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Abstract: Classically, osteoclast fusion consists of four basic steps: (1) attraction/migration,
(2) recognition, (3) cell–cell adhesion, and (4) membrane fusion. In theory, this sounds like a
straightforward simple linear process. However, it is not. Osteoclast fusion has to take place
in a well-coordinated manner—something that is not simple. In vivo, the complex regulation
of osteoclast formation takes place within the bone marrow—in time and space. The present
review will focus on considering osteoclast fusion in the context of physiology and pathology.
Special attention is given to: (1) regulation of osteoclast fusion in vivo, (2) heterogeneity of osteoclast
fusion partners, (3) regulation of multi-nucleation, (4) implications for physiology and pathology,
and (5) implications for drug sensitivity and side effects. The review will emphasize that more
attention should be given to the human in vivo reality when interpreting the impact of in vitro and
animal studies. This should be done in order to improve our understanding of human physiology
and pathology, as well as to improve anti-resorptive treatment and reduce side effects.

Keywords: osteoclast; fusion; DC-STAMP; heterogeneity; zoledronic acid; denosumab; CD47;
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1. Introduction

Osteoclast fusion is a fascinating process that reflects a rare event in the human body—cells merging.
Only a few cells are able to merge—at least under physiological conditions. These cells may be myoblasts,
trophoblasts, macrophages/giant cells, sperm/eggs, or osteoclasts [1]. Cell fusion is a complex and
potentially risky process for several reasons: (1) it is important that only selected cells fuse, (2) that they
fuse at the correct site, (3) that they fuse at the right time, (4) that fusion does not result in too large or
too small cells, and (5) that fusion is switched off again. If any of these regulatory processes gets out
of control, it may have detrimental effects. This is also the case for osteoclasts.

Osteoclasts are the only cells that are able to resorb bone. They do so relatively fast when compared to the
much slower reversal/bone formation processes conducted by reversal cells, osteoblasts, and osteocytes [2,3].
Therefore, it is important that osteoclast activity does not get out of control. If this were to happen,
there would be a risk of triggering a pathological condition such as osteoporosis. A driving factor for
how aggressively osteoclasts can remove a given bone volume is the number of nuclei each osteoclast
contains [4–8], and multinucleation is solely determined by osteoclast fusion.

Classically, osteoclast fusion is considered to consist in four basic steps: (1) attraction/migration,
(2) recognition, (3) cell–cell adhesion, and (4) membrane fusion. In theory, this sounds like a
straightforward simple linear process. However, when considering that this has to take place in a
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well-coordinated manner—it is no longer simple. In a recent review [9], the complex regulation of
osteoclast formation in vivo within the bone marrow was discussed with respect to time and place
of differentiation of precursors and their migration to, or arrival at the bone surface where fusion
takes place. The present review will focus on osteoclast fusion taking place on/at the bone surface.
A special emphasis will be put on placing this in the context of physiology and pathology. In vitro
and animal models will be discussed, but will always be considered in the context of human
osteoclast biology in vivo. Special attention is given to: (1) regulation of osteoclast fusion in vivo,
(2) heterogeneity of osteoclast fusion partners, (3) regulation of multi-nucleation, (4) implications for
physiology and pathology, and (5) implications for drug sensitivity and side effects.

2. Regulation of Osteoclast Fusion In Vivo

2.1. Site-Specific Regulation of Osteoclast Fusion In Vivo

When pre-osteoclasts form in the bone marrow in vivo they can be found in small clusters [10].
These may already be tartrate-resistant acid phosphatase (TRAcP)-positive, but despite a close
contact between them, they do not fuse in the bone marrow. A regulatory mechanism must keep them
from fusing. Most research efforts to understand fusion mechanisms focus on the differentiation process,
more specifically the cytokines and signaling proteins needed for this process get much attention.
Such studies have identified major regulators of osteoclast differentiation and fusion (for updated
reviews please refer to [11,12])—studies that have revolutionized our understanding of osteoclasts.
Yet, it is also interesting to consider why fusion does not take place between two adjacent potential
fusion partners. This has received little attention, although it ensures a physiological state of
osteoclast fusion; a process that only occurs on the bone surface.

Under physiological conditions it is central that osteoclasts only form at or on the bone
surface determined for resorption [9]. However, in pathologies such as cancer metastases to bone,
large osteoclast-like cells form even within the bone marrow without contact to a mineralized bone
surface [13–15]. In order to understand the mechanisms that prevent this under physiological conditions,
it is interesting to consider what characterizes these different conditions. In metastatic cancer such
as prostate and breast cancer, cancer cells in the bone marrow produce cytokines such as tumor
necrosis factor α (TNFα), interleukin 6 (IL6), and vascular endothelial growth factor (VEGF) that
can trigger recruitment and subsequent differentiation. However, it is especially the ability of both
cancer forms to trigger the pre-osteoblastic cells to express high levels of receptor activator of nuclear
factor kappa-B ligand (RANKL) and low levels of osteoprotegerin (OPG) that boosts the formation
of osteoclasts [16]. In the case of cancer, it is not only the pre-osteoblasts, but also cancer-associated
fibroblasts that express RANKL [17–19], and these cells are present in large quantities within the
cancer-infiltrated bone marrow [20]. This implies that there is a constant and uncontrolled supply
of RANKL to the microenvironment. Thus, in these situations there will be uncontrolled osteoclast
fusion and subsequently uncontrolled bone loss. Under physiological conditions the location and
number of cells expressing RANKL is strictly controlled. In this case, RANKL is expressed by
e.g., osteocytes embedded within the bone matrix [21,22], bone lining cells [23], bone remodeling
compartment canopy cells [24], and reversal cells [24]. The common denominator of these cells is that
they all are located close to, on, or beneath the bone surface. This is one likely way to ensure that
osteoclast fusion is only activated at the bone surface. For more information on this issue, please refer to
a recent review [9]. Macrophage-colony stimulating factor (M-CSF) is also found to be mostly expressed
at the bone surface, but also along vascular structures in the marrow cavity [25–27]. This heterogenic
distribution of osteoclast precursors exposed to M-CSF and RANKL, with variations in time and space,
is likely to create a variety of pre-osteoclasts that express different molecular factors. In addition,
they will also display differences in mobility and polarity.
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2.2. Heterogeneity Based on Nuclearity, Mobility, Protein Expression, and/or Protein Clusters Regulates and
Controls Osteoclast Fusion

As discussed elsewhere [9], the first pre-osteoclast that arrives at the bone surface is likely to get
there by migrating through the bone marrow over variable distances. When it reaches the mineralized
bone surface, it will switch from being mobile into becoming rather immobile—possibly ensuring
that it “waits” for a mobile fusion partner to arrive from the bone marrow. This scenario has been
shown to favor fusion [10] and from a physiological perspective it may make sense. In general,
heterogeneity between fusion partners with respect to e.g., nuclearity, mobility, expression profile,
and/or protein cluster may be a way to regulate and control fusion (Figure 1).
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Figure 1. Schematic representation of how heterogeneity may regulate osteoclast fusion. Dotted arrows
indicate migration of pre-osteoclasts to the bone surface. Green text and arrows indicate that
heterogeneity favors fusion. Red arrows, crosses, and text indicate that lack of heterogeneity reduces
the likelihood of fusion.

In vitro studies using time-lapse recording investigated the importance of mobility and nuclearity
for finding the “right” fusion partner. Using 96 h of time-lapse recording of human pre-osteoclasts and
their fusion, it was found [28] that more than 60% of all recorded fusion events occurred between a mobile
and an immobile fusion partner. The remaining fusion events occurred between two mobile partners
(25%) and two immobile partners (15%), thus, there was a selective bias towards heterogeneity between
fusion partners with respect to mobility [28]. Furthermore, another type of fusion partner selection was
through multinucleation. In the same study [28], it was found that multinucleation was also a selection
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parameter. At all stages of differentiation throughout the 96 h there was a bias so that multinucleated
osteoclasts in 70% of all fusion events chose a mononucleated fusion partner. Similar findings were
also reported in other in vitro studies. Leavot et al. [29] reported, using murine cellular model systems,
that so-called fusion-founder pre-osteoclasts will fuse with mononucleated so-called fusion-follower
pre-osteoclasts one at a time and in this way reach multinuclearity. Studies focusing on the existence
of quiescent pre-osteoclasts in vitro and in vivo suggest that multinucleated osteoclasts only form
effeciently if the fusion partner is a mononucleated quiescent pre-osteoclast [30,31]. Further support is
obtained from a pioneering study by Jaworski and coworkers [32]. Using a canine (dog) animal model,
they demonstrated that existing osteoclasts gained radiolabeled nuclei by fusing with mononucleated
pre-osteoclasts one at a time. In a more recent study, Jacome-Galarza et al. [33] reported something
very similar, but using a more elaborate technique. They used a mouse model with an inducible
deficiency in osteoclast formation (Csfrfl/−). Through time–course parabiosis experiments the authors
could estimate that osteoclasts primarily became multinucleated by fusing with one pre-osteoclast at
a time. Therefore, it seems that there is some consistancy in the in vitro and in vivo findings.

Different levels of multinuclearity are also coupled to the expression of different molecular
factors, again creating heterogeneity—a key regulating element of osteoclast fusion. One such
example is dendritic cell-specific transmembrane protein (DC-STAMP) [34–39]. DC-STAMP is a
membrane-bound receptor, but without an identified ligand. DC-STAMP is primarily expressed on the
surface of pre-osteoclasts and small osteoclasts [35,36,40]. It has been found that human osteoclast fusion
partners display a heterogenic profile for DC-STAMP in the plasma membrane—one fusion partner is
positive (mostly mononucleated) and the other negative [40]. This suggests that human osteoclast fusion
partners need to be heterogenic for the expression of DC-STAMP in order to fuse. This is supported
by studies from mice [34,35]. DC-STAMP-deficient mouse bone marrow-derived pre-osteoclasts
demonstrated a complete abrogation of osteoclast fusion [34]. However, DC-STAMP-deficient
pre-osteoclasts (DC-STAMPlo) were able to fuse with wild-type pre-osteoclasts (DC-STAMPhi) [35].
DC-STAMP will be discussed in further detail in Section 4.1.

Another factor, that is heterogeneously expressed in pre-/osteoclasts and has been shown to be
dependent on nuclearity, is CD47. CD47 is, just as DC-STAMP, primarily expressed in pre-osteoclasts
and expression decreases as the osteoclast gains nuclei [40,41]. The importance of heterogeneity in CD47
expression between fusion partners was suggested through the work of Hobolt-Pedersen et al. [40],
but it was Møller et al. [42] who, through time-lapse, could document that blocking of CD47 selectively
inhibited fusion between mononucleated pre-osteoclasts and multinucleated osteoclasts. The opposite
result was obtained for syncytin-1, a membrane-bound fusiogen triggering membrane fusion of several
human cell types [43–47], including osteoclasts [42,48,49]. The murine variants of syncytin have also
been found to trigger membrane fusion of osteoclasts and other cells [50–52]. Syncytin-1 in human
osteoclasts was found to primarily be involved in fusion between multinucleated osteoclasts [42]; it is
thus opposite to DC-STAMP and CD47. Another way of obtaining heterogeneity between fusion
partners is the clustered or polarized positioning of factors involved in fusion. A focal up-concentration
of both CD47 and syncytin-1 in the plasma membrane has been observed immediately prior to
fusion [40]. Such an up-concentration may require membrane structures such as lipid rafts, and for
osteoclast this has been shown to involve CD9 [53,54].

When considering all of these, primarily in-vitro-obtained, data, with respect to the importance of
heterogeneity (Figure 1), it is important to bear in mind the physiological perspective with respect
to regulating osteoclast fusion in vivo. As mentioned, the initial pre-osteoclast arriving on the
mineralized bone surface encounters a different microenvironment to that of the pre-osteoclasts that
migrate directly from the bone marrow to fuse. This will result in a different expression profile [10],
and thus a heterogeneity, which, based on the results discussed above, will disfavor fusion between
osteoclasts and pre-osteoclasts on the bone surface, but will instead favor fusion with pre-osteoclasts
arriving from the bone marrow. This will also require that the cells relocate their fusion-related
factors in a polarized clustered fashion, which may involve factors such as syncytin-1, CD47, and CD9.
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Thus, as shown in Figure 1, it does seem plausible that a way to ensure a physiological and controlled
fusion in vivo, is through the heterogeneity of fusion partners.

2.3. Membrane Fusion during Osteoclastogenesis

It is fascinating to observe cell fusion through e.g., time-lapse recording. It allows you to see how
selective the process of finding a potential fusion partner is. It shows how much time it actually takes
in vitro for partners to find the “right one”, to orient themselves optimally for fusion, to adhere to the
fusion partner, and eventually fuse the two plasma membranes. When it comes to the membrane fusion
step itself, one could think that this is a quite straightforward process, but it is not! The hydrophobic
cores of the two membranes have to flip and merge in a very hydrophilic environment. In order to
circumvent this problem, a number of different approaches to trigger the fusion of two opposing
membranes have evolved. These approaches were thoroughly and elegantly presented in a recent
review [12] and will, in the present review, therefore not be elaborated in more detail. Regarding more
specific details on membrane fusion mechanisms and fusiogens for multiple cell types, reviews by
Podbilewicz and co-authors can be recommended [1,55]

3. Osteoclast Fusion In Vivo Using Animal Models

Through the use of intravital two-photon microscopy in mice, Nevius and colleagues [56]
observed that in vivo fusion occurs between a larger rather immobile osteoclast and a smaller
mobile pre-osteoclast. These smaller mobile pre-osteoclasts were found to migrate from the bone marrow
towards the bone surface, fusing with already-existing osteoclasts. They proposed that the attraction of
these mobile pre-osteoclasts is caused by secretion of 25-hydroxycholesterol by osteoblast lineage cells
situated on the bone surface. 25-hydroxycholesterol acts as a ligand for the Gαi protein-coupled receptor,
EBI2 [56]. Based on abstracts presented at international conferences it seems that there is some further
progress on its way. Dallas and colleagues [57] used ex vivo imaging of calvarial explants from tdTomato
LysM-Cre-expressing mice and observed very dynamic osteoclast behavior. They reported that fusion
between adjacent osteoclasts could be observed, apparently on the bone surface. McDonald and
colleagues also reported similar findings. Using intravital tibia multiphoton microscopy they
observed [58] fusion between adjacent osteoclasts, again apparently on the bone surface. This was
especially prominent when animals were given an injection of RANKL—so apparently, it must have
been less obvious under physiological conditions. Thus, these very new findings may suggest that in
mice, osteoclasts may choose to fuse with adjacent osteoclasts on the bone surface. However, this was
not explicitly mentioned by Nevius et al. [56], who only reported that pre-osteoclasts migrating from
the bone marrow were observed to fuse with existing osteoclasts on the bone surface. Maeda et al. [59]
also reported, using intravital imaging, that under physiological conditions, murine calvarial osteoclasts
were individual and rather small osteoclasts, but if mice were injected with RANKL they rapidly became
far larger. The study of Jacome-Galarza et al. [33] indirectly supported that fairly large osteoclast
syncytia seem to exist on the bone surface of adult mice. However, they explicitly concluded that
these osteoclasts gain nuclei through fusion with single pre-osteoclasts from the marrow/circulation.
Yet, since the studies of McDonald et al. [58] and Maeda et al. [59] found that injection of exogenous
RANKL triggered existing osteoclasts to become abnormally large, it is possible that a key to regulating
osteoclast multinuclearity is through a very strict regulation of RANKL expression. It could be
speculated that existing osteoclasts still need an exposure to RANKL in order to continue to fuse,
but if there is no RANKL, there is no fusion, or at least, very slow fusion. Furthermore, some of
these new in vivo studies also bring in fission and subsequent “refusion” as an element to regulate
nuclearity in vivo [57,58], thereby putting preceding in vitro findings into an in vivo perspective [60,61].
Given the novelty of many of these in vivo observations and the limited number of published studies,
more research is needed in order to fully understand the implications of the recent findings using
intravital microscopy. In this regard, it is always desirable to evaluate the relevance of such astonishing
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findings from animal studies to the human context. It will be interesting to follow the progress in this
regard in the coming years.

Longevity of Mouse Osteoclasts In Vivo

It is possible that the life span of osteoclasts in vivo, in particular in mice, will be longer than
previously considered. Mouse osteoclasts in bone explant cultures or in vitro cultures in general
live for less than one week, but life spans in vivo may be different—considerably different. Through
the very impressive work of Jacome-Galarza and co-authors [33], they were able to obtain data
supporting that osteoclasts may stay alive and be functional for multiple months. This knowledge was
obtained through e.g., the injection of EdU+ monocytes, tracing their incorporation into osteoclasts,
and determining for how long they could be detected in osteoclasts. Much earlier studies performed
irradiation of the animal to eliminate osteoclast precursors in the marrow and traced for how long
preexisting osteoclasts could be observed. Based on this approach they estimated that in mice the life
span of osteoclasts was less than six weeks. However, if they were to continue to fuse, their lifespan
may be longer [62]. Using pulse labelling of post-mitotic nuclei with 3HTdR in dogs, it was found that
existing osteoclasts in cortical bone may live for at least two weeks, but a maximum life span was not
determined [32]. Also, pioneering work [63] supported that osteoclasts in mice are long-lived and that
their life can be prolonged by regular fusion with mononucleated pre-osteoclasts. So, based on both
present and past research it seems reasonable to conclude that individual osteoclasts in various animal
models may stay alive for multiple weeks and months and that they can do so through occasional
fusion with pre-osteoclasts, thereby refreshing their nuclei pool. However, do they become more
multinucleated in this process or do they discard individual nuclei through controlled apoptosis of
individual nuclei? Jacome-Galarza and co-authors [33] did see a modest increase in the number of
nuclei per osteoclast within a five-month period. Could this suggest that osteoclasts with a longer life
span would gain nuclei and thereby become very large? Our knowledge in this regard seems limited,
but future studies will hopefully shed more light on these new and very interesting observations.

When it comes to longevity of human osteoclasts, we basically have no knowledge, but it is
classically stated that once an osteoclast has finished a resorption cycle it will undergo apoptosis
and eliminate itself, thus there is an expected lifespan of a few weeks [64–68]. Available evidence
from adult human bone points to osteoclasts existing as individual cells of limited size. Through 3D
reconstruction of serial histological sections stained for TRAcP-positive cells on the bone surface, it was
clearly observed that osteoclasts exist as individual osteoclasts of limited size on the bone surface of
both cancellous [69–71] and cortical bone surfaces [72]. These were analyzed in bones from patients
with different pathologies such as multiple myeloma [70] and osteoporosis [71], but also from healthy
controls [10,69,71,72]. Their limited size in human adults under physiological conditions could be
interpreted as osteoclasts being short-lived in vivo, because longevity of osteoclasts is favored by
continuous fusion [33,62,63]. Thus, it seems straightforward to conclude that the human osteoclast life
span in vivo is rather short and is regulated through apoptosis [64–68]. However, strictly speaking,
we cannot know for sure, simply because no one has yet specifically looked for it. It is possible that
osteoclasts will not grow in size, although they will regularly fuse to enable longevity if selected nuclei
are simultaneously discarded one by one. Therefore, more research and alternative approaches may be
necessary to transfer the fascinating mouse model data into a human setting.

4. Regulation of Multinucleation

It is known that osteoclasts with many nuclei are more aggressive [4–8]. It is therefore
very important to understand how continued and uncontrolled osteoclast fusion is avoided.
However, very little research has focused on how fusion stops again—most research efforts are
invested in understanding how fusion is mediated.

In order to understand this regulation, it may be helpful to consider the pathology of Paget’s disease,
where osteoclasts fuse uncontrolled [73,74]. Although the mechanism causing this uncontrolled fusion
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is not fully understood, genetic studies have found several genes involved. The most common
mutation occurs in the sequestosome 1 (SQSTM1) gene leading to an inactivation of the protein [74].
An inactivation of SQSTM1 can result in an amplification of e.g., RANKL signaling because SQSTM1
is involved in preventing the activation of NF-κB-mediated signaling [74,75]. This suggests that
a main negative regulator of osteoclast multinucleation may simply be through the regulation
of signaling. This is not surprising, but classically such regulators would be identified intracellularly.
However, one may also consider the spatial and temporal expression of cytokines such as M-CSF
and RANKL, but also a negative regulator such as OPG, in vivo. A spatio-temporal control may be an
effective way to negatively regulate fusion, preventing osteoclasts from getting too large. This precise
issue was discussed in a recent review [9] and will therefore not be elaborated more here, but recent
developments have brought forward new angles on the regulation of osteoclast multinucleation in vivo,
something which will be discussed below.

4.1. DC-STAMP—A Master Regulator of Osteoclast Multinuclearity

Other genes than SQSTM1 were also found in genome-wide association studies (GWAS) to
correlate with Paget’s disease. Several of these genes encode receptors or ligands known to play a
role in osteoclast fusion—such as M-CSF, RANKL, and DC-STAMP [76–78]. DC-STAMP is known
as a master regulator of osteoclast differentiation and fusion. An overview of its molecular actions
was recently presented in detail [11]. Much of this knowledge comes from studies in cell culture
and animal models. Such studies give a good understanding of how DC-STAMP mediates its
regulating effects. However, they do not say much about how DC-STAMP may be involved in
physiological and pathological conditions, but there are some exceptions. The finding that single
nucleotide polymorphisms (SNPs) in the DCSTAMP gene correlates with Paget’s disease, suggests that
this gene may not only be responsible for facilitating osteoclastogenesis, but that it also represents
a “tool” that the cell/body can use to regulate when a desired osteoclast nucleation level is reached.
Given that Paget’s disease is a condition where multinucleation of osteoclasts is out of control, it
is interesting that precisely the DCSTAMP gene contains a SNP (rs2458413) that can trigger this
condition [77,78]. The fact that this SNP (rs2458413) causes multinucleation suggest that it either
results in a gain of function or an overexpression. Indeed, Mullin and co-workers [78] found that the
SNP rs2458413 resulted in a 50% upregulated gene expression, supporting that it may be relevant to
look at the expression level of DC-STAMP as an intrinsic regulator of osteoclast nucleation in vivo.
Another SNP in the DCSTAMP gene, rs62620995, was also found to be linked with Paget’s disease [79]
and osteoclasts generated from carriers of this SNP specifically gained more nuclei per osteoclast
than non-carriers [80]. A recent study [7] used blood from 49 women to generate osteoclasts in vitro.
It was found that the gene expression levels of DCSTAMP of in-vitro-generated osteoclasts correlated
positively with the in vivo C-terminal telopeptide of type I collagen (CTX) levels of the same donors.
Furthermore, DCSTAMP gene expression also correlated positively with the nucleation level of the
osteoclasts in vitro, the nucleation level in vitro correlated with CTX levels in vivo, and last, but
not least, DC-STAMP gene expression in vitro correlated positively with the age of the donors (44 to
66 years) [4,7]. This strongly suggests that DC-STAMP may be a cornerstone in understanding why
bone resorption increases with age. How may this be regulated in vivo? Data suggest that this may be
through epigenetic regulation [4,7,81–86]. An epigenetic regulation of the DCSTAMP gene is interesting,
because it may be a tool to regulate this powerful regulator of osteoclast multinucleation both through
DNA methylation [7,81], histone methylation [86], and miRNA [82–85]. Studies of Møller et al. [4,7]
have shown that DNA methylation levels of the DCSTAMP gene are lower with increasing age and that
this results in an elevated gene expression, multinucleation, and bone resorptive activity of osteoclasts
in vitro. However, since this activity is also linked to the in vivo CTX-levels of the pre-osteoclast donor,
this strongly suggest that the in-vitro-obtained data reflect a relevant physiological finding [7].
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4.2. OSTM1—A Negative Regulator of Osteoclast Multinuclearity

In a recent review [87], it was highlighted how studies over the years have identified
osteopetrosis-associated transmembrane protein 1 (Ostm1) as a regulator of multinucleation.
The osteopetrotic phenotype of the grey-lethal (gl) mouse as well as a variant of severe autosomal
recessive infantile malignant osteopetrosis were both caused by a gene defect in the mouse Ostm1
and human OSTM1 gene [88] resulting in a partial deletion leading to a null allele. It is interesting
that this gene defect results in large but inactive multinucleated osteoclasts both in vitro and in vivo.
Thus, Ostm1 is a negative regulator of osteoclast multinucleation. It was found to be a negative regulator
of the Nfatc1 pathway and thereby also a negative regulator of DCSTAMP gene expression [89,90].
The fact that large multinucleated osteoclasts, in the case of OSTM1 mutations, are also non-functional
further highlights that a proper regulation of multinucleation is key. Ostm1 is also linked to the
acidification function of osteoclasts—a central element allowing the osteoclast to degrade bone since
low pH is essential for the osteoclast to dissolve mineral and degrade collagen efficiently [91,92].
Proper acidification is linked to the coordinated activities of the chloride pump, CLC7, and the
proton pump, H+vATPase [93,94]. Ostm1 forms a complex with CLC7 and is essential to acidify
lysomomal vesicles in osteoclasts [93–96]. Although deficits in CLC7 function have not been related to
osteoclast fusion, the activity of vATPase has [97]. However, the actions of Ostm1 and H+vATPase
have opposite actions on fusion so this adds a level of complexity to understanding how lysosomal
involvement may play a role in multinucleation.

5. Implications for Physiology and Pathology

5.1. Multinucleation of Osteoclasts in Physiology

What are the direct consequences of osteoclast multinucleation with respect to physiology?
Certainly, a multitude of animal studies have investigated the consequences of presence or absence
of a long list of molecular factors that are key for osteoclast multinucleation. Yet, despite the
many impressive discoveries made with this type of investigation, we must also acknowledge that
removing a factor completely may throw off the fine-tuned balance between networks regulating
osteoclast multinucleation. This may then cause other factors to be altered. Therefore, in order
to learn about the importance of various molecular factors for osteoclast multinucleation under
physiological conditions, an alternative way may be to use the natural variation between not
only humans, but also rodents. This may be an alternative approach that allows us to interpret
the importance of molecular factors of osteoclast multinucleation in real life. GWAS analyses in both
human and animal studies could be such an approach.

Good examples of such an approach used the genetic variation between two strains of rats
with a different bone phenotype, and tested the potency of osteoclastogenesis in vitro from bone
marrow progenitors [8,98]. Through expression quantitative trait loci (eQTL) analyses researchers
found a trans-regulated gene network consisting of 190 osteoclast-expressed genes regulated by
a master-regulator, triggering receptor expressed on myeloid cells 2 (Trem2) [98]. This clearly
shows the complexity of osteoclast multinucleation mechanisms. Using the two different rat strains,
Wistar-Kyoto and Lewis, it was found that an altered expression of e.g., Dcstamp and Cd9 were one of
the causes of the different bone phenotypes in these two rat strains [98]. Thus, these findings link to
the discussions in Sections 2.2 and 4.1. In a later study, the same study group used the network of
190 osteoclast genes identified in rats to compare with GWAS findings in a human study cohort [8].
It was found that SNPs from this cluster were enriched especially for the traits of heel bone mineral
density and body height. One of the very prominent genes was DCSTAMP. Thus, genetic variations
in this gene both in rat and man are at least in part responsible for bone density and growth under
physiological conditions.
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5.2. Multinucleation of Osteoclasts in Pathology and Anti-Resorptive Treatment

Bisphosphonates are long-standing drugs used to target osteoclasts in order to stop their bone
destructive activity under pathological conditions. These may be e.g., osteoporosis, cancer metastases
to bone, and multiple myeloma—just to mention a few. The mode of action of bisphosphonates is linked
to the mevalonate pathway. Inhibition of this pathway will prevent prenylation of membrane-anchored
signaling proteins and cause an accumulation of pyrophosphate. Both of these outcomes have been
described to inhibit bone resorption activity and/or trigger apoptosis [99]. The mevalonate pathway is a
key pathway for osteoclast function (as well as other cell types) and a blockage of this pathway should
be able to overpower potential compensating effects. Yet, it may not be as simple as that. In a recent
in vitro study [100] using osteoclasts generated from 46 female blood donors, a >210-fold variation was
reported in the osteoclasts’ sensitivity (from these different individuals) to zoledronic acid in vitro. In a
multiple linear regression analysis including ten independent variables, the multinucleation level of
osteoclasts in vitro was found to reduce sensitivity. For each nucleus gained, the IC50 increased. This is
intriguing and has (as far as the author knows) not been observed before. However, this may suggest
that the regulation of osteoclast multinucleation in vivo may be a parameter to consider, with respect
to drug resistance to osteoclast-targeting treatments in vivo.

Studies that show the efficiency of zoledronic acid or alendronate treatment of patients in
general show that these are very potent drugs. However, they are not equally potent [101–105].
One possible interpretation could be that there may be resistant pools of osteoclasts that, at least
in part, escape full inhibition. Bisphosphonates in general are found to reduce the number
of osteoclasts considerably, but the cells that do remain have, both in animal models [106]
and humans [107–110], been reported to be more rich in nuclei than without treatment. Underneath
these osteoclasts, signs of a diminished, yet still present, bone resorptive activity was detected [107,108],
and patients with many of these large osteoclasts showed more residual bone resorption than
those where these osteoclasts were not observed [110]. This could suggest that large giant
multinucleated osteoclasts are able to retain some residual bone resorptive activity as an indication of
partly-reduced sensitivity. Large multinucleated osteoclasts are also often seen in the context of cancer
bone metastases [111,112]. Precisely in cancer, suppression of bone resorption is important to treat the
bone disease. Yet, although bisphosphonates are indeed effective for treating bone resorption activities
in many patients, they are not equally potent in all [103,105,113] and this may have detrimental effects
for these patients. GWAS investigations have been undertaken to look for genetic predisposition to
an altered sensitivity to bisphosphonate treatment. However, these studies have primarily searched
for a genetic predisposition to side effects such as atypical femur fractures or osteonecrosis of the
jaw [114–117]. One of these studies is particularly interesting because it identified SNPs in the all-trans
retinoic acid induced differentiation factor (ATRAID) gene to potentially predispose to both atypical
femur fractures and osteonecrosis of the jaw [115]. This is interesting because ATRAID was reported to
encode for a transporter in the lysosomal membrane that is responsible for releasing bisphosphonates
into the cytoplasm of the cell, where they can act on the mevalonate pathway [118]. This makes a direct
link to the action of bisphosphonates, but because the SNP is so rare [115,118], it is unlikely to account
for the widespread variations in sensitivity to bisphophonates in vivo [103,105,113] and osteoclasts
in vitro [100]. Rather it may be of relevance to use an epigenome-wide association study (EWAS)
approach to look for explanatory and predictive profiles for bisphosphonate sensitivity. As discussed
in Section 4.1, Møller and colleagues reported [4,7] that the DCSTAMP gene is epigenetically regulated
(DNA methylation) during ageing, resulting an increased gene expression and an increased nucleation
of osteoclasts in vitro. This phenomenon was positively correlated with bone resorption levels in vivo.
As aforementioned, the same group showed that more-multinucleated osteoclasts are more resistant to
zoledronic acid than those with less nuclei [100]. Thus, these studies suggest a possible link between
epigenetic control and sensitivity to zoledronic acid. It would be interesting to consider this possibility
in future EWAS studies, something that apparently has not yet been done.
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Recently, denosumab has received quite some attention due to general concerns about the so-called
“rebound effect” observed after discontinuing treatment with denosumab. Especially after prolonged
treatment [119,120], there are clinical concerns that treatment with the most potent bisphosphonate,
zoledronic acid, is not sufficient to prevent the rapid bone loss observed after discontinuation of denosumab
treatment [121,122]. In animal models of denosumab treatment, a rebound effect was observed after
stopping OPG treatment resulting in the reformation of numerous osteoclasts [58], something which
is supported by numerous reports on discontinuing denosumab treatment for patients [119,120,123].
Up to now, no reasonable explanation has been given as to why zoledronic acid is not able to prevent this
bone loss, but only to dampen it. In conjunction with the discussion on zoledronic acid efficiency, it would be
interesting to consider if the findings presented by Møller et al. [100] may suggest a mechanistic explanation.

6. Conclusions

When trying to understand osteoclast fusion we have come far by identifying central cytokines
and signaling pathways that are essential for the generation of osteoclasts both in vitro and in vivo.
However, more attention should be given to the human in vivo reality when interpreting the impact of
in vitro and animal studies. This should be done in order to improve our understanding of human
physiology and pathology, as well as to improve anti-resorptive treatment and reduce side effects.
This is precisely the aim of the present review. This review also wishes to emphasize that with a
focused and passionate engagement into understanding human osteoclast dynamics in vivo, we are
not far from generating tools that will allow us to individualize treatment with anti-resorptive drugs,
to the benefit of patients. While we pursue our quest to find new drug targets and new drugs, it is also
worthwhile to invest in optimizing and individualizing the use of the drugs we already have.
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