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Abstract
Purpose To investigate the potential of radiomics applied to static clinical PET data using the tracer O-(2-[18F]fluoroethyl)-
l-tyrosine (FET) to differentiate treatment-related changes (TRC) from tumor progression (TP) in patients with gliomas.
Patients and Methods One hundred fifty-one (151) patients with histologically confirmed gliomas and post-therapeutic 
progressive MRI findings according to the response assessment in neuro-oncology criteria underwent a dynamic amino acid 
PET scan using the tracer O-(2-[18F]fluoroethyl)-l-tyrosine (FET). Thereof, 124 patients were investigated on a stand-alone 
PET scanner (data used for model development and validation), and 27 patients on a hybrid PET/MRI scanner (data used for 
model testing). Mean and maximum tumor to brain ratios  (TBRmean,  TBRmax) were calculated using the PET data from 20 
to 40 min after tracer injection. Logistic regression models were evaluated for the FET PET parameters  TBRmean,  TBRmax, 
and for radiomics features of the tumor areas as well as combinations thereof to differentiate between TP and TRC. The best 
performing models in the validation dataset were finally applied to the test dataset. The diagnostic performance was assessed 
by receiver operating characteristic analysis.
Results Thirty-seven patients (25%) were diagnosed with TRC, and 114 (75%) with TP. The logistic regression model 
comprising the conventional FET PET parameters  TBRmean and  TBRmax resulted in an AUC of 0.78 in both the validation 
(sensitivity, 64%; specificity, 80%) and the test dataset (sensitivity, 64%; specificity, 80%). The model combining the con-
ventional FET PET parameters and two radiomics features yielded the best diagnostic performance in the validation dataset 
(AUC, 0.92; sensitivity, 91%; specificity, 80%) and demonstrated its generalizability in the independent test dataset (AUC, 
0.85; sensitivity, 81%; specificity, 70%).
Conclusion The developed radiomics classifier allows the differentiation between TRC and TP in pretreated gliomas based 
on routinely acquired static FET PET scans with a high diagnostic accuracy.
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Introduction

During the follow-up of glioma patients, treatment-related 
changes often cannot be reliably differentiated from tumor 
progression by structural magnetic resonance imaging 
(MRI) alone. Yet a false diagnosis will either result in the 
continuation of an ineffective treatment or a premature ter-
mination of an effective one, both negatively impacting 

patients’ prognosis. To improve the differentiation of treat-
ment-related changes and tumor progression, advanced MRI 
techniques such as perfusion-weighted imaging as well as 
MR spectroscopy are under investigation, yielding accura-
cies of about 80% for this clinically challenging and highly 
important differential diagnosis [1].

Besides advanced MRI, amino acid positron emission 
tomography (PET) has demonstrated its potential to differ-
entiate treatment-related changes from tumor progression in 
initial studies [2–4]. Previous studies using the amino acid 
PET tracer O-(2-[18F]fluoroethyl)-l-tyrosine (FET) showed 
that the combination of static and dynamic parameters 
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discriminates treatment-related changes from tumor progres-
sion in recurrent gliomas with an accuracy of up to 90% 
[5–7]. These studies, however, require dynamic FET PET 
parameters based on a 40–50 min PET scan that is more 
time consuming in clinical routine than a static scan from 
20 to 40 min post injection. Other studies demonstrated an 
improved diagnostic accuracy by combination of FET PET 
with advanced MRI methods using hybrid PET/MRI [8, 9].

Despite these recent advances, a method to improve the 
diagnostic performance of FET PET without the need for a 
time-consuming and expensive dynamic acquisition or addi-
tional, dedicated MRI scans would be of clinical relevance.

In recent years, methods based on artificial intelligence 
and machine learning have become increasingly important 
and found their way into medical image analysis. Several 
methods from this field are under investigation also in brain 
tumor patients and promise to improve diagnosis by extract-
ing additional imaging features from routinely acquired 
imaging data. These features are usually not accessible 
through conventional image analysis and can be used to gen-
erate prognostic or predictive mathematical models. This 
methodology is also referred to as radiomics [10, 11].

FET PET radiomics has already demonstrated its poten-
tial in neurooncology for the prediction of the isocitrate 
dehydrogenase genotype [12], the diagnosis of pseudopro-
gression [13, 14], the differentiation of treatment-related 
changes from recurrent brain metastases after radiosurgery 
[15, 16], or the prediction of the BRAF mutational status in 
patients with melanoma brain metastases [17].

The goal of our study was to investigate the potential of 
FET PET radiomics for the differentiation between treat-
ment-related changes and tumor progression in patients with 
glioma based on routinely acquired static FET PET when 
added to clinically established FET PET parameters.

Patients and methods

Patients

The patient group was partly included in a previous study 
concerning the diagnostic performance of perfusion-
weighted MRI and dynamic FET PET for the differentiation 
of treatment-related changes from glioma progression [18].

One hundred and fifty-one patients (n = 54 females, n = 97 
males; median age, 52.3 years; age range 20.4–78.0 years) 
with histologically confirmed WHO grade II–IV glioma 
according to the 2016 WHO Classification of Tumors of 
the Central Nervous System [19] were included in this ret-
rospective study [mostly WHO grade IV glioblastoma, IDH-
wildtype (n = 71); WHO grade III anaplastic astrocytoma, 
IDH-mutant (n = 20); WHO grade II astrocytoma, IDH-
mutant (n = 14)]. All patients presented with post-therapeutic 

MRI findings suspicious for tumor progression according 
to the Response Assessment in Neuro-Oncology (RANO) 
criteria and were hence investigated using FET PET. All 
patients included here showed an increased FET uptake in 
the area of the primary lesion. Complete patient character-
istics are provided in Table 1.

Diagnosis of treatment‑related changes and tumor 
progression

Diagnosis was based on histopathology in 46 patients (30%), 
and on clinicoradiological follow-up in 105 patients (70%). 
For histopathologic diagnosis, tissue samples were obtained 
by resection or biopsy and analyzed as described previously 
[5].

For WHO grade II gliomas, both the clinical and the 
radiological situation had to be stable or improved for at 
least 12 months without change in therapy to exclude tumor 

Table 1  Patient characteristics

Demographics
 Number of patients 151
 Sex (female/male) 54/97
 Age (years) (median and range) 52.3 (20.4–78.0)

Histology
 Oligodendroglioma, IDH-mutant and 1p/19q-

codeleted
  WHO grade II 7 (5%)
  WHO grade III 10 (7%)

 Astrocytoma IDH-mutant
  WHO grade II 14 (9%)
  WHO grade III 20 (13%)

 Astrocytoma IDH-wildtype
  WHO grade II 5 (3%)
  WHO grade III 10 (7%)

 Astrocytoma, NOS, WHO grade II 2 (1%)
 Glioblastoma, IDH-wildtype, WHO grade IV 71 (47%)
 Glioblastoma, IDH-mutant, WHO grade IV 11 (7%)
 Gliosarcoma, WHO grade IV 1 (1%)

Molecular characteristics
 IDH genotype
  IDH-mutant 59 (39%)
  IDH-wildtype 92 (61%)

 MGMT promoter methylation status
  Methylated 72 (48%)
  Unmethylated 50 (33%)
  Not available 29 (19%)

Final diagnosis
 Tumor progression 114 (75%)
 Treatment-related changes 37 (25%)
 Diagnosis based on histopathology 46 (30%)
 Diagnosis based on clinicoradiological follow-up 105 (70%)
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progression [20]. For WHO grade III–IV gliomas, the diag-
nosis treatment-related changes required at least 6 months of 
stable or improved clinical and radiological condition [21], 
as well as no change in tumor treatment. Tumor progression 
was diagnosed if lesions continued to increase in size on at 
least two subsequent MRI scans according to the RANO 
criteria, accompanied by a deterioration in performance sta-
tus, or if a patient died of glioma, whichever occurred first. 
Of note, the applied classification criteria are in accordance 
with previous studies [5, 22, 23].

FET PET imaging

The amino acid FET was produced and applied as described 
previously [24]. According to international guidelines for 
brain tumor imaging, all patients fasted for at least 4 h before 
the PET measurement [25].

All patients underwent a dynamic PET scan from 0 to 
50 min post injection of 3 MBq of FET per kg of body 
weight. 124 patients were examined on a stand-alone PET 
scanner (ECAT EXACT HR+, Siemens Healthcare, Erlan-
gen, Germany) in 3D mode, and 27 patients on a high-res-
olution 3 T hybrid PET/MRI scanner (BrainPET, Siemens 
Healthcare, Erlangen, Germany). The BrainPET is a com-
pact cylinder that fits into the bore of the Magnetom Trio 
MR scanner [26, 27].

As described before [28], iterative reconstruction param-
eters were: 16 subsets, six iterations using the OSEM algo-
rithm for the ECAT HR+ PET scanner and two subsets, and 
32 iterations using the OP-OSEM algorithm for the Brain-
PET. Data were corrected for random, scattered coinci-
dences, dead time, and motion for both systems. Attenuation 
correction for the ECAT HR+ PET was based on a transmis-
sion scan. For the BrainPET, a template-based approach was 
used [26]. The reconstructed dynamic data sets consisted 
of 16 time frames (5 × 1 min; 5 × 3 min; 6 × 5 min) for both 
scanners. To optimize comparability of the results related 
to the influence of the two different PET scanners, recon-
struction parameters, and post-processing steps, a 2.5 mm 
3D Gaussian filter was applied to the BrainPET data before 
further processing. In previous phantom experiments with 
spheres of different sizes that simulated lesions, this filter 
kernel demonstrated the best comparability of PET data 
obtained from the ECAT HR+ PET and the BrainPET scan-
ner [29].

Evaluation of FET PET parameters

The FET uptake was expressed as standardized uptake value 
(SUV) by dividing the radioactivity in the tissue (kBq/ml) by 
the radioactivity injected per gram of body weight.

Semi-automated segmentation of the suspected brain 
lesion was performed in the summed PET images from 20 
to 40 min post-injection using the Pmod Biomedical Image 
Quantification Software (Version 3.806, PMOD Technol-
ogies, Zurich, Switzerland). For assessment of the FET 
uptake in healthy brain tissue, a region-of-interest was 
positioned in the semioval center of the unaffected hemi-
sphere contralateral to the tumor, involving grey and white 
matter [25]. As described before [28], tumor segmenta-
tion was performed using a 2-dimensional auto-contouring 
process in the transversal slice containing the voxel with 
the maximum tracer uptake using a tumor-to-brain ratio 
(TBR) of 1.6 or more. In a previous study, this threshold 
has been shown to best separate between vital tumor and 
healthy brain parenchyma in FET PET [30].

Maximum and mean TBRs  (TBRmax,  TBRmean) were 
calculated by dividing the maximum or mean SUV of the 
tumor by the mean SUV of healthy brain tissue. The seg-
mentations were validated by an experienced, board-cer-
tified specialist in neuroradiology with broad experience 
in nuclear medicine. Figure 1 illustrates the segmented 
lesions in representative patients.

Image preprocessing and radiomics feature 
extraction

The group of patients scanned on the stand-alone PET 
scanner was divided into a training and a validation dataset 
in a ratio of 3/1 with an equal ratio of tumor progression to 
treatment-related changes. The group of patients scanned 
on the 3 T hybrid PET/MR scanner was used for model 
testing.

Feature extraction was performed by the RadiomiX 
toolbox (supported by Oncoradiomics, Liège, Belgium) 
[31] implemented in Matlab 2017a (MathWorks, Natick, 
MA, USA), including International Biomarker Standardi-
zation Initiative (IBSI)-compliant [32] radiomic features 
as well as others. A total of 221 features were extracted. 
No spatial resampling was performed. Absolute intensity 
resampling was performed using a fixed bin width of 0.1 
according to current recommendations [33].

The extracted features consisted of five main groups: (1) 
fractal features (2) first order statistics, (3) shape and size, 
(4) texture descriptors including gray level co-occurrence 
(GLCM), gray level run-length (GLRLM), and gray level 
size-zone texture matrices (GLSZM), and (5) features 
from groups 1, 3 and 4 after wavelet decomposition of the 
original image.

The definitions and detailed feature descriptions are 
provided elsewhere [10]. Detailed mathematical defini-
tions of the features are available in the RadiomiX toolbox 
manual.
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Feature selection

Using large number of features on a limited number of 
patients for model calculation may result in data overfit-
ting. Overfitting is a methodological mistake in which a 
generated model corresponds too closely or even matches 
the analyzed dataset. This results in a perfect classifica-
tion accuracy on the dataset that has been used for training 
but renders the model too specialized to classify new or 
additional imaging data or reliably predict future obser-
vations. To lower the risk of overfitting, the most impor-
tant features must be identified in a process called feature 
selection before model generation. [34]

Feature selection was performed using the RadiomiX 
toolbox. First, the machine learning module eliminates 
features with (near) zero variance and an inter-feature 
correlation of 0.9 or more to remove redundancies within 
the feature set. A threshold of 0.9 is generally considered 
high enough to eliminate high correlation from the dataset. 
Second, a stepwise forward feature selection using strati-
fied cross-validation with logistic regression is used to fur-
ther reduce the number of radiomics features, i.e., it stops 

adding features if the inclusion of the next feature does not 
add more than 0.005 to the average cross-validation AUC.

Model generation and validation

Logistic regression models were generated on the training 
dataset using the ‘tidyverse/ggplot2’ packages in R (version 
4.0.5, R Studio, Inc., Boston, MA, USA). Logistic regression 
models were fitted separately for the conventional FET PET 
parameters  TBRmean and  TBRmax, as well as for the selected 
radiomics features and a combination of conventional and 
radiomics features. Finally, the models were applied to 
the holdout validation dataset that was not part of model 
generation.

Model testing

The best performing models were applied to the test dataset 
acquired on the BrainPET scanner. Since the test dataset was 
not involved in the process of model training and validation 
and was acquired on a different PET scanner, it represents an 

Fig. 1  Representative FET PET images of patients with treatment-
related changes (top) and glioma progression (bottom). The seg-
mented lesions are highlighted in red in the right column. Visually, 

obvious differences in FET uptake between patients with treatment-
related changes and tumor progression could not be identified



523Journal of Neuro-Oncology (2022) 159:519–529 

1 3

independent dataset to evaluate the robustness and generaliz-
ability of the model. The radiomics workflow is illustrated 
in Fig. 2.

Statistical evaluation

Descriptive statistics are provided as mean and standard devia-
tion or as median and range. The Mann–Whitney-U test was 
used for intergroup comparison. The diagnostic performance 
of the PET parameters, the machine learning models and com-
binations thereof were assessed by receiver operating charac-
teristic (ROC) analysis. The decision cutoff was considered 

optimal when the product of paired values for sensitivity 
and specificity reached its maximum. Fisher’s exact test for 
2 × 2 contingency tables was used for statistical evaluation of 
the parameters. P-values of less than 0.05 were considered 
statistically significant. Statistical analyses were performed 
using SPSS (SPSS Statistics 24, IBM, New York, USA) and 
Microsoft Excel (Excel:Mac 2020, Version 16.53, Microsoft, 
Redmond, WA, USA).

Fig. 2  Radiomics workflow
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Results

Treatment‑related changes and tumor progression

Of the 124 patients examined on the stand-alone PET scan-
ner, 31 (25%) were diagnosed with treatment-related changes 
and 93 (75%) with tumor progression. The test dataset con-
sisted of 27 patients examined on the BrainPET scanner. 
Thereof, six (22%) were diagnosed with treatment-related 
changes and 21 (78%) with tumor progression.

Group comparison of FET PET parameters

TBRmean was significantly higher for patients with tumor 
progression compared to patients with treatment-related 
changes (mean  TBRmean ± standard deviation, 2.1 ± 0.3 vs. 
1.9 ± 0.3; p < 0.001).  TBRmax was also significantly higher 
for patients with tumor progression compared to patients 
with treatment-related changes (mean  TBRmax ± standard 
deviation, 3.7 ± 0.9 vs. 2.8 ± 0.7; p < 0.001).

Performance of machine learning models 
in the training and validation dataset

The two most important radiomics features according to the 
feature selection were Informational Measure of Correlation 
2 calculated from the GLCM, and Intensity Non-Uniformity 
Normalized from the GLSZM.

The logistic regression model based on the conventional 
PET parameters resulted in an AUC of 0.78 (95% confidence 
interval, 0.68–0.88; sensitivity, 64%; specificity, 80%) in the 
validation dataset. The logistic regression model using only 
radiomics features resulted in an AUC of 0.90 (95% confi-
dence interval, 0.79–1.00; sensitivity, 87%; specificity, 80%) 
in the validation dataset. The logistic regression model com-
bining FET PET parameters and radiomics features resulted 
in an AUC of 0.92 (95% confidence interval, 0.82–1.00; 
sensitivity, 91%; specificity, 80%) in the validation dataset. 

Further details on the model performances in the validation 
and test dataset are summarized in Table 2 and Fig. 3. 

Performance of radiomics models in the test dataset

The model based on PET parameters resulted in an AUC of 
0.78 (95% confidence interval, 0.67–0.88; sensitivity, 66%; 
specificity, 80%) in the test dataset.

The model based solely on radiomics features resulted 
in an AUC of 0.85 (95% confidence interval, 0.77–0.94; 
sensitivity, 73%; specificity, 80%) in the test dataset. The 
model combining FET PET parameters and radiomics fea-
tures resulted in an AUC of 0.85 (95% confidence interval, 
0.77–0.94; sensitivity, 81%; specificity, 70%). Further details 
on the model performances in the test dataset are summa-
rized in Table 2 and Fig. 3.

Discussion

The main finding of our study is that a machine learning 
model based on static FET PET radiomics features differ-
entiates treatment-related changes from tumor progression 
in patients with gliomas with a high diagnostic accuracy, 
i.e., an AUC of 0.85, and outperforms conventional FET 
PET analysis (AUC, 0.78). Interestingly, combining both 
FET PET radiomics features with conventional FET PET 
parameters further improved the overall diagnostic per-
formance, especially the sensitivity of the model. Further, 
the developed radiomics model was evaluated in a small, 
but independent test dataset acquired with a different PET 
scanner demonstrating its reliability and robustness regard-
less of the used scanners and imaging parameters. Since the 
developed model is based on routinely acquired FET PET 
scans and can be applied fully automated on a conventional 
computer in a few minutes, the approach seems feasible for 
clinical implementation.

Several studies already investigated the potential 
of FET PET for the differentiation of treatment-related 
changes from tumor progression in glioma patients [7, 20, 

Table 2  Diagnostic 
performance of developed 
classifiers in the validation 
dataset (top) and the test dataset 
(bottom)

AUC : area under the receiver operating characteristic curve; 95% CI: 95% confidence interval

AUC 95% CI Sensitivity (%) Specificity (%)

Validation dataset (n = 31)
 FET PET parameters 0.78 0.68–0.88 64 80
 Radiomics features 0.90 0.79–1.00 87 80
 FET PET parameters + radiomics features 0.92 0.82–1.00 91 80

Test dataset (n = 27)
 FET PET parameters 0.78 0.67–0.88 66 80
 Radiomics features 0.85 0.77–0.94 73 80
 FET PET parameters + radiomics features 0.85 0.77–0.94 81 70
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Fig. 3  Receiver operating characteristic curves of the validation (left) 
and the test dataset (right) for a model comprising the static FET PET 
parameters  TBRmean and  TBRmax (top row), a model comprising the 
two radiomics features Informational Measure of Correlation 2 cal-

culated from the grey level co-occurrence matrix, and Intensity Non-
Uniformity Normalized from the grey level size zone matrix (middle 
row), and a model using the combination thereof (bottom row)



526 Journal of Neuro-Oncology (2022) 159:519–529

1 3

35, 36]. Although these studies demonstrate high diag-
nostic accuracies, the number of patients in these studies 
was either low, and/or only a small fraction of patients 
were diagnosed with treatment-related changes. A more 
recent study by Maurer and colleagues [5] using partially 
overlapping patients investigated the value of static and 
dynamic FET PET parameters for the differentiation of 
treatment-related changes from glioma progression. This 
retrospective analysis of 127 patients with WHO grade 
II-IV gliomas yielded a diagnostic accuracy of 81% (sen-
sitivity, 86%; specificity, 67%) by combining  TBRmax 
and the dynamic FET PET parameter slope. In our study, 
the combination of static FET PET parameters  TBRmean 
and  TBRmax resulted in a comparable diagnostic perfor-
mance (AUC, 0.78; sensitivity, 64%; specificity, 80%) in 
the validation dataset. Nevertheless, the use of FET PET 
radiomics parameters alone already outperformed the 
conventional FET PET parameters with an AUC of 0.90 
(sensitivity, 87%; specificity, 80%). Combining radiomics 
and conventional FET PET parameters further increased 
the diagnostic performance in the validation dataset (AUC, 
0.92; sensitivity, 91%; specificity, 80%) and demonstrated 
its generalizability in the external test dataset (AUC, 0.85; 
sensitivity, 81%; specificity, 70%).

Our results concerning FET PET are also comparable 
with a recent study of our group investigating the value of 
combining perfusion-weighted MRI with dynamic FET 
PET [37]. In that study, accuracy of PWI, which can be per-
formed easily during routine conventional MR scanning, was 
poor in differentiating treatment-related changes and tumor 
progression (accuracy, 63%). However, the high positive 
predictive value of PWI (100%) allowed a correct diagnosis 
of treatment-related changes in 42% of the patients. In the 
remaining patients, PWI was nondiagnostic, but FET PET 
still achieved an accuracy of 78% leading to the recommen-
dation of a sequential use of perfusion-weighted MRI and 
dynamic FET PET in clinical practice. In this context, the 
developed radiomics classifier in our study may achieve a 
higher diagnostic performance based on 20 min static FET 
PET images. Since the analysis can be performed fully 
automated on a conventional computer in a few minutes, 
this combination appears promising in terms of a clinical 
translation.

Over the past years, the value of machine learning tech-
niques and FET PET radiomics for the diagnosis of treat-
ment-related changes such as pseudoprogression in patients 
with glioma [13, 14, 38] or radiation injury in patients with 
brain metastases [16] has been demonstrated. Interestingly, 
in these studies, different patterns of tracer uptake could 
already visually be distinguished. Patients with pseudopro-
gression or radiation injuries showed a more homogenous 
uptake of FET compared to a more heterogenous uptake of 
FET in patients with tumor progression.

In our study, different patterns of FET uptake between 
patients with treatment-related changes and glioma pro-
gression could not be identified by visual evaluation 
(Fig. 1). This might be due to the more inhomogeneous 
group of patients that included a broad range of glioma 
subtypes and treatment regimens. Nevertheless, we iden-
tified the two textural features Informational Measure of 
Correlation 2 calculated from the GLCM, and Intensity 
Non-Uniformity Normalized from the GLSZM as being 
discriminative between treatment-related changes and 
glioma progression. Both textural features describe dif-
ferences in tumor heterogeneity not accessible by means of 
human perception. Even though visually accessible differ-
ences are desirable for a better presentation of the results, 
the real benefit and concept of radiomics becomes more 
apparent if this is not the case—”images are more than 
pictures, they are data” [39].

Besides a visual interpretation of radiomics features, 
further efforts are needed for a deeper understanding of 
the biological meaning of features and machine learning 
models. This might be essential for a potential clinical 
translation and acceptance of radiomics in clinical routine. 
Hence, the correlation of radiomics features with local tis-
sue samples including extensive neuropathological work-
up is necessary in future studies.

Although promising, our results must be further vali-
dated in a larger group of patients from multiple institu-
tions. Albeit the number of patients in our study is larger 
than in other studies investigating PET radiomics for the 
differentiation of treatment-related changes and tumor 
progression, the generally low number of patients avail-
able in neuro-oncology remains a limitation. Nonetheless, 
our model has shown its value in an external test dataset 
without extensive preprocessing, acquired on a different 
PET scanner, so further model evaluation in other centers 
is warranted and feasible.

Another limitation of our study might be the heterog-
enous composition of patients in terms of glioma subtypes 
and treatment regimens and the relatively low amount of 
histopathological validation of the diagnosis. Further, the 
group of patients is likely biased towards more challenging 
cases as only patients with equivocal MRI findings and 
remaining therapeutic options usually undergo FET PET 
scans. However, this dataset is representative of a clinical 
situation and further underlines the value of the model as 
it does not require an extensive preselection of patients.

Additionally, the developed machine learning model is 
based on FET PET alone and does not include structural 
or advanced MRI. Future studies should hence address 
the potential additional value of a combined FET PET/
MRI radiomics analysis, also considering advanced MRI 
methods such as PWI or MR spectroscopy.
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Conclusion

The results from our study suggest that the developed 
radiomics model is of clinical value for the differentiation 
between treatment-related changes and tumor progression in 
patients with gliomas regardless of tumor type or pretreat-
ment. The radiomics model is based on routinely acquired 
static 20 min FET PET scans facilitating the translation 
into clinical routine. Especially in combination with other 
clinical parameters, the developed radiomics model might 
have an additional diagnostic value once translated into 
clinical routine.
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