycin on Akt phosphorylation in the Tsc12/2 liver. Actin, loading control. C. Systemic glucose tolerance (left) and insulin sensitivity
(right) tests in 8-week old female (top) and male (bottom) mice. Following a 16-hr fast, glucose (1 mg/g) was given IP followed by serial blood
glucose monitoring at indicated times. For insulin sensitivity test, 0.5 mU/g of insulin was injected IP after a 4-hr fast. *, p,0.05 between the Tsc1+/+
and Tsc12/2 groups. D. Fasting blood glucose and insulin levels in wild-type and mutant mice. Plasma insulin levels 30 minutes after glucose
administration are also shown (filled boxes).
doi:10.1371/journal.pone.0018075.g001
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increase in Akt phosphorylation in all three tissues in the wild-type

animals (Figure 2A,B). However, the Akt response to insulin was

dramatically blunted in the tissues derived from the Tsc12/2

mice. In the case of the Tsc12/2 hepatocytes, hyperactivity of

mTORC1 is known to inhibit Akt secondary to feedback

inhibition on IRS1 [32]. Consequently, both baseline and

insulin-stimulated Akt activities were suppressed in the Tsc12/2

liver (Figure 2A). In contrast, basal Akt phosphorylation in WAT

and muscle tissues were elevated in the mutant mice relative to

wild-type controls while insulin-stimulated response was signifi-

cantly reduced (Figure 2B). This finding cannot be explained by

the ‘feedback’ mechanism but we speculate that the chronic

systemic exposure to post-prandial hyper-insulinemia (or other

insulin-like growth factors) in the mutant animals may be

responsible. Figure 3C highlights the relative changes in

Akt(Ser473) phosphorylation between the saline- and insulin-

treated wild-type and mutant animals. These results indicate that

the loss of hepatic Tsc1 leads to hepatic and systemic insulin

resistance.

C. Persistent mTORC1 activity is not sufficient for
steatosis

Despite an increase in liver mass and the presence of insulin

resistance, the Tsc12/2 mice showed no histologic or biochem-

ical evidence of excessive TG accumulation in the liver compared

with wild-type littermates (Figure 3A,B). Oil Red ‘‘O’’ staining and

direct TG measurements suggested a trend towards reduced lipids

in the Tsc12/2 livers. Hence, the hepatomegaly in the mutant

mice was not secondary to steatosis but instead, due to a significant

increase in hepatocyte cell size (Figure 3C). This is consistent with

the role of mTORC1 in regulating cell growth [25]. Plasma TG

levels in the Tsc12/2 mice were significantly lower than the wild-

type littermates (55 vs. 88 mg/dl, p,0.05) while adiponectin (+/+:

4,983 pg/ml; 2/2: 5,870 pg/ml, p = 0.27) and leptin (+/+:

3,814 pg/ml; 2/2: 3,236 pg/ml, p = 0.66) levels were similar

between the two groups. At fasting, mRNA expression of SREBP-

1c involved in lipogenesis was slightly lowered while genes

involved in lipolysis (ATGL) and gluconeogenesis (PEPCK) were

significantly elevated in the Tsc12/2 mice compared to wild-type

animals (Figure 3D). These findings show that hyperactive

mTORC1 in hepatocytes is not sufficient to induce steatosis in

vivo despite evidence of hepatic and systemic insulin resistance.

D. Inhibition of mTORC1 fails to reverse diet-induced
steatosis

Next, we set out to determine if mTORC1 activity is necessary

for steatosis by examining the effects of rapamycin, an mTORC1

inhibitor, on diet-induced steatosis. Six-week old, wild-type male

mice were randomly assigned to receive NCD or HFD (Surwit) for

6 weeks. Within each diet group, animals were further randomized

to receive rapamycin (2 mg/kg) or DMSO (vehicle) given 3 times a

week (e.g., Monday, Wednesday, Friday) via intraperitoneal

injections during the last two weeks of the study. To ascertain

that a two-week duration was sufficient time for a steatotic liver to

recover to baseline, an additional cohort of animals was placed on

HFD for 4 weeks followed by NCD for 2 weeks. Figure 4 shows

Figure 2. Liver, fat and muscle of Tsc12/2 mice show blunted response to insulin. Following an eight-hour fast, mice were injected with
0.5 U/kg of insulin or saline (control) for 10 minutes before sacrifice. A) Liver and B) white adipose tissue (WAT) and skeletal muscle tissue lysates were
analyzed for the expression of indicated proteins. C. Akt response to insulin. The relative band intensities of p-Akt(Ser473) were normalized to total
Akt from (A) and (B), and then the ratios between the insulin- and saline-treated animals were calculated from individual tissues tested.
doi:10.1371/journal.pone.0018075.g002
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that mice fed HFD sustained significantly greater weight gain

compared to those on NCD as expected, but this increase was

quickly lost when HFD fed mice resumed NCD. (i.e., HFD-NCD

group). Rapamycin also dampened the weight gain in mice. The

absolute liver weights were not significantly different among any

group although the ones from the HFD-NCD-fed mice weighed

the least.

HFD was associated with a significant increase in plasma levels

of glucose and insulin suggestive of systemic insulin resistance, and

these parameters returned to baseline within 2 weeks of resuming

normal chow (Figure 4). Rapamycin treatment led to higher

fasting plasma glucose and insulin levels that were most

pronounced in animals receiving HFD. These findings are

consistent with previous reports of glucose intolerance following

chronic rapamycin treatment [34] [35].

Analysis of the livers revealed a significant increase in

triglyceride levels in mice receiving HFD, and importantly,

rapamycin did not alter hepatic TG levels significantly in either

group of animals (Figure 4). This corroborates with the histologic

findings of steatosis in the HFD-groups regardless of rapamycin

treatment (Figure 5A). Further, rapamycin did not lead to any

histologic change in the NCD-fed livers. Immunoblot analyses of

the liver lysates showed a trend towards higher levels of

Akt(Ser473) phosphorylation with HFD that were unchanged

following two weeks of rapamycin (Figure 5B). Hence, despite

evidence of worsening glucose intolerance, mTORC1 inhibition

by rapamycin did not alter hepatic lipid content in a model of diet-

induced steatosis. In contrast, the HFD-associated TG accumu-

lation and insulin resistance reverted to baseline within 2 weeks of

replacing the HFD with NCD. We conclude that mTORC1 is not

necessary for the maintenance of HFD-induced steatosis.

E. Effects of rapamycin on steatosis in liver-specific
Pten2/2 mice

Given that the pathogenesis of HFD-induced steatosis may

involve multiple pathways, the lack of significant change in TG

accumulation following rapamycin treatment could potentially be

explained by other mechanisms that affect lipid metabolism

besides mTORC1. In order to focus on the relevance of

mTORC1 in steatosis, we turned to an established genetic model

of steatosis through Pten ablation in hepatocytes. We generated a

cohort of Ptenflox/flox;Alb-Cre (a.k.a. Pten2/2) mice that showed

Figure 3. mTORC1 activity is not sufficient for steatosis. Normal chow-fed, 20-week old male Tsc1+/+ and Tsc12/2 male mice were fasted
overnight and sacrificed. Liver tissues were processed for histologic and biochemical analyses. A) Liver histology (H&E) and Oil Red ‘‘O’’ staining
showing hepatic morphology and lipid content. Magnification 400X. B) Quantification of liver triglyceride content using TG assay kit (Roche
Diagnostics, see Methods). C) Hepatocyte cell size was deduced based on the average number of hepatocytes per high-power field from 10 randomly
selected fields. *, p,0.01 compared to Tsc1+/+. D) Expression of genes involved in lipogenesis (SREBP1), adipogenesis (PPARg), lipolysis (ATGL) and
gluconeogenesis (PEPCK) were determined by quantitative RT-PCR. *, p,0.05 compared to Tsc1+/+. For all graphs, values represent mean 6SEM.
doi:10.1371/journal.pone.0018075.g003
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constitutive Akt activation in the liver (Figure 6A). At 12 weeks of

age, the mutant pups had similar body weights compared to wild-

type littermates but had enlarged, whitish livers containing large

fat vacuoles and elevated TG levels consistent with earlier reports

[15,16]. Compared to the Tsc12/2 mice, the absolute liver

weight and the liver:body ratio were higher in the Pten2/2 mice

while total body weight was similar in the two groups (data not

shown).

Using this model, we tested whether mTORC1 activity was

necessary for steatosis by treating 12-week old animals with

rapamycin (2 mg/kg IP daily, M-F) or vehicle for 2 weeks.

Figure 6A shows that at the end of the treatment period,

rapamycin completely inhibited mTORC1 activity (as indicated

by loss of phospho-S6(Ser235) expression) without significant effect

on Akt activity. Histologic analysis revealed that livers of

rapamycin-treated Pten2/2 mice exhibited a similar degree of

steatosis compared to vehicle-treated animals based on H&E and

Oil Red ‘‘O’’ staining (Figure 6B). However, rapamycin reduced

the average cell size of hepatocytes compared to the vehicle-

treated group as quantified by the number of cells per high-power

field (data not shown). This was also reflected in a reduction in

liver:body weight following rapamycin treatment although it

remained elevated compared to wild-type littermates (data not

shown). Importantly, triglyceride content in the rapamycin-treated

Pten2/2 livers remained unchanged compared to the group

treated with vehicle control, but both Pten2/2 groups had

significantly greater hepatic triglyceride concentration than the

wild-type littermates (Figure 6C). Given that steatosis is rapidly

reversible (e.g., see HFD-NCD in Fig. 4), these findings suggest

that rapamycin affects hepatocyte cell size but not its lipid content.

This led us to conclude that the inhibition of mTORC1 did not

alleviate steatosis in a model where Akt is constitutively active in

the hepatocytes. Further, our results indicate that Akt-induced

lipogenesis is not dependant on mTORC1 activity. Together with

the results of the Tsc1-mutant model and the effects of rapamycin

in the HFD model, we deduce that mTORC1 is neither necessary

nor sufficient for hepatic steatosis.

F. The role of feedback inhibition on Akt
The striking differences in hepatocyte TG content of the two

rodent models (i.e., Tsc1- and the Pten-hepatocyte-specific deletion)

were closely paralleled by the observed disparities in their Akt

activities. Figure 7A highlights the dramatic difference in Akt

signaling in the livers from these two models. While Akt was

markedly activated in the Pten-null livers, its activity was

suppressed in the Tsc1-null state due to the negative feedback of

mTORC1/S6K1 on IRS1 [32]. In both models, hepatocytic

mTORC1 activity was up-regulated compared to wild-type

littermates based on 4E-BP1 mobility shifts, although the Tsc1-

null hepatocytes had significantly higher levels of mTORC1

activity compared to the Pten-null cells (Figure 7A). These

observations led us to postulate that the relative lack of steatosis

Figure 4. Metabolic response to rapamycin following HFD. Six-week old, wild-type mice were randomly assigned to one of 5 groups with
n = 5 in each group (see text). At the end of 6 weeks, mice were fasted overnight and sacrificed. Shown are the results of body and liver weights,
fasting serum glucose and insulin, plasma and hepatic triglyceride levels for each group. Values represent mean 6SEM. * associated with HFD
indicates p,0.05 with respect to NCD group. * associated with HFD-rapamycin group indicates p,0.05 with respect to NCD-rapamycin group. NCD,
normal chow diet; HFD, high-fat diet; Rapa, rapamycin.
doi:10.1371/journal.pone.0018075.g004

mTORC1 Protects against Steatosis

PLoS ONE | www.plosone.org 7 March 2011 | Volume 6 | Issue 3 | e18075



in the Tsc1-deficient hepatocytes may be due to the ‘feedback’

suppression of Akt. To test this hypothesis, we introduced a

recombinant adenovirus encoding a constitutively active myris-

toylated form of Akt into the tail vein of the Tsc12/2 mice. Four

days following injection, the Myr-Akt treated livers became

significantly larger (i.e., hepatomegaly) compared to those injected

with control adenovirus encoding b–galactosidase, as previously

reported [18]. Microscopically, the Myr-Akt hepatocytes showed

fat vacuolation consistent with steatosis and biochemically, this

was associated with an up-regulation of adipophilin, a lipid droplet

coat protein (Figure 7B,C). These findings were accompanied by a

marked increase in Akt(Ser473) and GSK3b (Ser9) phosphoryla-

tion in the livers of the Myr-Akt treated Tsc12/2 animals

(Figure 7C). Hence, the up-regulation of Akt in these animals was

sufficient to induce steatosis. These findings also confirm that the

Tsc1-null hepatocytes are capable of fat accumulation in an Akt-

responsive manner. Together, the data suggest that the lack of

steatosis in the Tsc12/2 mice may be secondary to the relative

suppression of Akt activity.

G. Tsc12/2 hepatocytes are resistant to steatosis
induced by HFD

The correlation between hepatic Akt activity and steatosis led us

to predict that mTORC1-mediated suppression of Akt may

protect the Tsc12/2 liver from TG accumulation. To test this

hypothesis, 6-week old Tsc12/2 and Tsc1+/+ littermates were

placed on a high-fat diet or normal chow diet for 6 weeks. Those

assigned to the HFD were further randomized to receive

rapamycin (2 mg/kg IP, MWF) or vehicle control (DMSO) during

the last 4 weeks of the experiment. Over this period, weight gains

on the HFD were marginally less in the mutant animals compared

to wild-type littermates (p.0.10), and the liver:body weight ratio

Figure 5. Histologic and biochemical effects of rapamycin on HFD-induced steatosis. A) Examples of histology (H&E) and Oil Red ‘‘O’’
staining of the livers procured from animals described in Figure 4. NCD, normal chow diet; HFD, high-fat diet; Rapa, rapamycin. Magnification, 400X.
B) Western blots of representative liver lysates from each of the four groups shown in (A) highlighting the effects of chronic rapamycin on Akt(Ser473)
phosphorylation. The average ratios of band intensities (Image J) between phospho- and total-Akt are summarized in the graph (n of 5 per group).
doi:10.1371/journal.pone.0018075.g005
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remained higher in the Tsc12/2 mice as it was under the normal

diet condition (data not shown). In response to HFD, fasting

plasma glucose and insulin levels rose, and rapamycin treatment

further increased the values (Figure 8B). These trends suggest that

glucose intolerance worsened with HFD + rapamycin in both

Tsc1+/+ and Tsc12/2 mice without significant differences

between the two genotypes. Plasma TG increased with HFD in

the wild-type, but not mutant animals, whereas rapamycin

significantly elevated plasma TG levels in the mutant but not

wild-type mice (Figure 8B). On histologic analysis, the livers from

the wild-type and mutant mice in the NCD group were

indistinguishable, but under HFD condition, the Tsc1+/+ mice

developed significant steatosis while the Tsc12/2 livers showed

minimal change based on H&E and Oil Red ‘‘O’’ staining

(Figure 8A). Direct measurements of liver TG revealed significant

increase in lipid accumulation following HFD in the wild-type

animals but not in the Tsc12/2 mice (Figure 8B). We confirmed

these findings using an independent cohort of animals under the

same scheme. After 6 weeks, the results of the hepatic TG levels

were nearly identical with the exception that the Tsc12/2 mice

fed HFD had significantly lower hepatic TG levels than those fed

NCD (6.5 vs. 8.3 mg/g, p,0.01). Together, the histologic and

biochemical evidence suggest that the loss of Tsc1 protects the liver

from TG accumulation.

To determine if the resistance to steatosis in the Tsc12/2 mice

stems from mTORC1 hyperactivity, we treated a cohort of mice

on HFD with rapamycin. The lipid content following rapamycin

rose significantly in the mutant livers along with histologic

evidence of steatosis (Figure 8A, B). Importantly, the levels of

hepatic TG in the Tsc12/2 mice became equivalent to that of the

Tsc1+/+ littermates. These rapamycin-induced phenotypic chang-

es correlated closely with the de-repression of Akt activity (i.e.,

increased phospho-Akt(Ser473) expression) and the inhibition of

mTORC1 activity (i.e., decreased phospho-S6(Ser235/236) ex-

pression) (Figure 8C). As noted earlier, HFD increased basal Akt

phosphorylation in both wild-type and mutant livers although

Figure 6. Effects of rapamycin on Pten2/2 livers. Hepatocyte-specific deletion of Pten was generated by crossing Ptenfl/fl with CreAlb mice. At 12
weeks of age, Pten2/2 mice were randomly assigned to treatments with rapamycin (2 mg/kg IP daily, M-F) or DMSO as vehicle control (C) for 2
weeks and then sacrificed. A) Representative Western blot showing the effects of Pten loss (2/2) and rapamycin (Rapa) in the liver with respect to Akt
and mTORC1 signaling. Liver lysates were subjected to immunoblot analyses with the indicated antibodies. B) Liver histology (H&E) and Oil Red ‘‘O’’
staining of Pten+/+ and Pten2/2 mice treated with rapamycin or vehicle control. C) Quantification of liver triglyceride content of the corresponding
groups. Values represent mean 6SEM. *, p,0.05 compared to Pten+/+ group.
doi:10.1371/journal.pone.0018075.g006
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consistently less so in the Tsc12/2 samples. Up-regulation of Akt

in the absence of significant mTORC1 activity (i.e., +/+ HFD, +/+
HFD-rapa, 2/2 HFD-rapa) was accompanied by steatosis, but

when balanced by high mTORC1 activity (i.e., 2/2 HFD), no

significant lipid accumulated (Figure 8C). These observations are

consistent with our hypothesis that mTORC1 activity protects

against TG accumulation in this dietary model, and that the

development of steatosis is dependent on the balance between

hepatic Akt and mTORC1 activities.

H. Loss of Tsc1 promotes fat utilization and glucose
production

To explore the mechanism for the steatosis-resistant phenotype

in the Tsc12/2 liver, we analyzed the hepatic expression of genes

involved in lipid and glucose metabolism by RT-PCR analyses.

Figures 9A and 9B show the results from the experiments

described in Figure 8 highlighting the effects of Tsc1, HFD and

rapamycin on hepatic metabolic gene expression relative to NCD-

fed wild-type livers. In the Tsc1+/+ mice, HFD induced SREBP1c

and glucose kinase (GK) expression and suppressed ATGL and

PEPCK expression indicative of a metabolic shift towards fat

synthesis and glucose utilization leading to steatosis. The loss of

Tsc1 resulted in an opposite response to HFD with a significantly

blunted increase in SREBP1c and GK expression and an

exaggerated up-regulation of ATGL and PEPCK (Figure 9A).

Further, these changes in the Tsc12/2 livers were reversed with

rapamycin treatment such that the effects of mTORC1 inhibition

resembled the response of the normal liver to HFD. These

observations suggest that the protection from HFD-induced

steatosis in the Tsc12/2 liver stems from a mTORC1-dependent

switch in hepatic metabolism from fat synthesis to fat utilization

and from glucose utilization to glucose production. Moreover,

hepatic PGC1a expression was also rapamycin-sensitive and was

significantly elevated in the Tsc12/2 livers suggestive of an

increase in mitochondrial oxidation. While other factors such as

TG export may influence hepatic lipid accumulation, we did not

find a significant difference in the expression of hepatic

microsomal triglyceride transfer protein (Mttp) between the groups

although ApoB expression in the wild-type livers was significantly

reduced when challenged with the HFD, a response not seen in

the Tsc12/2 mice (Figure 9B).

In contrast, the Pten2/2 mice have high basal SREBP1 and

PPAR-c (data not shown) expression but slightly reduced ATGL

expression in the liver (Figure 9C). Treatment with rapamycin did

not suppress SREBP1, ACLY or FASN expression but rather

increased their levels slightly in the Pten-deficient livers while

ATGL expression remained unchanged (Figure 9C). A remarkably

similar trend in the expression of these lipogenic and lipolytic

enzymes was found in HFD-induced steatosis in wild type mice

suggesting that the effects of HFD closely parallel that of Akt

activation (Figure 9D). Collectively, these data indicate that Akt,

and not mTORC1, positively regulates a SREBP1-dependent

pathway in hepatocytes in vivo.

Figure 7. Akt induces steatosis in the Tsc12/2 livers. A) Contrasting effects of Pten- and Tsc1-loss on Akt signaling in the liver. Immunoblot
analyses of liver lysates from fasted 20 wk-old mice using indicated antibodies to highlight Akt and mTORC1 signaling. B) Effects of Akt on Tsc12/2
livers. Tsc12/2 mice were injected through the tail-vein with adenovirus (107 PFUs) encoding genes for Myr-Akt1 or b–galactosidase control. After
96 hours, mice were fasted overnight and sacrificed for H&E histology and Oil Red ‘‘O’’ staining of the livers. Magnification, 400X. C) Expression of
transgenes (HA-tagged Myr-Akt1 or b–gal) and components of the Akt/mTORC1 pathway in the Tsc12/2 livers following adenovirus injections. C,
control for Tsc1 expression. Note up-regulation of Akt without significant alteration to mTORC1 signaling in the Myr-Akt1-treated liver.
doi:10.1371/journal.pone.0018075.g007
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Figure 8. Tsc12/2 mice are resistant to diet-induced steatosis in a rapamycin-dependent manner. Six week-old Tsc1+/+ and Tsc12/2
littermates were randomly assigned to normal chow diet (NCD), high fat diet (HFD) or HFD with rapamycin (2 mg/kg IP, 3 times weekly during the last
4 weeks). At the end of 6 weeks on the assigned diets, mice were sacrifice following an overnight fast. A) H&E histology and Oil Red ‘‘O’’ (ORO)
staining of representative liver sections from each of the 6 groups. Magnification 400X. B) Biochemical measurements of liver and plasma triglyceride
(TG), plasma insulin and glucose levels are shown for each of the groups. Values represent mean 6SEM. * p,0.05. C) Western blot analyses of
representative liver lysates from each group showing the effects on Akt/mTORC1 signaling. Blots from long exposure (LE) and short exposure (SE) are
shown for p-Akt(Ser473). Actin, loading control.
doi:10.1371/journal.pone.0018075.g008
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The observed differences in ATGL expression in the Tsc1- and

Pten-mutant livers led us to explore its up-stream regulators

including PPARc and FoxO1 that have been shown to control

ATGL expression. Kim et al. reported that PPARc directly

promotes ATGL transcription, and the PPARc agonist, rosiglita-

zone, leads to an increase in ATGL mRNA levels [36]. However,

Figure 9. Hepatic mRNA expression of metabolic genes. Relative expression of genes involved in hepatic lipogenesis (SREBP1, ACLY, FASN),
lipolysis (ATGL), gluconeogenesis (PEPCK), glycolysis (GK), mitochondrial respiration (PGC1a) and triglyceride secretion (ApoB, Mttp) were determined
by RT-PCR analyses of RNA extracted from liver samples derived from experiments described in Figures 4, 6 and 8. All values represent mean 6SEM.
A, B) Comparison of Tsc1+/+ and Tsc12/2 mice fed normal chow (NCD) and high-fat diet (HFD) with and without rapamycin (rapa). * p,0.05 (not all
significant differences are highlighted). C) Pten2/2 mice treated with rapamycin or vehicle (dmso) compared to wild-type littermates, * p,0.05
compared to Pten+/+. D) Gene expression in livers of wild-type mice fed NCD or HFD with or without rapamycin treatment. *p,0.05 compared to
NCD, E) Reduced FoxO1 phosphorylation in Tsc12/2 livers. Tissue lysates from Tsc1+/+ and Tsc12/2 livers were analyzed for the expression of the
indicated proteins by immunoblot analyses. Levels of FoxO1(Ser256) phosphorylation were quantified relative to total FoxO1 expression based on
densitometric analyses (Image J).
doi:10.1371/journal.pone.0018075.g009
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this mechanism is unlikely to cause the ATGL induction in the

Tsc12/2 HFD-fed livers since high-fat diet suppressed PPARc
expression in both wild-type and mutant mice (data not shown).

On the other hand, the transcription factor, FoxO1, was found to

modulate lipolysis through its regulation of ATGL expression [37].

FoxO1 is an Akt target and upon phosphorylation by Akt, FoxO1

becomes sequestered in the cytoplasm as an inactive protein [38].

We examined the phosphorylation of FoxO1 at Ser256, an Akt

site, using a phospho-specific antibody. Figure 9E shows that

hepatic p-FoxO1(Ser256) expression was significantly reduced

relative to total FoxO1 levels indicating elevated FoxO1 activity in

the Tsc12/2 livers. These findings are consistent with the model

of mTORC1-induced steatosis-resistance secondary to Akt

inhibition and FoxO1 activation.

Discussion

The notion that mTORC1 promotes lipogenesis and may

contribute to NAFLD came from a series of observations showing

the positive effects of mTORC1 on SREBP1 expression and

activity that lead to de novo lipid synthesis [8] [9] [10] [11][14] [39].

In response to insulin in the liver, Li et al. showed that mTORC1

is required for lipogenesis but is not involved in the inhibition of

gluconeogenesis [14]. These and other evidence provide an

understanding for the phenomenon of selective hepatic insulin

resistance observed in type 2 diabetes [7]. In this study, we directly

examined the effects of mTORC1 hyperactivity in genetically

engineered mice with hepatocyte-specific deletion of Tsc1, a

negative regulator of mTORC1. While the normal-chow diet-fed

Tsc12/2 animals displayed evidence of hepatic and systemic

insulin resistance, their livers did not show signs of steatosis, and

the corresponding levels of hepatic triglyceride and expression of

lipogenic genes (e.g., SREBP1, ACLY, FASN) were similar to

those of the wild-type littermates. These findings suggest that

constitutive mTORC1 activation per se is not sufficient for the

development of steatosis. We further tested the effects of

rapamycin in two independent models of steatosis to determine

if mTORC1 activity is necessary for triglyceride accumulation in

hepatocytes. Six weeks of high-fat (Surwit) diet in the wild-type

mice gave rise to hypertriglyceridemia, hyperglycemia, hyperin-

sulinemia and steatosis that are commonly associated with the

metabolic syndrome. Pten deletion in hepatocytes results in

profound hepatomegaly and steatosis as previously reported [15]

[16]. In both models, hepatic Akt2 has been shown to be the key

mediator of lipid accumulation [40] [41]. Two weeks of rapamycin

treatment significantly reduced mTORC1 activity but failed to

suppress hepatic triglyceride levels in either model. Instead, there

was a trend towards higher expression of lipogenic genes (e.g.,

SREBP1c) following rapamycin treatment. These observations led

us to conclude that mTORC1 is neither necessary nor sufficient

for steatosis.

mTORC1 is a key effector downstream of Akt involved in cell

growth and proliferation [24]. Activation of either Akt or

mTORC1 can lead to tumor formation [42] [43]. However, in

the liver, these two kinases appear to have opposing effects on lipid

accumulation. While the Pten-null livers developed profound

steatosis, the Tsc1-null livers had low TG stores. This phenotypic

difference correlated closely with their relative Akt and mTORC1

activities and suggested that the Tsc12/2 hepatocytes could be

protected from steatosis due to the feedback suppression of Akt by

mTORC1. In support of this, the Tsc12/2 livers were resistant to

high-fat diet-induced steatosis, and treatment with rapamycin

abolished this ‘protection’ resulting in hepatic TG accumulation

that was equivalent to that seen in the wild-type hepatocytes under

high-fat diet condition (Figure 8). Further, rapamycin led to the

inhibition of mTORC1 and S6K1 resulting in the de-repression of

Akt. Moreover, steatosis can be induced in the Tsc12/2

hepatocytes with the expression of Myr-Akt (Figure 7). These

observations highlight the strong association between the balance

of Akt and mTORC1 activities and the development of steatosis.

When Akt dominates over mTORC1 (e.g., Pten2/2), steatosis

ensues, whereas when mTORC1 overshadows Akt (e.g., Tsc12/2),

fat deposition is suppressed. Other models of Akt suppression in the

liver (i.e., deletion of hepatic insulin receptor or Akt2) also result in a

reduction in TG accumulation along with glucose intolerance

similar to that of the Tsc12/2 mice [44] [41]. Thus, inhibition of

hepatic Akt activity by any number of mechanisms leads to total

hepatic insulin resistance. On the contrary, increasing Akt function

in hepatocytes by direct (i.e., Pten ablation, expression of Myr-Akt,

high-fat diet) or indirect (i.e., de-repression by rapamycin) means

promotes lipogenesis and steatosis. These findings support our

conclusion that the protective effect of mTORC1 from diet-induced

steatosis is mediated via the inhibition of Akt signaling and

underscore the potential for targeting Akt pharmacologically in

the treatment of steatosis.

Rapamycin is commonly used as an immunosuppressant

following renal transplant, and more recently, its analogs have

gained FDA approval for use in human tumors such as renal cell

carcinoma and subependymal giant cell astrocytoma. Reports of

rapamycin-induced glucose intolerance and dyslipidemia are

consistent with our observations. However, steatosis is not

consistently associated with the use of rapamycin in humans. We

reasoned that the degree of hepatic TG varies with the effects of

rapamycin on Akt activity. Sarbassov et al. reported that Akt

activity varies with the concentration and duration of rapamycin

treatment such that acute rapamycin alleviates S6K1 feedback

inhibition of Akt, but at higher concentrations and/or at longer

exposure, rapamycin can inhibit Akt by reducing mTORC2

complex formation [45]. Thus, the net result of chronic rapamycin

administration on Akt is difficult to predict. The rapamycin

regimens that were used in our experiments effectively suppressed

mTORC1 without significantly inhibiting Akt activity. Conse-

quently, the hepatic TG contents remained either unchanged

(Figure 4) or enhanced (Figure 8) correlating with the level of Akt

signaling and the balance between Akt and mTORC1. When used

for a protracted period (e.g., 2 mg/kg daily for 42 days), Chang et

al. reported that diet-induced steatosis was suppressed in wild-type

mice treated with rapamycin [34]. While Akt activity was not

reported in the study, we speculate that their regimen may have

inhibited Akt resulting in lowered TG accumulation. A more

detailed examination of this relationship and the balance between

Akt and mTORC1 activities in human NAFLD are potentially

informative.

Insulin promotes lipid synthesis through the induction of

SREBP1c and its target genes [46]. PI3K is the dominant

signaling node responsible for insulin action, and a number of

effectors downstream of PI3K have been implicated in hepatic

lipid synthesis including Akt, PKC-f and PKC-l [47]. While high-

fat diet leads to obesity and hyperinsulinemia, in the liver, HFD

induces a lipogenic response through the up-regulation of

SREBP1c and down-regulation of ATGL that is accompanied

by an increase in glucose kinase and a decrease in PEPCK

(Figure 9). These changes are consistent with augmented fat

synthesis and storage at the expense of utilizing glucose and

suppressing gluconeogenesis during the state of over-nutrition. To

the contrary, activation of mTORC1 leads to a metabolic switch

from glucose utilization towards fat utilization in the liver similar

to that seen during fasting or caloric restriction. Compared to wild-
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type littermates, hepatocytes with the loss of Tsc1 have reduced

SREBP1c and GK expression while ATGL and PEPCK were

elevated, and these differences were recapitulated when fed a high-fat

diet. Importantly, rapamycin had opposing effects on the expression

of these metabolic enzymes suggesting that mTORC1 plays a critical

role on the regulation of hepatic lipid and glucose metabolism. Based

on the metabolic gene expression profile, the effects of rapamycin,

when given at a non-Akt suppressing dose, resembles that of HFD

feeding in promoting energy storage at the expense of burning

glucose (e.g., markedly elevated glucose kinase and repressed PEPCK

expression, Figure 9). Correspondingly, the liver responds to

mTORC1 activation with a rapamycin-sensitive increase in PGC1a,

a key regulator of mitochondrial biogenesis, which is normally

induced under fasting conditions to facilitate glucose production.

Thus, the Tsc12/2 model highlights the novel function of hepatic

mTORC1 in enhancing gluconeogenesis while limiting the accumu-

lation of triglyceride by promoting lipid utilization.

Although mTORC1 has been implicated in de novo lipogenesis

in cells [10], the lack of TG accumulation in the Tsc1-null livers

when challenged with HFD suggests that mTORC1 is not the

primary ‘driver’ of steatosis in vivo. Instead, we surmise that

mTORC1 serves to ‘fine-tune’ Akt signaling in the regulation of

hepatic lipid metabolism. The mechanism of Akt-dependent

steatosis involves a number of down-stream effectors including

GSK3b and FoxO1. Akt phosphorylates GSK3b and FoxO1 to

inhibit their activities, and in the Tsc12/2 livers, these proteins

were hypo-phosphorylated (i.e., in the active state) (Figures 7, 9).

GSK3b limits lipogenesis by phosphorylating mature SREBP1

and promoting its proteasomal degradation through binding with

the Fbw7 ubiquitin ligase [48]. The effects of FoxO1 on hepatic

SREBP1 are less clear with reports showing mixed results [49]

[50] [51]. However, FoxO1 also regulates ATGL expression in

promoting triacylglycerol hydrolysis [37], and ATGL was found to

be significantly elevated in the Tsc12/2 livers (Figure 9). Loss-of-

function mutations of ATGL have been associated with TG

accumulation in patients with neutral lipid storage disease [52]. In

summary, our data suggest that mTORC1 suppresses lipid

accumulation through its feedback inhibition of Akt, which, in

turn, modulates lipogenic and lipolytic activities through its

effectors, GSK3b and FoxO1. These results also highlight the in

vivo relevance of the mTORC1-Akt feedback mechanism in

regulating hepatic lipid metabolism and energy balance.
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