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Polycystic ovary syndrome (PCOS) is a lifelong reproductive, metabolic, and

psychiatric disorder that affects 5-18% of women, which is associated with a

significantly increased lifetime risk of concomitant diseases, including type 2

diabetes, psychiatric disorders, and gynecological cancers. Posttranslational

modifications (PTMs) play an important role in changes in protein function and

are necessary to maintain cellular viability and biological processes, thus their

maladjustment can lead to disease. Growing evidence suggests the association

between PCOS and posttranslational modifications. This article mainly reviews

the research status of phosphorylation, methylation, acetylation, and

ubiquitination, as well as their roles and molecular mechanisms in the

development of PCOS. In addition, we briefly summarize research and

clinical trials of PCOS therapy to advance our understanding of agents that

can be used to target phosphorylated, methylated, acetylated, and

ubiquitinated PTM types. It provides not only ideas for future research on the

mechanism of PCOS but also ideas for PCOS treatments with

therapeutic potential.
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Introduction

Polycystic ovary syndrome (PCOS) is a lifelong reproductive, metabolic, and

psychiatric disorder that affects 5-18% of women (1). For a disease to be diagnosed as

PCOS, any two of the following symptoms must be present: clinical or biochemical

hyperandrogenism, oligo-anovulation, and/or polycystic ovaries, excluding other

endocrine diseases according to the Rotterdam criteria (2). PCOS is frequently

associated with abdominal adiposity, insulin resistance, obesity, metabolic disorders,

chronic low-grade inflammation, and cardiovascular risk factors (3–5).
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Posttranslational modifications (PTMs) play an important

role in modifying protein function and are necessary for

maintaining cell viability and biological processes (6). PTMs

expand protein functionality and diversity, which leads to

increased proteome complexity (7). Therefore, their disorder

can lead to diseases, such as cancer, cardiovascular disease,

aging, diabetes, and neurodegeneration disease (8–12). PTM

includes an attachment of addition of functional groups, such as

phosphorylation, methylation, acetylation, and glycosylation; a

covalent coupling of small peptides or proteins, such as

ubiquitination and SUMOylation; or chemical changes in

amino acids, such as citrullination (conversion of arginine to

citrulline) (13). Most of these modifications are essential

functional biomolecules, and proteins are closely involved in

the occurrence and development of PCOS. Four types of PTMs

(phosphorylation, methylation, acetylation, and ubiquitination)

are primarily discussed in this review.

This article reviews the research progress of PTMs in PCOS

diseases. We aimed to elucidate the relationship between various

PTMs and polycystic ovary syndrome. In this paper, the

mechanism of PCOS and its application in the treatment of

PCOS are reviewed, which provides useful enlightenment for the

intervention of endocrine and metabolic disorders such

as PCOS.
The role of PTMs in PCOS

Phosphorylation

Protein phosphorylation is one type of PTM that has been

fairly well investigated in the area of PCOS. In short, protein

phosphorylation refers to the connection of phosphate groups to

proteins, mainly serine, threonine, and tyrosine, and activates/

inact ivates many enzymes and receptors through

phosphorylation and dephosphorylation to regulate the

function and localization of proteins, which is an important

cellular regulatory mechanism (13, 14). Recent studies have

shown that the core etiology and major endocrine

characteristics of PCOS are hyperandrogenemia and insulin

resistance (15). Androgen receptor (AR) in ovarian granulosa

cells (GCs) is an important factor in androgen accumulation

(16). In addition to steroid regulation, various kinases alter AR

activity by regulating phosphorylation at serine, threonine, and

tyrosine residues (17). Casein kinase 2a (CK2a) not only

interacts with AR in vivo and in vitro but also phosphorylates

and stabilizes AR, triggering overexpression of AR and

ovulation-related genes, leading to ovulation disorders (18). It

was found that oxidative stress leads to 17,20 lyase activation and

androgen synthesis stimulation by increasing phosphorylation

of p38a, which may be the basis of PCOS hyperandrogenemia

(19). Since phosphorylation of p38 MAPK can lead to cell

dysfunction (20), studies have found that hyperandrogenism
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activates endoplasmic reticulum (ER) stress through the p38

MAPK pathway, thereby leading to GCs apoptosis and ovulation

disorders (21). Because FoxO1 is a negative regulator of cell

survival, increased phosphorylation of FoxO1 at Ser256 and

Ser319 promoted proliferation and reduced apoptosis of

dehydroepiandrosterone (DHEA)-induced GCs in PCOS mice

(22). In addition, a clinical study has also found that the

apoptosis of GCs in patients with PCOS is negatively

correlated with the protein level of phosphorylated FoxO3

(23). Dihydrotestosterone (DHT) -induced upregulation of our

and a half LIM domain 2 (FHL2) is mediated by AR signaling in

KGN cells, which inhibits the phosphorylation of ERK1/2, an

ovulation-related gene, resulting in impaired ovulation (24).

However, treatment with pregnant mare serum gonadotropin

PMSG improved ovulation by decreasing Cyp17a1 expression

and increasing ERK1/2 phosphorylation in GCS of PCOS mice

ovaries (25). It is well known that insulin resistance and glucose

intolerance are common features of multiple PCOS (26).

Insulin-stimulated glucose uptake was attenuated by decreased

membrane translocation of type 4 glucose transporters by

decreased phosphorylation of insulin receptor substrate (IRS)-

1/2 Tyr612 or IRS-1 Ser (312), phosphorylation of protein kinase

B Ser473, and increased phosphorylation of IRS-1 Ser307 in

cultured hGL (27, 28). Impairment of the PI3K/AKT pathway is

known to lead to insulin resistance (29). Decreased cortisol

oxidation and inhibition of AKT phosphorylation in the

endometrium were also observed in PCOS patients with IR

(30). It was found that increased phosphorylation of PI3K and

AKT can activate the PI3K/AKT signaling pathway of GCs in

PCOS patients and PCOS rats to improve insulin resistance (31–

35). Overall, due to the heterogeneity of PCOS, many different

disease processes with similar clinical phenotypes but different

pathophysiology are included. But the target-protein

phosphorylation hypothesis could potentially explain the two

main features of PCOS – hyperandrogenism and insulin

resistance. Although only two changes in the phosphorylation

system are highlighted, these findings suggest that this type of

PTM has a good role to play in developing the ultimate

therapeutic targets of PCOS.
Methylation

Protein methylation is an important post-translational

modification that occurs primarily on lysine and arginine

residues and modulates histone and non-histone functions (36,

37). As we all know, DNA hypermethylation prevents gene

expression, whereas hypomethylation leads to elevated levels

of gene expression (38). Nevertheless, some researchers have

proposed the idea that methylation of histone H3 at lysine 9

(H3K9) corresponds to gene inactivation and precedes DNA

methylation (39). Histone methylation is a PTM change

mediated by histone methyltransferase, which has been
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confirmed to be related to the occurrence and development of a

variety of diseases, such as cardiovascular and cerebrovascular

diseases, cancer, aging, and reproductive system diseases (40–

42). Recently, histone methylation has been involved in the

pathogenesis of PCOS. PCOS is accompanied by dysregulation

of steroid hormone synthesis (43); however, GCs provide

essential nutrients and steroids to oocytes and play a crucial

role in ovarian follicle development (44). Remarkably, multiple

studies have confirmed that histone methylation plays a key role

in the dysregulation of steroid hormone synthesis in PCOS. It

has been demonstrated that H3K9 hypomethylation leads to

enhanced expression of CYP19A1 in GCs, which may be an

important reason for follicle arrest in PCOS (45). Decreased

expression of the anti-apoptotic gene Bcl-2 due to

hypermethylation was observed in testosterone-treated sheep

GCs (46). In PCOS mice with nonalcoholic fatty liver, androgens

decrease the expression of core clock gene promoters by

inhibiting the expression of the histone methyltransferase Ezh2

while inducing the expression of the histone demethylase JMJD3

Silences the expression of the marker H3K27me3, for which the

expression of JMJD3 is responsible for the addition or deletion of

the H3K27me3 marker (47). Animal and human researches

suggest that prenatal androgen exposure may be the

underlying cause of PCOS in later life (48). Two recent studies

have reported changes in histone methylation modifications in

an androgenized sheep model induced by prenatal androgen

exposure. One of the studies reported an increase in H3K9me3

(gene suppression) markers, but no change in H3K27me3 (gene

suppression) or H3K4me3 (gene activation) markers in ovaries

from prenatal-testosterone (T) treated sheep (49). In a second

study, the methylation status of H3K4 in theca cells and H3K9 in

GCs is regulated by histone methyl transferases SMYD3 and

SUV39H1, respectively. Both of them are upregulated in the

ovaries of animals treated with prenatal-T, and the methylation

of histones is more obvious in the second year than in the first

year, accompanied by a progressive decline in reproductive

function (46). Since studies involving androgen-induced

histone modifications in humans are very limited, additional

clinical cohort studies are needed to understand the role of

postnatal androgens in the ovary or their underlying

mechanisms in regulating the development and progression of

PCOS in general.
Acetylation

In 1964, histone acetylation was first identified and the

regulatory role of this protein modification in transcriptional

regulation was proposed (50). However, in the past decade,

proteomic analysis has shown that non-histone proteins are

frequently acetylated (51). Acetylation is an important PTM that

regulates many biological processes, mediated by the action of

specific types of enzymes: Lysine acetyltransferase (KAT) and
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lysine deacetylase (HDAC) affect protein function through a

variety of mechanisms, including by regulating protein stability,

enzyme activity, subcellular localization, and crosstalk with

other post-translational modifications, as well as by controlling

protein-protein and protein-DNA interactions (51–53). Existing

studies proposed that PCOS is related to histone acetylation. In

DHEA-induced PCOS mice, excessive reactive oxygen species

(ROS) production increased acetylation of histone H4K12

leading to excessive abnormal oocyte morphology and reduced

polar body extrusion rate (54). Deacetylation of histones by

HDAC enzymes is one of the characteristics of chromosome

condensation, which is associated with transcriptional

repression during oocyte maturation. Some studies have found

that the increase of HDAC1 mRNA level and the decrease of

intracytoplasmic ROS content may be one of the reasons for the

decrease of H4K12 acetylation and developmental disorders in

oocytes of PCOS mice (55). Mir-874-3p is upregulated in PCOS

and promotes testosterone-induced GCs apoptosis by inhibiting

HDAC1-mediated p53 deacetylation (56). Increased HDAC3

mRNA level was observed in human GCs treated with

dihydrotestosterone in vitro and GCs of PCOS rats,

accompanied by decreased acetylation of H3K9. Resulting in

two hypermethylated CpG sites in the peroxisome proliferator-

activated receptor g1 (PPARG1) promoter and five

hypomethylated CpG sites in the nuclear corepressor 1

(NCOR1) and HDAC3 promoters, alterations that are

associated with ovarian dysfunction in hyperandrogenism (57).

Recently, non-histone acetylation has been increasingly shown

to play a critical role in PCOS development. Quantitative

analysis of acetylation proteomics in PCOS and control

ovarian GCs by mass spectrometry showed that the acetylation

level was increased in the PCOS group, and the acetylation level

of Acetyl-CoA acetyltransferase 1 (ACAT1) in clinical PCOS

GCs was negatively correlated with oocyte quality and embryo

development efficiency (58). One of the characteristics of PCOS

is ovulation dysfunction, and abnormal proliferation and

apoptosis of GCs are considered to be key factors leading to

abnormal maturation of follicles (59, 60). PCOS is often

accompanied by oxidative stress. A study found that the

decreased expression of mir-181a could inhibit the apoptosis

of GCs in vitro and in vivo by upregulating the expression of

SIRT1 and the deacetylation of the pro-apoptotic factor FoxO1

(61, 62). The expression of Sirtuin 3 (SIRT3) was significantly

reduced in GCs of PCOS patients, while the knockdown of

SIRT3 could change the acetylation state of NDUFS1, which may

induce mitochondrial dysfunction, elevated oxidative stress, and

glucose metabolism defects, leading to damage of oocytes in

PCOS (63). Protein lysine acetylation is not only found on

histones that affect chromatin structure and gene expression,

but also on non-histones involved in a variety of cellular

processes, thus providing an opportunity to explore the

mechanism of acetylation regulation of PCOS as a drug target

for the development of new therapies.
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Ubiquitination

Ubiquitination is a broad post-translational modification that

falls into two main types, called monoubiquitin and polyubiquitin,

whose states are regulated by ubiquitination and deubiquitination

systems, usually triggering degradation through proteasome and

autophagy pathways (64–66). Recent studies have shown that

differentially expressed genes (DEGs) in the transcriptomic

profiles of ovarian GCs and peripheral blood mononuclear cells

(PBMNC) of PCOS women are mainly enriched in protein

ubiquitination signaling pathways (67). Genome-wide association

studies (GWAS) also identified significant differences in allele

frequencies of several single nucleotide polymorphisms (SNPs) in

the gene USP34 (ubiquitin-specific protease 34) between PCOS

cases and controls (68). AR plays an important regulatory role in

follicular development, andmore andmore studies have shown that

AR is also regulated by ubiquitination (69). It was reported that

PGK1 inhibited AR ubiquitination levels and promoted AR nuclear

translocation in an E3 ligase SKP2-dependent manner, which

regulated the expression of key ovulation genes and mediated

GCs proliferation and apoptosis in PCOS (70). What’s more, ring

finger protein 6 (RNF6) can also promote ubiquitination of AR K63

and K48, leading to inhibition of luminal follicle development in

PCOS rats (71). Knockdown of MALAT1 in GCs increases p53

protein levels by inhibiting ubiquitination and degradation of p53,

leading to increased apoptosis and reduced proliferation, which

plays an important role in the development of polycystic ovary

syndrome (72). Although only a few changes in the ubiquitin

system are highlighted, these findings suggest that this type of

PTM could be useful in developing eventual therapeutic targets for

PCOS. In addition, additional studies have successfully linked

several members of the ubiquitin system to PCOS, although

further research is needed.
PTMs in the treatment of PCOS

Phosphorylation

Metformin is a widely used biguanide recommended as a first-

line antidiabetic agent for type 2 diabetes (73). Metformin is

currently used to treat not only diabetes but also other diseases

including cancer, obesity, liver disease, cardiovascular disease,

kidney disease, and PCOS (74–79). Metformin promotes GCs

function by reducing the expression of tumor necrosis factor

(TNF) -a and the phosphorylation of chemokines including I-

kappaB, 4E-BP-1, and p70S6K through an AMPK-dependent

pathway. Since PCOS is associated with androgen hyperplasia,

metformin inhibits testosterone by inhibiting the phosphorylation

of p38 MAPK in ovarian GCs and reduces apoptosis (21). TNF-a
-producing B cells are involved in the pathogenesis of PCOS, and

metformin inhibits the expression of TNF-a in B cells by inhibiting
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the phosphorylation of mTOR, which may be a newmechanism for

metformin to treat PCOS (80). Metformin also reduces FSH-

induced CREB phosphorylation and thus CRE activity, which

reduces CYP19A1(aromatase) expression and ameliorates

follicular dysplasia of PCOS (81). Combination treatment with

metformin and pioglitazone increased the phosphorylation of JNK

by regulating the AMPK/PI3K/c-Jun n-terminal kinase (JNK)

pathway. It can improve the testosterone level of estradiol valerate

(EV) -induced PCOS rats, reduce the percentage of cystic follicles

and primary follicles, promote the number of early sinus follicles,

and significantly reduce the fasting insulin concentration and

insulin resistance index (82). Since 1985, thiazolidinedione

pioglitazone has been widely used as an insulin sensitizer drug for

T2DM (83). The ability of pioglitazone to enhance insulin

sensitivity involves normalization of insulin-mediated AKT

phosphorylation at Ser473 and Thr308 and AS160

phosphorylation (84).Liuwei Dihuang Pills attenuates insulin

resistance induced by letrozole combined with a high-fat diet in

PCOS rats by upregulating IRS-1 (S307) phosphorylation and

downregulating PI3Kp85a, AKT, and FoxO1a phosphorylation

through PI3K/AKT signaling pathway (33). Guizhi Fuling Wan

reduces autophagy of GCs in rats with PCOS via restoring the

phosphorylation level of the PI3K/AKT/mTOR signaling pathway

(34). Soy isoflavones treatment can inhibit the phosphorylation of

NF-kB p65 in ovarian tissue of PCOS rats, thereby reducing the

release of downstream inflammatory factors and improving the

inflammatory state (85). Resveratrol is a natural polyphenol and

Sirtuin-1 (SIRT1) activator found in grapes, berries, and medicinal

plants that have antioxidant and anti-inflammatory activities and is

emerging as a potential treatment for diseases associated with

androgen overproduction, such as polycystic ovary syndrome (86,

87). Recent studies have shown that resveratrol can effectively

improve ovarian failure and estrus cycle disorder through TZP

recovery by increasing cytoplasmic calcium levels and

hyperphosphorylation of CaMKIIb, which provides new insights

and therapeutic targets for PCOS (88). Because overexpression of

p66Shc in PCOS significantly increases the expression of fibrosis

factors, resveratrol treatment can enhance SIRT1 and reduce

ovarian Oxidative stress (OS) in vivo and in vitro, and inhibit

phosphorylation of p66Shc, thereby improving ovarian

morphology (89).
Summary and perspectives

The incidence of PCOS in women of childbearing age is

increasing year by year, but its specific pathogenesis is still

unclear. Therefore, its treatment is still challenging. The

pathogenesis of PCOS is complex and multifactorial. New

insights into the pathophysiology of PCOS suggest that prenatal

androgen exposure affects reproductive function, which has been

identified as the underlying cause of PCOS. PCOS can lead to
frontiersin.org

https://doi.org/10.3389/fendo.2022.1024320
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wei et al. 10.3389/fendo.2022.1024320
hyperandrogenism, hyperinsulinemia, insulin resistance, increased

estrone, an imbalance between luteinizing hormone (LH) and

follicle-stimulating hormone (FSH), infertility, cardiovascular

disease, endometrial dysfunction, obesity, and a host of other

health problems. Current treatments for PCOS are not ideal

because they only relieve some symptoms; Preventive and

targeted treatment is urgently needed. PTMs are an important

way to regulate protein function, and their modification forms are

extremely diverse and closely related to a variety of diseases. After

decades of research, a series of studies have established the

important roles of phosphorylation, methylation, acetylation, and

ubiquitination in many biological and physiological functions. As

mentioned in this paper, there is increasing evidence that PTMs are

closely related to the pathogenesis of PCOS (Figure 1), which

provides many valuable innovative research ideas for the

pathogenesis and targeted therapy of PCOS. Although some

progress has been made in the study of the role of PTMs in

PCOS, the specific molecular mechanism still needs to be further

elucidated. Researchers can deeply analyze the relationship between

the PTMs activity of key proteins in the regulatory pathway and

PCOS and its mechanism, and on this basis, design active

interventions for PCOS to ultimately improve its symptoms.

There are only potential PCOS therapeutic agents that target

phosphorylation activity, but there is still a need to validate these

agents. Further research should focus on discovering new
Frontiers in Endocrinology 05
molecules, as drugs to improve efficacy are needed, especially

small synthetic molecules targeting PTMS. Due to the

heterogeneity of PCOS, both lifestyle modification and

pharmacological therapy, especially those targeting PTMs activity,

should be considered. Although still in the preliminary stage,

further research on PTMs will provide potential insights for

improving the treatment of PCOS, and the treatment strategy of

targeting protein PTMS through intervention will become a

research hotspot in reproductive endocrine medicine, providing

new guidance for the clinical treatment of PCOS.
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FIGURE 1

Schematic diagram showing the composition and regulatory mechanism of PTMs in PCOS. (Created with BioRender.com)
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53. Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martıńez
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