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Abstract: The hepatitis E virus (HEV) hypervariable region (HVR) presents the highest divergence of
the entire HEV genome. It is characteristically rich in proline, and so is also known as the “polyproline
region” (PPR). HEV genotype 3 (HEV-3) exhibits different PPR lengths due to insertions, PPR and/or
RNA-dependent RNA polymerase (RdRp) duplications and deletions. A total of 723 PPR-HEV
sequences were analyzed, of which 137 HEV-3 sequences were obtained from clinical specimens (from
acute and chronic infection) by Sanger sequencing. Eight swine stool/liver samples were also analyzed.
N- and C-terminal fragments were confirmed as being conserved, but they harbored differences
between genotypes and were not proline-plentiful regions. The genuine PPR is the intermediate
region between them. HEV-3 PPR contains a higher percentage (30.4%) of prolines than other
genotypes. We describe for the first time: (1) the specific placement of HEV-3 PPR rearrangements
in sites 1 to 14 of the PPR, noting that duplications are more frequently attached to sites 11 and 12
(AAs 74–79 and 113–118, respectively); (2) the cadence of repetitions follows a circular-like pattern
of blocks A to J, with F, G, H, and I being the most frequent; (3) a previously unreported insertion
homologous to apolipoprotein C1; and (4) the increase in frequency of potential N-glycosylation sites
and differences in AAs composition related to duplications.
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1. Introduction

Hepatitis E virus (HEV) infection is an important component of enteric-transmitted liver diseases
and has a significant impact on public health. The number of new HEV infections has increased in
recent years in the industrialized countries of the European Union [1]. HEV genotype 3 infection
(HEV-3) is a viral zoonosis transmitted to humans through consumption of meat from infected animals,
mainly pig [2–4], wild boar [5–7], and deer [8]. HEV-3 is spreading worldwide and is the cause of acute
mainly self-limited hepatitis. In immunocompetent and immunocompromised patients, hepatitis can
be fulminant, while chronic infection has been only described in immunocompromised.

The HEV genome is a positive-sense non-enveloped single-stranded RNA molecule of 7.2 kb
containing three partially overlapping open reading frames (ORF1, ORF2, and ORF3) [9]. ORF2 encodes
the viral capsid protein and contains neutralizing epitopes of virus particles and is also the target of
humoral immune response [10,11]. ORF3 protein is essential for virion secretion [12] and this protein
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has ion channel activity that is required for the release of infectious virus [13]. Seven putative domains
have been identified in ORF1: methyltransferase (MTase), Y domain, putative papain-like cysteine
protease (PCP), the proline-rich hinge domain (PPR) or hypervariable region (HVR), the X domain,
putative RNA helicase, and RNA-dependent RNA polymerase (RdRp) [14].

HVR is located in the ORF1 proliprotein between the PCP and X domain. It is known as the
“hypervariable region” because it is the one with the greatest divergence in the entire HEV genome [15].
As a consequence, it is difficult to obtain complete and satisfactory alignment between all the HEV
genotypes. HVR is characteristically rich in the amino acid proline (in fact, the HVR and PPR domains
overlap), for which reason it is also known as the “polyproline region” (PPR), and contributes to viral
replication efficacy and adaptation [15–17].

HVR-PPR (PPR, hereafter) function is not fully understood, but in vivo and in vitro studies have
shown that deletions in this region do not influence virus viability. Conversely, larger or nearly complete
PPR deletions cause virus attenuation, suggesting that PPR is involved in viral pathogenesis [18].
A study of HEV replicons led to the suggestion that, although there is a degree of specificity by genotype,
PPR may be functionally exchanged among them. In fact, sequence composition can modulate HEV
RNA replication and infectivity [16]. A 3D model for predicting functional sites demonstrated that
protein to protein interactions help regulate virus replication. This finding, along with the variation in
length among genotypes, supports the hypothesis that PPR is also involved in host adaptation.

Originally, a 105-amino acid (AA) fragment was proposed as being a PPR [14]. When more
sequences became available, it was observed that the first 35 AAs might not be included in the
region and, therefore, it was concluded that the genotypes 1–4 had a PPR comprising AAs 70–72, 68,
80–86, and 84 [18]. PPR was subsequently found to feature conserved sequences (TLYTRTWS and
RRLLXTYPDG) at the N- and C-terminal sides, respectively [15].

The PPR AA sequence is known to be different by 71% among genotypes, 31% within HEV-1, 41%
within HEV-3, and 46% within HEV-4 [18]. The degree of sequence variability in HEV-1 is lower than
in zoonotic HEV-3 and HEV-4, which may be related to their adaptation to a wide range of hosts [15].

The PPR length in HEV-3 was reported to be 107–172 AAs [19]. The sequences of the subtype
that infect rabbits (HEV-3ra) have the shortest PPR and the sequences of subtype 3f can be divided
into two groups: short (246 nucleotides [NT]) and long (333 NT)). However, subtypes 3b, 3c, and 3i
have the same length (243 NT) and PPR from subtype 3e are 246 NT long [20,21]. The different
length of the sequences is thought to be due to the presence of insertions. Analysis of isolates from
samples of immunocompromised patients with chronic infection, revealed that this region can acquire
insertions over time and that these fragments can arise either from the viral genome (duplications of
PPR and RdRp, PPR + X-domain (20)(20)(20) [20,22–24], or from human genes, which, until now, have
been identified as the genes coding for human ribosomal proteins S19 and S17 [25,26], and those of
human tyrosine aminotransferase (TAT), human inter-α-trypsin inhibitor (ITI), eukaryotic translation
elongation factor (EEF1A1P13), the 18S ribosomal pseudogene (RNA 18SP5), a kinesin family member
(KIF1B), and zinc finger protein (ZNF787) [24]. In vitro studies have suggested that human inserts
may be related to the improvement in virus replicative capacity [25–27]. However, a 186-nucleotide
insertion derived from PPR and RdRp also allows HEV adaptation in A549 cell line [23].

The aim of this study was to analyze the HEV virus PPR in different genotypes in an attempt
to make sense of the apparent disorder. To this end, we examined the genome variability, sequence
length, location, and potential implications of genomic rearrangements in each genotype and subtype.

2. Materials and Methods

2.1. Newly Obtained Sequences

We obtained 137 new PPR sequences from human samples for this study, 126 of which were from
RNA extracts of patients with acute HEV infection, and 11 were from the follow-up of three chronic
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patients: CR1 (n = 5, HEV-3c), CR2 (n = 3, HEV-3f) and CR3 (n = 3, HEV-3f). Eight swine stool/liver
samples (n = 1 HEV-3c and n = 7 HEV-3f) were also included in the analysis.

RNA was extracted with the Magna Pure L.C.© System (Roche Diagnostics, Mannheim, Germany)
automatic extraction from 200 µL of serum samples. After RNA extraction, complementary DNA
was transcribed with a Transcription First Strand cDNA Synthesis kit (Roche Diagnostics, Mannheim,
Germany) using random hexamers and 20 µL of cDNA were obtained from 10 µL of RNA extract,
following the manufacturer’s recommendations. PPR fragments were obtained through nested PCR,
as previously described [19]. Afterwards, amplification products were purified with Illustra ExoProStar
1-step (VWR International Eurolab S.L., Radnor, PA, USA) and sense and antisense DNA strands were
both sequenced by the Sanger method. GenBank accession numbers are MT899272 to MT899416.

2.2. Genbank Sequences

Initially, 49 reference sequences proposed by Smith et al. were included [28]. Additionally,
sequences whose GenBank accession numbers are available as supplementary material 1 corresponding
to HEV-1 (n = 61), HEV-3 (n = 369), HEV-4 (n = 95), and HEV-8 (n = 4) were analyzed.

2.3. Sequence Analysis

2.3.1. Total Number of Sequences Included

HEV-1 (n = 70), HEV-2 (n = 3), HEV-3 (n = 533), HEV-4 (n = 106), HEV-5 (n = 1), HEV-6 (n = 2),
HEV-7 (n = 2), and HEV-8 (n = 6).

2.3.2. Consensus Definition

PPR consensus by genotype was obtained from reference and study sequences as follows: the AA
consensus sequence was established according to the most frequent AA in each position (aligned with
the MegAlign program; DNASTAR, Lasergene Inc., 12.3.1 Madison, WI, USA).

2.3.3. Limits of PPR

Due to the great variability of this region, we analyzed PPR in fragments, choosing histidine (H)
as the starting position and aspartic acid (D) as the final position. Three fragments were examined: the
initial 32 AAs in the N-terminal region, the intermediate region of variable length, and the final 12 AAs
of the C-terminal region.

2.3.4. Amino Acid Composition

AA composition of each PPR sequence was calculated with the EMBOSS Peptats program,
available at https://www.ebi.ac.uk/Tools/seqstats/emboss_pepstats/.

2.3.5. Residue Variability

This was calculated as the percentage of discordant AAs with respect to the consensus AA of each
genotype. The average residue variability of each fragment was also determined.

2.3.6. Sequence Homology Analysis

This was calculated as the percentage of conserved AAs with respect to the consensus AA of
each genotype.

2.3.7. Analysis of Insertions

In study sequences, a BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was performed to determine
the origin of insertions.

https://www.ebi.ac.uk/Tools/seqstats/emboss_pepstats/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.3.8. Regulation Sites Analysis

Potential ubiquitination sites were analyzed using the BMD-PUB server (http://bdmpub.biocuckoo.
org/prediction.php), with a threshold value of a >0.3 average potential score. Potential acetylation
sites were identified using the PAIL server (http://bdmpail.biocuckoo.org/prediction.php) with a value
of >0.2 of the average potential score. Potential phosphorylation sites were identified using the
NetPhos 2.0 server (www.cbs.dtu.dk/services/NetPhos/) with a value of >0.5 of the average potential
score. Finally, potential N-linked glycosylation sites were analyzed using the NetNGlyc 1.0 server
(www.cbs.dtu.dk/services/NetNGlyc) with a value of >0.5 of the average potential score.

2.4. Statistical Analysis

Qualitative variables were analyzed with chi-square tests. Values of p < 0.05 were considered to
be significant.

3. Results

Three genomic regions were differentiated: the PPR-N-terminal (genome region encompassing
the first 32 AAs); the PPR-C-terminal including the final 12 AAs; and the PPR intermediate region.
The PPR-N-terminal (Table 1) and PPR-C-terminal (Table 2) regions were relatively highly conserved
among genotypes. By contrast, the length and variability among genotypes differed in the intermediate
region (Table 3), where there are large differences in length due to insertions, duplications and deletions.

http://bdmpub.biocuckoo.org/prediction.php
http://bdmpub.biocuckoo.org/prediction.php
http://bdmpail.biocuckoo.org/prediction.php
www.cbs.dtu.dk/services/NetPhos/
www.cbs.dtu.dk/services/NetNGlyc
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Table 1. HVR N-terminal region consensus amino acid from HEV-1 to HEV-8. Table shows consensus amino acid sequence for each genotype. AA variability: black,
<15%; grey, 15–40%; white > 40%. Prolines in red. * Several HEV-3 sequences were shorter. Missing amino acids were not included in the calculation of the variability.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
HEV-1 H V W E S A N P F C G E S T L Y T R T W S E V D A V S S P A R P
HEV-2 H E W R S A N P F C G E S T L Y T R T W S T - I T - - - - D T P

HEV-3 * H L W E S A N P F C G E S T L Y T R T W S T - S G F S S C F S P
HEV-4 H S W E S A N P F C G E S T L Y T R T W S V - S G F S S C F S P
HEV-5 H K W E S A N P F C G E S T L Y T R T W S T - S G F S S N F S P
HEV-6 H K W E S A N P F C G E S T L Y T R T W S T - S G F S S S F S P
HEV-7 H I W D S A N P F C G E S T L Y T R T W S V - S G F S S D F A P
HEV-8 H V W D S N N P F C G E S T L Y T R T W S T - S G F S S N F S P

Table 2. HVR C-terminal region consensus amino acid from HEV-1 to HEV-8. Table shows consensus amino acid sequence for each genotype. AA variability: black,
<15%; grey, 15–40%; white >40%. Prolines in red. * Several HEV-3 sequences were shorter. Missing amino acids were not included in the calculation of the variability.

130 131 132 133 134 135 136 137 138
HEV-1 R R L L F T Y P D
HEV-2 R R L L H T Y P D

HEV-3 * R R L L Y T Y P D
HEV-4 R R L L H T Y P D
HEV-5 R R L L H A Y P D
HEV-6 R R L L H T Y P D
HEV-7 R R L L F T Y P D
HEV-8 R R L L H V Y P D
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Table 3. PPR intermediate region consensus amino acid from HEV-1 to HEV-8. Table shows the consensus amino acid sequence for each genotype. AA variability:
black, <15%; grey, 15–40%; white > 40%. Prolines in red. X: positions with two AAs in equal proportions. Positions with deletions are underlined. Numbers
1 to 14: sites of insertion/duplication in genotypes; insertion or duplication location indicated at the top. (1) Insertions or duplication previously mentioned by
Lhomme et al. 2020.

(a)

PRP(1)+RdRp (3f) 1AA (3c, 3-Unk) ApoC1 (3f) RPS17(1) (3f)
RPL6(1) (3m)
RPS19(1) (3a)

RNF19A(1) (3h)

RPS17(1) (3a)
PPR(1)+RdRp

(3c)

PPR (3e, 3f)
EEF1a1P13(1)

1 2 3 4 5 6 7
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

HEV-1 D L G F M S E P S I P S R A A T P T P A A P L P P P A P D P S P
HEV-2 L T V G L I S G H L D A A P H S G G P P A T A T G P A V G S S D S P D P D P
HEV-3 P E A A Y A A P A P D M G L P S G T P S S A S D I W V L P P P S E G S A I D P
HEV-4 L E P C A P D L P P P V E T D T P V A V D V P P P A T S A Q P Q P P A P E R A A P
HEV-5 F E T G A A D Q P P G V G A V V L S A E A A R P P V V T L P P A S P K L Q A N L K
HEV-6 X X X D X V D A P P A A X X T X X X X X I X X X P X X X M S X X X X A
HEV-7 V G X S X X A P X X X X X X X X C X P P P X S X Q X X X Q P X
HEV-8 P E A X L X K P X X V X C E P X G P L L X X T X X X X X G A P T E A X X

(b)
ZNF787(1) (3f)
GATM(1) (3f)

RNA18S(1) (3f)
ITIH2(1) (3f) KIF1B (3f) PPR (3a, 3f, 3, 3j)

PPR (3e(1), 3c, 3f(1))
PPR (3f-long)
TRANSPEPTIDASE, SUBSTRATE BINDING
DOMAIN AND SYNTHASE (3f)

8 9 10 11 12
1AA 4c, 4d, 4a 1AA (2a)

13 14
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101102103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

HEV-1 P P S A P A P D E P A S G T T A G A P A I T H Q T A R H
HEV-2 L P D V T D G S R P S G A R P A G P N P N G V P
HEV-3 P P V T P V S K P A N P P S P T T P R P P V R K P P T P P P A R N
HEV-4 P P D L V D G G A X P A L P S A S V A P P A P A Q P V X P S G P R
HEV-5 E N E R A A D G G S A A P V A A V P C P Q P P A Q P V G R L F C A G
HEV-6 X G X X X P X P A X X X P X X X P X X X E A X X P X P Q X X X X S X A X X X X A X
HEV-7 Q X P X P X X X X X P X X P X X X X S X X X P A Q G X X X X V X R N
HEV-8 X V I X P L X A H S X S A G V A E T T S A R P X E X T P X P G P X X R G
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3.1. PPR-N-Terminal Region

The average residue variability of this region was 2.76% in HEV-3, 2.13% in HEV-4, and 1.34%
in HEV-1, with no significant differences between them. Most genotypes had 31 AAs, although the
HEV-2 PPR-N-terminal was the shortest (27 AAs), and HEV-1 was the longest (32 AAs), with an extra
valine at position 23. Proline was present at the highly conserved positions 8 and 32, but the most
common AA was serine, even though its percentage varied between genotypes, being higher in the
zoonotic (21.7%) than in the non-zoonotic (13.8%) genotypes (p < 0.05).

3.2. PPR-C-Terminal Region

The average residue variability of this region was 1.14% in HEV-1, 0.72% in HEV-3, and 0.19% in
HEV-4, with no significant differences between them. All genotypes had nine AAs, and residues 130–133
and 136–138 were conserved in all genotypes. Proline was present and conserved in position 136.

3.3. PPR Intermediate Region

3.3.1. Variability and Composition

The average residue variability of this region was highest in zoonotic HEV-4 (28.20%) and HEV- 3
(24.20%) than in non-zoonotic HEV-1 (12.21%) (p < 0.05). Proline was present throughout the entire
region, being the most common AA, with an average of 22.8%. The proline composition differed among
the genotypes (25.41% in HEV-1, 19.24% in HEV-2, 30.43 in HEV-3, 25.42% in HEV- 4, 17.33% in HEV-5,
21.05% in HEV6, 22.73% in HEV-7, and 20.60% in HEV-8), the amount being significantly higher in
HEV-3 (p < 0.05). Furthermore, the prolines in positions 117 and 121 were conserved in all genotypes,
except for HEV-1. Arginine at position 128 was also highly conserved across genotypes. In addition,
HEV-2, with only three available sequences, had a significantly higher percentage of glycine (16.04%)
compared with the other genotypes (6.11%) (p < 0.05).

3.3.2. Length, Deletions and Insertions

HEV-1 and HEV-2 were 60 and 62 AAs long. Consensus alignment of the two genotypes
demonstrated that HEV-2 had seven more AAs in positions 36, 43–47, and 121, and five fewer AAs in
positions 116 and 126–129 regarding to HEV-1. One motif (GHLDA43-47) was only present in HEV-2.
We identified many differences between subtypes 2a and provisional 2b with 18 of 62 AAs conserved
in both. In addition, one more AA was found in one of the two available HEV-2a sequences. The most
recently described genotypes were HEV-5, HEV-6, HEV-7, and HEV-8, for which reason there are few
available sequences, but we nevertheless observed some differences between them. The first difference
was that the lengths were 66 AAs in HEV-7, 72 in HEV-8, 75 in HEV-5, and 76 in HEV-6. All of them
exhibited many AA differences between their subtypes. HEV-6 had 35.5% sequence homology between
6 and 6a, with values of 37.9% in HEV-7 and 65.3% in HEV-8. Consensus alignment identified two
motifs that were only present in HEV-8 at positions 58–60 (LLX) and 91–93 (XAH), similar to HEV-6
and HEV-7, which had seven or eight additional AAs at positions 101–108. In the case of HEV-4,
different lengths were found in distinct subtypes: HEV-4 and HEV-4g (73 AAs); HEV-4a, HEV-4c,
and HEV-4d (73–75 AAs); HEV-4b (70–73 AAs), HEV-4e, and HEV-4h (74 AAs); HEV-4f (72 AAs);
and 4i (69–74 AAs).

HEV-3 featured insertions, duplications and deletions. As a consequence, the HEV-3 sequence
length ranged from 57 to 165 AAs. Deletions were frequent throughout the HEV-3 and HEV-4
intermediate region. Most deletions were of only one AA, but HEV-3ra and HEV-3g were shorter
(deletions detailed in Table S1). HEV-3ra was 59 AAs long, with deletions from positions 52, 82–99 and
112. HEV-3g comprised 63 AAs due to deletions at positions 38, 40–41, 50–52, 63, and 81–82). Finally,
HEV-4i sequences had a 5-AA deletion at positions 72 to 76.

Insertions were more frequent at positions 50 to 111 at different sites. Except for one sequence
that duplicated complete PPR, the duplications usually appeared at positions 74–79 and 113–118,
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these being duplicate fragments of AAs from position 67. There were 10 duplication blocks (Blocks
A–J) (Table 4). Usually, the first fragment to appear duplicated was that immediately adjacent to the
positions where the insertion occurred. For instance, block H was the starting block in duplications
inserted at position 117. The only exception to this was in the 35 sequences corresponding to HEV-3a
in which the inserted block was I in position 113 (Table 4). Duplicated blocks were located one after the
other, mainly in alphabetical order (and thereby in the same order as in the wild type PPR), although
one of the blocks was occasionally skipped, or the cycle started with previous blocks, which recovered
the alphabetical order (e.g., HIJABCDE). The most commonly repeated blocks were F, G, H, and I.
In fact, we found one sequence (KJ917717) in which blocks F, G, H, I, and J were repeated up to three
times in total. The HIJFG duplication was found in 189 HEV-3f sequences.

The longest PPR duplication (KT591534) exhibited a complex rearrangement including a
duplication of the entire intermediate region plus four AAs (RRLL) from the PPR-C-terminal region
plus eight AAs (SLKGFWKK) from RdRp and ten AAs (TSGFSSDFSP) from the PPR-N-terminal region
(site 1—Table 3). Other complex sequences included a PPR duplication and an additional insertion
corresponding to the following: transpeptidase family protein 85% homologous (MF444086); four AAs
(RRLL) from the PPR-C-terminal region (KJ917704, MN646690, MN646691, and KJ917717); 13 AAs
from the substrate-binding domain (P. fluorescens, 85% identity) (KJ917704); and 45 AAs from synthase
(Actinobacteria bacterium) (KJ917720) (site 12—Tables 3 and 4).

HEV genome insertions other than PPR were HEV-RdRp fragments are illustrated in
Tables 3 and 4. In two sequences (KC618402 and KC618403) we found a 24-AA RdRp motif
(LRGLTNVAQVCVDVVSRVCGVSPG).

Finally, we found HEV-3 inserts of ribosomal proteins 17S, 18S, 19S, and L6 (RPS17, RNA18S,
RPS19, and RPL6, respectively) and human genes such as ring finger protein 19A (RNF19A), eukaryotic
translation elongation factor 1a1 (EEF1a1P13), zinc finger protein (ZNF787), glycine aminotransferase
(GATM), inter-alpha-trypsin-inhibitor heavy chain H2 (ITIH2), and kinesin-like protein 1B (KIF1B).
We noted an insertion of five AAs in the HEV-3j sequence (STLPS motif) of unknown origin. In addition
to that described in HEV-3, we identified a single AA insertion between positions 122 and 123 in HEV-4
that was present in sequences from HEV-4c, HEV-4a, and HEV-4d.
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Table 4. HEV-3 PPR duplications. HEV-3 consensus amino acid sequence and sequences with duplications are illustrated, along with 10 duplication blocks (A to J) and
their sequences. The Table shows sequences that have a duplication, the sequence of this duplication and positions among which it is located. (a) RdRp insertion;
(b) RRLL motif of C-terminal region; (c) L,D transpeptidase insertion; (d) Substrate-binding domain insertion; (e) Synthase insertion.

Blocks A B C D E F G H I J

Positions 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 87 88 89 90 94 95 97 98 99 100 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

HEV I W V L P P P S E G S A I D P P P V T P V S K P A N P P S P T T P R P P V R K P P T P P P A R N

KC618402
KC618403

74 B C D E F G a 75

MH184580
MH184581

78 C D E F G B 79

MF444088
MF444098
KJ917758

78 C D E F G 79

n = 35 113 I 114

FJ956757 113 G 114

EU495180 113 G H I F 114

MF444107 113 G H I J F 114

MF444036
MF444137

113 G H I J F 114

n = 6 117 H I 118

KJ917712 117 H I F G 118

MT899272 117 H I J F G 118

n = 189 117 H I J F G 118

KJ917720 117 H I J e F 118

KJ917704 117 H I J b d F G 118

MF444086 117 H c A B C D E F G 118

MN646690
MN646691

117 H I J b A B C D E F G 118

KJ917717 117 H I J F G H I J b E F G H I J F G 118
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3.3.3. Specific Analysis of Newly Obtained HEV-3 Sequences

Ninety HEV-3f sequences from patients with acute infection had a 29-AA duplication of blocks
HIJFG (site 12—Tables 3 and 4), identical to six of the seven HEV-3f sequences obtained from swine
stool/liver samples.

Regarding the follow-up of chronic patients, HEV-3f CR-3 patient had a 28-AA insertion
(site 3—Table 3) related to human apolipoprotein C1 (100% identity) that was maintained in the
three follow-up samples over one year. This human insert conferred an increase in the number of
potential regulation sites: four acetylation, three ubiquitination, and five phosphorylation sites (4 serine
and 1 threonine). In the case of the HEV-3c CR-1 patient, the first sequence had duplicated blocks
(site 12—Tables 3 and 4), but the duplication was lost in the subsequent four follow-up samples.
The three HEV-3f sequences of CR-2 patient had no insertions.

The alterations of the number of potential regulation sites in the 91 sequences with duplication
of blocks HIJFG (90 HEV-3f acute cases and one of HEV-3c CR-1 chronic infection) are as follows:
Ubiquitination-suitable sites often increased by one site (range, 0 to 2); acetylation-suitable sites often
increased by one site (range, −1 to 2); and potential phosphorylation sites often increased by six sites
(range, 1 to 9) mainly due to the presence of serine. Regarding N-glycosylation 16 out of 91 (17.6%)
sequences with duplication had at least one potential N-glycosylation site; on the contrary none of the
sequences without duplications or the sequences with insertions had potential N-glycosylation sites
(p < 0.05).

Table 5 compares the characteristics of AA composition of sequences with insertions, duplications
and without either. We observed an increase in positively charged and a decrease in hydrophobic and
aromatic AAs in sequences with human fragment insertion; and an increase of negatively charged and
hydrophobic while polar and a decrease in aromatic AAs in sequences with duplications.

Table 5. Average of each AA category percentage comparing sequences with insertions, duplications,
and none of them. NS: not significant.

Regulation
Sites and AA
Composition

Sequences
with Human

Fragment
Insertions

(n = 3)

Sequences
with HEV
Genome

Duplication
(n = 91)

Sequences without
Insertions/DUPLICATIONS

(n = 51)

p
(Insertion/No

Insertion)

p
(Duplication/No

Duplication)

Positively
charged AA

(%)
4.2 2.5 2.8 <0.05 NS

Negatively
charged AA

(%)
3.5 4.1 2.8 NS <0.05

Polar AA (%) 3.6 3.2 4.3 NS <0.05

Hydrophobic
AA (%) 6.8 7.6 7.1 <0.05 <0.05

Aromatic AA
(%) 0.99 0.8 1.0 <0.05 <0.05

4. Discussion

The PPR-C-terminal and PPR-N-terminal regions cannot be considered truly hypervariable or
hyper-proline regions. Although a 105-AA fragment was originally considered to be a PPR [14],
this study confirmed that the disorder does not actually encompass the entire hypervariable region,
and implies that the true PPR would be located between positions 33 and 129, as was previously
suggested [18,29]. A high conservation rate of these fragments was observed intra-genotypically,
but with specific inter-genotypic discrepancies (AA 2 and AA 29 in the N-terminal region). Furthermore,
AA 30 allowed zoonotic and non-zoonotic genotypes to be differentiated. The high degree of
conservation of the two zones flanking the PPR-intermediate region suggests that a possible function
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can be assigned to these zones, although this would require additional functional studies. Proline is
not common in these terminal regions, the PPR-N-terminal region being particularly rich in serine,
which might be crucial for protein phosphatases that control many cell functions [30].

The true PPR hypervariable region is thus the intermediate region flanked by the PPR-N- and
PPR-C-terminal regions. HEV-1, 5, 6, 7, and 8 maintain their length, harboring 60, 75, 76, 66, and 72 AAs,
respectively. These differences seem to be related to previously undescribed insertions as the sequence
GHLDA in HEV-2. Previous studies reported high sequence similarity in HEV-1 [29]. There are few
sequences available for the cases of HEV-2, 5, 6, 7, and 8, which makes it difficult to draw conclusions,
but our study nevertheless revealed considerable diversity among the small number of available
sequences of each genotype. This means that although phylogenetic studies usually exclude this region
because of its high degree of divergence, its phylogenetic use might be suitable (Figure S1), especially
when complemented by the analysis of other genome regions [15]. There is more proline in HEV-3
than in the other genotypes.

By contrast, the main zoonotic genotypes, HEV-3 and HEV-4, showed substantive differences
in length due to insertions and deletions. Although this phenomenon has been previously
reported [20,24,26,27], we describe for the first time the specific location of HEV-3 PPR rearrangements,
noting that PPR duplications were more attached to specific locations (AAs 74–79 and 113–118). In this
study we analyzed 723 HEV sequences, including 137 newly obtained sequences through Sanger
sequencing. Next-generation sequencing may help researchers obtain hundreds of full genomes,
but may give incorrect results in PPR when extreme rearranged sequences are assembled by mapping
with reference genomes; thus, in these cases, it would be better to use de novo assembly or Sanger
sequencing to obtain more reliable results [31]. Duplications affect HEV-3a, 3c, 3e, and 3f, and are
described in acute and chronic infections. Additionally, a more thorough analysis of the duplications
in HEV-3 show the previously unreported cadence of repetitions, which follows a circular-like pattern
of blocks. Previous studies reported that HEV-3f was divided into HEV-3f-short and HEV- 3f-long [32],
based on the specific duplication of blocks of HIJFG. Here we describe the same duplication in one
HEV-3c sequence from a chronic patient who presented this duplication in their first sequence but not
in the subsequent four follow-up samples.

In the sequences newly obtained for this study, duplications increased the frequencies of potential
ubiquitination, acetylation, and phosphorylation sites, as described previously [24]. However,
a previously unreported increase in the number of potential N-glycosylation sites was also observed.
Considering the parallels with other viruses, similar rearrangements have been described in the JC
polyomavirus, whose noncoding control region, related to replication and transcription, features a
genomic rearrangement that increases the replication rate and viral gene expression in patients with
progressive multifocal leukoencephalopathy [33,34]. Something similar occurs in cytomegalovirus
cell-adapted strains that contain genomic arrangements located, in this case, in non-essential genes [35].
More similar to HEV PPR, the regulatory Nsp2 protein of porcine reproductive and respiratory
syndrome virus (PRRSV) contains a highly conserved N-terminal enzyme domain, a highly conserved
C-terminal transmembrane region, and a hypervariable intermediate region with differences in length
between the European and North American strains [36]. The introduction of duplications in a highly
conserved 3’-noncoding region of the Japanese encephalitis virus (JEV) was found to lead to increases
in the production of RNA and of virus yield [37]. In respiratory syncytial virus, a duplication of
23 amino acids was observed in the C-terminal region of the attachment glycoprotein that resulted in
the repetition of seven potential o-glycosylation sites. Such changes may influence the pathogenicity
of the virus [38]. In duplications we described an increase of negatively charged AAs by contrast with
those previously described [24]. Insertions from other HEV ORF1 proteins, such as RdRp, that do not
correspond to any functional motif, or that increase the number of potential functional sites, have been
found less frequently [24].

Apart from duplications, exogenous inserts, all of human origin, were located along the
PPR affecting HEV-3a, 3c, 3f, 3h, and 3m. We describe a new inserted fragment (homologous
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to apolipoprotein C1) in three samples from a chronic patient. Apolipoprotein C1 in hepatitis C virus
is related to morphogenesis and virus infection [39]. Furthermore, the insertion significantly increased
the number of potential acetylation, phosphorylation, and ubiquitination sites that might be involved
in host adaptation [15]. Cell culture studies have demonstrated a replicative improvement of HEV
harboring PPR insertions of the inter-alpha-trypsin-inhibitor heavy chain H2 [20], or the S17 and
S19 ribosomal genes [23], that gives rise to new ubiquitination, acetylation, or phosphorylation sites.
It seems significant that although a wide range of animals are susceptible to HEV-3, the exogenous
inserts described are all of human origin. Human fragment insertions increase the frequency of
positively charged AAs as described before [24] and decrease hydrophobic and aromatic AA fractions.

Two of the three patients with a chronic infection in our panel presented PPR insertions, although
this is a short number of patients, the frequency of rearrangements in chronic infected patients seem to
be high in contrast to the findings of Lhomme et al. [20], who reported that, in the majority of chronic
patients, the PPR did not show insertions during follow-up.

In contrast to the HIV and HCV hypervariable regions, in which HVR are related to the
structural proteins that the host response forces to mutate, allowing the virus to evade neutralizing
antibodies [40,41], HEV PPR as Rubivirus PPR, is considered an intrinsically disordered region (IDR),
i.e., a protein domain that does not adopt a compact three-dimensional structure [15]. IDRs are a
consequence of the viral interaction with hosts in a wide variety of host viruses, such as herpes
simplex [42]. More structural studies are required to see how duplications affect protein conformation.

Independently of the significance of the insertions, their abundance and variety suggest that PPR is
a region that tolerates the insertions well, without apparently affecting virus viability. Potential insertion
sites in HEV ORF1 were identified by the combined use of transposon-mediated random insertion
and selection in a subgenomic replicon system, but insertions in functional domains (Mtase, helicase,
and RdRp) were not viable. However, immunofluorescence, immunoblot analysis, and luciferase
activity measurement demonstrated that PPR insertions do not affect virus infectivity and facilitate
viral production [43]. This may be of interest in genetic engineering and will require additional studies
to determine what insert capacity PPR allows and its potential use.

5. Conclusions

We propose that the true proline-plentiful hypervariable region is flanked by the PPR-N- and
PPR-C-terminal regions which while conserved, harbor differences between genotypes and are not
proline-plentiful regions.

• We describe PPR length differences between HEV genotypes.
• We describe for the first time the specific location of HEV-3 PPR rearrangements in sites 1 to

14 of the PPR, noting that duplications are more attached to sites 11 and 12 (AAs 74–79 and
113–118, respectively). The cadence of repetitions follows a circular-like pattern of blocks A to J,
with blocks F, G, H, and I being the most frequent. Duplicated fragments increase the frequency
of potential N-glycosylation sites and negatively charged AAs.

• We identify a previously unreported insertion homologous to apolipoprotein C1 in a chronic
patient sample.
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