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Abstract: Tumor progression depends on the process of angiogenesis, which is the formation of new
blood vessels. These newly formed blood vessels supply oxygen and nutrients to the tumor, supporting
its progression and providing a gateway for tumor metastasis. Tumor angiogenesis is regulated by the
balance between angiogenic activators and inhibitors within the tumor microenvironment. Because
the newly formed tumor blood vessels originate from preexisting normal vessels, tumor blood vessels,
and tumor endothelial cells (TECs) have historically been considered to be the same as normal blood
vessels and endothelial cells; however, evidence of TECs’ distinctive abnormal phenotypes has increased.
In addition, it has been revealed that TECs constitute a heterogeneous population. Thus, TECs that line
tumor blood vessels are important targets in cancer therapy. We have previously reported that TECs
induce cancer metastasis. In this review, we describe recent studies on TEC abnormalities related to
cancer progression to provide insight into new anticancer therapies.

Keywords: angiogenesis; antiangiogenic therapy; blood vessel; cancer; endothelial cell; tumor
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1. Introduction

Tumor angiogenesis refers to the formation of new blood vessels within a tumor, which is essential
for tumor progression. Tumor blood vessels supply the tumor with oxygen and nutrients, which are
required for growth, in addition to removing waste products from tumor tissues and providing a
gateway for tumor metastasis [1,2]. These blood vessels consist of tumor endothelial cells (TECs),
which line the insides of the blood vessels, and perivascular cells (pericytes for microvessels and
smooth muscle cells for arteries and veins), which surround the blood vessels externally and play a
role in blood vessel contraction and relaxation. In adults, endothelial cells (ECs) are mostly quiescent
and proliferate only once every 150 d; however, angiogenesis might be induced by angiogenic factors
(i.e., an angiogenic “switch”), such as the vascular endothelial growth factor (VEGF), when tissues
become hypoxic, as occurs in pathologies such as cancer and wounds. Among all forms of pathological
angiogenesis, tumor angiogenesis is the most important. Once an angiogenic switch is turned on,
cancer begins to grow and metastasize; however, without angiogenesis, cancer cannot grow beyond
a few millimeters, which would not be threatening to human life. In fact, autopsies have reported that
dormant, small millimeter-sized mammary carcinomas were detected in 40% of patients who died of
a different disease [3].

The concept that cancer depends on angiogenesis and that angiogenesis inhibition can have
anticancer results was first proposed in 1971 by Folkman [1]. Folkman’s initial concept was not easily
accepted; however, basic research has since proved that it was correct. Evidence has shown the
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presence of angiogenic molecules, especially following VEGF cloning [4,5]. Furthermore, anti-VEGF
antibody was reported to have antiangiogenic and antitumor effects [6]. More than a decade has
passed since the first antiangiogenic drug, bevacizumab, was approved in 2004. The bases for pursuing
this therapy are as follows: (1) the survival of a large population of tumor cells depends on a few TECs,
such that targeting these TECs might be more efficient than targeting the tumor cells; (2) because TECs
exhibit similar characteristics regardless of their tumor of origin, a single, effective antiangiogenic drug
could be used to treat many forms of cancer; and (3) it was believed that TECs in cancer stroma are
genetically stable, unlike tumor cells; therefore, they do not become drug resistant.

Thus, antiangiogenic drugs that mainly target the VEGF/VEGF receptor signaling pathway have
been administered in combination with chemotherapeutic drugs in many types of cancers; however,
although antiangiogenic drugs were believed to be less toxic than other cytotoxic drugs, recent studies
have shown that they might also induce severe side effects, such as lethal hemoptysis [7,8] and intestinal
perforations [9,10]. Accordingly, an important goal in cancer therapy is to develop new and safer tumor
antiangiogenic agents, which will depend on a thorough understanding of the biology of TECs.

In this review, we describe recent studies on TEC abnormalities related to cancer progression to
provide insights into new anticancer therapies.

2. Molecules that Regulate Angiogenesis

Vascular endothelial growth factor: VEGF (VEGF-A), which is induced by hypoxia, is the
most well-known angiogenic factor. In cancer cells, the activation of oncogenes and the mutation
of tumor suppressor genes also cause VEGF upregulation. VEGF activates ECs through paracrine
signaling and stimulates cell migration and the proliferation of ECs, resulting in the induction of
angiogenesis. VEGF also enhances vascular permeability [4]. VEGFR-1, VEGFR-2, and VEGFR-3 are
tyrosine kinase VEGF receptors. VEGF receptor (R)-1 and VEGFR-2 are expressed in blood ECs, whereas
VEGFR-3 is expressed in lymphatic ECs. VEGFR-2 is the most important receptor in angiogenesis
signaling. VEGFR-1 is also expressed in monocytes and macrophages and is involved in angiogenesis
by stimulating the mobilization of these cells from the bone marrow. Soluble VEGFR-1, which is
spliced from VEGFR-1 and has a higher affinity than VEGFR-2, interferes with VEGF–VEGFR-2
binding by trapping VEGF [11]. In addition to VEGF, cancer cells secrete other angiogenic factors,
such as basic fibroblast growth factor (bFGF), angiopoietins (Ang), hepatocyte growth factor, epidermal
growth factor (EGF), platelet-derived growth factor (PDGF), and placental-derived growth factor. Ang-1
directly induces adhesion between endothelial cells, possibly resulting in mural cell adhesion to ECs
by processing the maturation of blood vessels. Ang-2, an Ang secreted mainly from ECs, activates
Tie-2, which is much weaker than Ang-1 and acts as an antagonist of Ang-1 to detach pericytes from
ECs. PDGF-BB, which is also secreted from ECs, is also important for angiogenesis and has two
receptors—α-receptor and β-receptor. PDGF-BB acts on the PDGFR-β that is expressed in the pericytes
and attracts the pericytes to the newly formed blood vessels; however, to initiate angiogenesis, the
pericytes must detach from ECs in the normal and stable blood vessels.

Several angiogenic inhibitor genes have also been identified, such as thrombospondin-1 (TSP-1),
Notch ligand Delta-like 4 (DLL4), vasohibin-1 (VASH1), and Down syndrome critical region-1 (DSCR-1).
TSP-1 expression is regulated by tumor suppressor p53. In various types of cancer, p53 is mutated and
causes the downregulation of TSP-1 [12]. DLL4, VASH1, and DSCR-1 are expressed in ECs and act as
angiogenesis inhibitors. DLL4, which is secreted from cells located at the tip of the blood vessel branch,
or “tip” cells, regulates vessel sprouting by binding the Notch1 receptor in stalk cells [13]. VASH1,
which is expressed in ECs, locates in the termination zone [14] in angiogenesis and terminates the
process. DSCR-1 was identified as a calcineurin inhibitor upstream of the nuclear factor of activated
T-cells and is activated by VEGF [15]. In addition, there are endogenous angiogenic inhibitors that
are cleaved from molecules that are not directly related to angiogenesis. For example, angiostatin is
produced by plasminogen cleavage [2], and endostatin [16] and tumstatin [17] are protein fragments
cleaved from basement membrane collagen types XVIII and IV, respectively. Collagen type XVIII
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gene is coded on chromosome 21 in humans. It is known that patients with Down syndrome have
fewer incidences of cancer because of their elevated blood endostatin levels, possibly the result of the
additional copy of chromosome 21 in their DNA [18]. Angiogenesis is regulated in a complex manner
by the balance of these angiogenic activators and inhibitors (Figure 1). A balance between these factors
is required for the physiological regulation of angiogenesis. In pathological angiogenesis, such as
tumor angiogenesis, the balance between angiogenic and antiangiogenic factors is not equal. In this
case, angiogenic activator levels become higher than angiogenic suppressor levels. Underexposure of
either of these factors causes ECs to be stimulated and to respond.
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Figure 1. Angiogenesis is regulated by a balance of angiogenic and antiangiogenic factors. In angiogenesis,
Pro-angiogenic supporters activate endothelial cells (ECs). In contrast, antiangiogenic factors suppress
EC activation. When the angiogenic switch is turned on, there are more angiogenic (black arrow) than
antiangiogenic factors present (yellow arrow).

Several types of ECs are involved in angiogenesis. Tip cells guide the direction of vessel sprouting.
Stalk cells, which are highly proliferative, follow tip cells, and phalanx cells improve the perfusion and
oxygenation of newly formed blood vessels. Molecular signaling pathways are differentially activated
in these cells (Figure 2). Thus, it has been recognized that the specific signaling pathways and the
specific ECs involved should be the target of antiangiogenic therapy. Furthermore, pericytes or smooth
muscle cells stabilize the blood vessels, finalizing the angiogenesis process.
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Figure 2. Several types of endothelial cells (ECs) are involved in angiogenesis. Cells at the tip of the
blood vessel branch (tip cells) guide the direction of vessel sprouting. Stalk cells, which are highly
proliferative, follow tip cells, and phalanx cells improve the perfusion and oxygenation of newly
formed blood vessels. Pericytes attach to phalanx cells (black arrows).
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3. Tumor Endothelial Cells

Phenotypic differences at the molecular and functional levels have been identified using TECs
and normal ECs (NECs) isolated from tumor and normal tissues, respectively; however, for many
years, most studies on tumor angiogenesis have been conducted using NECs, such as normal human
umbilical vein ECs (HUVECs), given that isolation of TECs has been difficult because ECs are usually
enmeshed in complex tissue, and only a small fraction of the cells within these tissues are ECs.
In addition to the technical difficulties, there might have been concerns about trials to isolate TECs
themselves because they were at times considered to lose their specific phenotype soon after being
isolated from tumor tissue.

In 2000, St. Croix et al. succeeded in isolating ECs from colon carcinoma and normal colonic
mucosa and compared the gene expression profiles between TECs and NECs in a relatively low number
of uncultured cells using serial analysis of gene expression. They identified the specific genes for TEC
and designated them as tumor endothelial markers (TEMs) [19] and reported that TEM8 could be a
target of antiangiogenic therapy [20].

Since then, there have been several studies to elucidate the molecular differences between
TECs and NECs using global analysis [21,22]. In some studies, vascular cells have been captured
by laser-captured microdissection to identify vascular makers. The authors have described that
these markers might not be strictly specific to TECs because laser-capture microdissection-captured
cells contain not only ECs but also mural cells, such as pericytes or smooth muscle cells; however,
this approach is also important in identifying TEC-specific markers, especially when using human
clinical specimens. In addition, TECs have been compared with ECs in the tissue under physiological
angiogenesis in an attempt to identify molecules that are specific to TECs, not ECs, in physiologic
angiogenesis. For example, Seaman et al. [23] compared TECs and ECs in angiogenic corpus luteum
and identified several TEC markers (TEMs), including CD276, which is known to be a regulator of
T cell-mediated immune response [24]. Van Beijnum et al. [25] identified TEC-specific molecules,
including high mobility group box 1 protein (HMGB1), by comparing gene profiles between TECs and
placental ECs. In most of these global analyses described above, TECs were not cultured and their
biological phenotype remains unclear.

Contrary to these, there have been studies based on cultured TECs. It was demonstrated that
TECs isolated from human renal cell carcinoma did not undergo senescence, unlike NECs, and were
resistant to apoptotic stimuli with enhanced Akt activation and decreased expression of the tumor
suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN) [26]. We have also
purified TECs in an attempt to better understand their TEC.

Because possible contamination by tumor cells has been a concern for TEC culture, we eliminated
the human tumor cells in a subculture of mouse TECs isolated from a human tumor xenografted
into mice using diphtheria toxin (DT) [27]. DT was used because the heparin-binding EGF (HB-EGF),
which is expressed in human but not in mouse cells, is a DT receptor; consequently, DT is toxic to
HB-EGF-expressing human cells but not to mouse cells [28]. Using purified TECs, we found that they
retain their previously reported properties, such as TEM gene expression and less apoptotic features,
even in culture [29] and demonstrated that TEC-specific molecules, such as C-X-C chemokine receptor
type 7 (CXCR7) and LOX [30,31], include differences in their responsiveness to growth factors [32,33],
such as VEGF and EGF and their proangiogenic phenotypes [29,34]. It has been demonstrated that
TECs secrete several factors that enhance their survival in an autocrine manner [26,33,35,36].

4. Drug Resistance and Cytogenetic Abnormalities in Tumor Endothelial Cells

Several cytogenetic abnormalities, such as aneuploidy and abnormal centrosomes, have been
reported in TECs from mouse tumors [27] and human renal carcinomas [37]. These TECs were
characterized by structural aberrations, such as nonreciprocal translocations, missing chromosomes,
marker chromosomes, and double minutes using multiple-colored fluorescent in situ hybridization
analysis. Individual TECs had different cytogenetic profiles, which indicated that they were heterogeneous
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and not clonal. Thus, TECs have hallmarks of chromosomal instability. Studies have confirmed that
these abnormalities were not a result of tumor cell contaminants. A recent study has demonstrated
that TECs and circulating TECs showed aneuploidy [38] and that they can also have abnormal
centrosomes. The normal function of centrosomes is to establish cell polarity and to properly segregate
the chromosomes. Defects in centrosome function with loss of polarity and with chromosome
missegregation have been detected in aggressive human malignant tumors. We found that TECs
have between one and five centrosomes and thus mimic tumor cells. Because TECs continue to
proliferate in culture, it appears that these cells, like tumor cells, lack the normal cell cycle checkpoints
that inhibit mitosis in response to centrosome abnormalities [27].

On the other hand, there have been several reports that tumor cells, such as glioblastoma or
lymphoma cells, transdifferentiate into TECs, a process that causes them to contain cytogenetic
abnormalities [39,40]. TECs have long been considered normal diploid cells that, unlike tumor cells,
do not mutate and or develop drug resistance; however, aneuploid TECs might have different
properties. Some antiangiogenic drugs have been shown to lose their effectiveness over time possibly
a result of acquired resistance of the target cells.

Cytogenetic abnormalities indicate genetic instability and most likely explain the frequency
observed in TEC resistance to chemotherapeutic agents, such as renal carcinoma-derived TEC
resistance to vincristine [26], hepatocellular carcinoma-derived TEC resistance to 5-fluorouracil and
adriamycin [41,42], and tumor-derived VEGF-mediated TEC resistance to paclitaxel with ATP-binding
Cassette Sub-family B Member 1 (ABCB1) upregulation [42].

Tumors in which the expression of MDR1/p-glycoprotein (P-gp) is upregulated are resistant to
paclitaxel [42]. Higher levels of MDR1 mRNA were detected in metastatic tumor-derived TECs than
in nonmetastatic tumor-derived TECs. Complex abnormal karyotypes and excessive aneuploidy are
associated with cancer cells containing multidrug-resistant genes [43]. Similarly, we have reported
that metastatic tumor-derived TECs have a more complex abnormal karyotype than nonmetastatic
tumor-derived TECs [44]. These cytogenetic abnormalities could contribute to drug resistance in
high metastatic tumor-derived TECs. The molecules that are expressed in drug-resistant TECs can be
important therapeutic targets for overcoming resistance to anti-angiogenic therapy. We have found
that P-gp inhibitor verapamil resensitizes TECs to paclitaxel, leading to antitumor effects [45].

5. Heterogeneity of Tumor Endothelial Cells

ECs are morphologically and functionally heterogeneous. For example, the rolling velocity and
arrest frequency of leukocytes at NEC junctions are different from those in the central areas [46].
Interorgan differences in ECs have also been reported [47]. In preexisting blood vessels, stem-like
ECs with a proangiogenic phenotype have been identified, and ECs that express ABCB1/P-gp have
been reported in residential normal and tumor blood vessels [48,49]. In addition, P-gp and endothelial
barrier antigens are heterogeneously expressed in rat-brain blood vessels, particularly at the single-cell
level, suggesting the heterogeneous formation of the blood–brain barrier [50].

In addition, there are many examples of TEC heterogeneity [27]. We have demonstrated that
some TECs show upregulated expressions of the stem cell marker aldehyde dehydrogenase (ALDH).
These ALDHhigh TECs are more proangiogenic and drug resistant, with a higher grade of chromosomal
abnormality, than ALDHlow TECs [51]. Within the tumor vasculature, the morphology and pericyte
coverage of tumor blood vessels vary depending on the type of tumor and progression stage [47,52,53].
In addition, we have reported that these heterogeneities [44] are dependent on tumor malignancy.
The blood vessels of metastatic tumors are more immature with fewer pericytes than those of
nonmetastatic tumors [44]. These features could be attributed to the higher hypoxic nature of
metastatic tumors compared with that of nonmetastatic tumors. TECs isolated from metastatic
tumors demonstrated a more proangiogenic phenotype than those isolated from nonmetastatic
tumors, with the upregulation of several angiogenesis-related genes, such as VEGFR-1, VEGFR-2,
and VEGF [35,54]. During tumor neovascularization, TECs use matrix metalloproteinases (MMPs) to
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breach the basement membrane and degrade the extracellular matrix, thus allowing TEC migration into
the tumor during angiogenesis. TECs from metastatic tumors also showed higher invasive potential
than TECs from nonmetastatic tumors with the upregulation of gelatinase/collagenase IV MMPs
(MMP-2 and MMP-9). These TEC characteristics support tumor progression and metastasis [44].

TECs might also acquire heterogeneity during cancer therapy. For example, it has been reported
that Ang-2 expression is upregulated during anti-VEGF therapy. This might be a mechanism by which
to escape this therapy. Indeed, dual inhibition of Ang-2 and VEGF receptor signaling prolonged survival
in glioblastoma [55]. Anti-VEGF therapy transiently normalizes immature tumor vessel structure and
improves vessel function; therefore, drug delivery is improved and radiotherapy efficacy is better from
oxygenation of the tumor tissue where blood perfusion is induced [56]. On the other hand, sustained
antiangiogenic therapy eventually leads to an ischemic change in the tumor and worsens hypoxia,
which results in tumor malignancy [57]. Thus, we must develop biomarkers of the vessel normalization
time frame to design the optimal scheduling protocols for combination therapies. Unfortunately,
there are no reliable predictors or biomarkers for identifying the vascular normalization time frame
during antiangiogenic therapy, although a recent study has reported that apelin is upregulated as a
biomarker for the vessel normalization time frame during antiangiogenic therapy [58].

6. Mechanisms of Tumor Endothelial Cell Abnormality

Several mechanisms have been suggested as possible causes of TEC abnormality (Figure 3).
Interactions between tumor and stromal cells have been reported as a mechanism by which stromal
cells become abnormal structures, such as tumor-associated macrophages and cancer-associated
fibroblasts, causing tumor progression and metastasis. In our study, NECs cocultured in a metastatic
tumor cell-conditioned medium showed upregulated proangiogenic gene expression and changes
that resembled some TEC phenotypes [44], suggesting that tumor-secreted factors influence TECs.
Hypoxia might also cause TEC abnormalities. The immature and leaky tumor blood vessels cause
high tissue pressure within the tumor, leading to the collapse of the blood vessels and resulting
in hypoxia [59,60]. Many studies have demonstrated that hypoxia is closely related to cancer
malignancy. It induces excessive VEGF production and vascular permeability, which might cause
TEC abnormalities. The increased vascular permeability compromises the blood flow in tumor blood
vessels, which further decreases oxygen and nutrient supply, causing physiological stress on the
tumor. The persisting hypoxia, together with the secretion of cytokines such as VEGF, promotes tumor
revascularization by inducing the mobilization of bone marrow-derived endothelial progenitor cells
toward the cancer [61]. Furthermore, hypoxia might cause genetic instability in ECs. An excess of VEGF
induces abnormal centrosome structures in HUVECs [62]. We have also shown that hypoxia-induced
reactive oxygen species causes aneuploidy in NECs and human microvascular ECs [63] and that TEC
abnormalities might also be attributed to the origin of these cells. It was reported that cancer stem cell
glioblastomas differentiated into TECs [40,64], although a recent study showed that glioblastoma cells
give rise to pericytes rather than to ECs [65]. The transdifferentiation of lymphoma cells into TECs was
also proposed to underlie TEC abnormality and heterogeneity [39]. This transdifferentiation might
be a mechanism by which TEC chromosomes become abnormal in some, but not all, tumor models.
For example, we did not observe that TECs transdifferentiated from tumor cells in studies using a
cross-species model (human tumor and mouse ECs) in which it was possible to show that ECs were
not derived from human tumor cells using species-specific fluorescent in situ hybridization probes or
antibodies [37]. The full range of mechanisms that account for TEC abnormalities must be determined
in future studies.
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Figure 3. Possible mechanisms of tumor endothelial cells (TEC) abnormalities. (a) Transdifferentiation:
tumor cells, cancer stem cells, or vascular progenitor cells (VPCs) might transdifferentiate into TECs.
(b) Uptake of oncogenes or gene transfer: ECs can take up human tumor oncogenes by phagocytosis of
apoptotic bodies or exosomes, which are released from either endothelial progenitor cells or tumor
cells. (c) Cell fusion: malignant tumor cells can fuse with normal endothelial cells (NECs) or circulating
VPCs. (d) Tumor microenvironment: growth factors or cytokines in the tumor microenvironment
might be factors that cause genetic instability. Hypoxia in tumors is known to cause genetic changes,
such as the upregulation of survival factors, not only in tumor cells.

7. Tumor Endothelial Cells’ Roles in Cancer Progression

Morphologically abnormal tumor vasculature leads to tumor cell intravasation during tumor
metastasis. VEGF signaling loosens the tight junctions between ECs. For example, VE-cadherin,
which makes up the EC–EC junctions, is internalized after VEGF stimulation [66], which induces
vascular permeability. The immature structure of tumor blood vessels that lack smooth muscles and
pericytes also leads to tumor cell transendothelial migration [67]. In addition to this passive entry route,
TECs might also actively promote tumor cell metastasis, the reason being that it has been reported
that TECs secrete cytokines called “angiocrine factors” such as interleukin-6, VEGF-A, and bFGF [68].
For example, FGF4 secreted from B-cell lymphoma cells activates FGFR1 in TECs and upregulates
the Notch ligand Jagged-1 in ECs. In turn, Jagged-1 in ECs reciprocally induces Notch2–Hey1 in
lymphoma cells [69], which makes tumor cells more invasive and chemoresistant [70]. Other studies
have also demonstrated that the Notch signals in ECs are important in cancer stem cells [71] and
promote neutrophil infiltration [72].

We have reported the role of TECs in the initial steps of tumor metastasis [73]. Because TECs in
metastatic tumors express higher levels of angiocrine factors than those in nonmetastatic tumors [44],
it was speculated that TECs might also affect tumor cell behavior. In vitro data revealed that TECs from
metastatic tumors attract and adhere to tumor cells to a greater extent than TECs from nonmetastatic
tumors or NECs. In addition, tumor cell transendothelial migration was observed on the monolayer
formed by TECs from metastatic tumors. We found that biglycan, a small leucine-rich repeat
proteoglycan, was one of the molecules responsible for these phenotypes in metastatic tumor TECs.
Indeed, TEC biglycan facilitated the migration of toll-like receptor-expressing tumor cells through the
activation of nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK) signaling.
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The biglycan that was secreted from TECs increased the number of circulating tumor cells and lung
metastases in vivo. Biglycan levels in the plasma of patients with cancer were higher than those
in healthy volunteers, particularly in metastatic cases. These results suggested that TECs provide
this key molecule to tumor cells for hematogenous metastasis (Figure 4). Furthermore, the biglycan
promoter was markedly demethylated in TECs from metastatic tumors, but not in other ECs, and this
demethylation shows that epigenetic dysregulation might be one of the mechanisms involved in
TEC abnormalities [73]. Collectively, altered TECs facilitate cancer progression and metastasis in the
tumor microenvironment.
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8. Conclusions

TECs differ from NECs both morphologically and physiologically. Contrary to previous
presumptions, TECs are not homogeneous, and they are affected by the complex tumor microenvironment.
In addition, there is a bidirectional interaction between TECs and tumor cells, through which TECs actively
affect tumor cells and play a role in cancer progression. Elucidation of TEC biology with the help of
additional studies would provide a new target for anticancer therapy and diagnostics.
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