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Abstract
Lung is a specialized tissue where metastases from primary lung tumors takeoff and those originating from extra-pulmonary 
sites land. One commonality characterizing these processes is the supportive role exerted by myeloid cells, particularly 
neutrophils, whose recruitment is facilitated in this tissue microenvironment. Indeed, neutrophils have important part in the 
pathophysiology of this organ and the key mechanisms regulating neutrophil expansion and recruitment during infection 
can be co-opted by tumor cells to promote growth and metastasis. Although neutrophils dominate the myeloid landscape of 
lung cancer other populations including macrophages, dendritic cells, mast cells, basophils and eosinophils contribute to 
the complexity of lung cancer TME. In this review, we discuss the origin and significance of myeloid cells heterogeneity in 
lung cancer, which translates not only in a different frequency of immune populations but it encompasses state of activation, 
morphology, localization and mutual interactions. The relevance of such heterogeneity is considered in the context of tumor 
growth and response to immunotherapy.
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Myeloid cell heterogeneity in lung cancer

Definition of myeloid cell heterogeneity encompasses 
diversity of composition, function and state of activation of 
myeloid cells. However, morphology and location are two 
less considered source of heterogeneity, which might reflect 
peculiar myeloid cell activities.

State of activation and composition

Current immunology describes a great variety of immune 
cells each one characterized by additional variability in 
terms of phenotype and state of activation. This hetero-
geneity not only characterizes T-cells and B-cells but also 
myeloid cells.

Among myeloid cells macrophages are peculiar examples 
of immune heterogeneity. Their heterogeneity or functional 
plasticity is associated to the capacity of intercepting and 
adapting to the different tissue-specific signals or pathologic 
conditions [1]. Recently Ballesteros and coll. have shown 
that such “tissue-specific adaptation” also occurs in neu-
trophils that, although characterized for short survival, can 
acquire heterogeneity at the chromatin, RNA, and receptor 
levels when recruited in dedicated micro anatomical niches 
[2].

These transcriptome diversities are intercepted by sin-
gle-cell RNA-sequencing (scRNA-seq). Zilionis and coll. 
mapped myeloid cells in non-small-cell lung cancer patients 
describing more than 20 conserved myeloid cell types, in 
part reproducible across patients [3]. Differences might 
depend on the extreme variability of the samples consid-
ered: adenocarcinomas (LA) vs. squamous cell carcinoma 
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(SCC), male vs. female, and tumor stages. In their analy-
sis, they found 3 dendritic cell (DC) and 1 plamacytoid-
DC populations, 3 monocyte and 9 macrophage sub-types, 
5 different neutrophil subsets and 2 mast cell types. Nota-
bly, macrophages were clearly distinct from monocytes, but 
poorly defined within the M1 and M2 clusters, rather most of 
them exhibited a non-distinct M2-like phenotype and were 
referred as belonging to a peculiar subset of alveolar mac-
rophages. The different cytokines composition and gradi-
ent characterizing the tumor context, might generate a con-
tinuum of different states of activation [3]. A concept that 
can be extended to dendritic cells and neutrophils, which 
in the lung cancer TME, are present in four and five dis-
tinct subsets respectively. For DC, two subsets were clearly 
identified as conventional DC type 1 and type 2 that are 
either efficient antigen cross-presenters to CD8 + T cells or 
committed for interaction with CD4 + T cells, respectively. 
The third subset displayed a LPS-like activated phenotype 
and the last subset was of plasmacytoid DC. Among neu-
trophils, 4 populations expressed canonical neutrophil mark-
ers and were distinguished based on their maturation steps. 
A fifth population expressing type- I interferon genes was 
considered a distinct subset. These sc-RNA seq data were 
also informative in showing that myeloid cells of peripheral 
blood do not entirely overlap with those identified in the 
tumor, supporting their plasticity in adapting to different 
tissue requirements including those undergoing neoplastic 
transformation [3].

Sc-RNA approaches becomes even more important when 
used to evaluate transcriptional changes in the cancer-associ-
ated microenvironment induced by therapeutics. In a recent 
work Maynard et al. collected samples from metastatic lung 
cancer patients before and during targeted therapy for single-
cell RNA sequencing-based analyses. Comparing the gene 
expression profiles of cells from progressive disease (PD) 
with baseline samples they found more than 900 upregu-
lated genes [4]. Changes were both in tumor cells and their 
associate immune microenvironment. Baseline and PD TME 
samples were enriched in macrophages that however differed 
in state of activation being either associated with M2 pheno-
type or IDO expression, respectively. Differently, responder 
patients had a prominent hot TME with expression of pro-
inflammatory genes and activated T cells [4].

Morphology

An unexpected determinant of myeloid heterogeneity also 
reflecting peculiar functions is the myeloid cell morphol-
ogy. Within the NSCLCs TME, macrophages can display 
a prominent elongated or stellate morphology, which is 
prominent in cells infiltrating the tumor stroma, or mono-
cytoid or display epithelioid shape mostly in macrophages 
intermingling with tumor cells (Fig. 1). Among epithelioid 

histiocytes, multinucleated forms can be detected (Fig. 1 
arrow). These elements have been classically associated 
with persistent immune stimulation by specific pathogens 
(e.g. mycobacteria) or inflammatory noxae [5, 6]. Epithe-
lioid macrophages have a prominent endoplasmic reticulum, 
which is suggestive of high secretory activity, which found 
positive correlation with the increased collagen synthesis 
and extracellular matrix remodeling of involved tissues. 
Very recently, we described that a quite similar macrophage 
subset characterizes the TME of nearly 20% of NSCLC 
patients who, treated with immune checkpoint inhibitors 
(ICI), developed hyperprogressive disease (HPD), a para-
doxical boost in tumor growth [7]. In tumors from these 
patients, epithelioid macrophages formed clusters that could 
be identified through the co-espression of CD163, CD33 
and PD-L1 markers. Interestingly, when HPD was modeled 
in mice, epithelioid macrophages were identified for the 
expression of CD206 and aggregated in fibrotic- collagen 
rich areas of HP tumors. Mechanistically, FcR triggering 
of clustered epithelioid macrophages by ICI Abs delivered 
a signaling cascade promoting pro-tumorigenic functional 
reprogramming. This indicates that the presence of epithe-
lioid macrophages could represent a tumor microenviron-
ment feature associated with ICI failure [7].

Location

Another factor that might contribute to myeloid cell het-
erogeneity in NSCLC is their topography. Reciprocal spa-
tial distribution of immune cells within a TME is potential 
biomarkers for successful immunotherapy in patients with 
solid tumors [8]. Indeed, using in vivo imaging, Arlauckas 
SP and coll. showed that the spatial association between 
macrophages and CD8 T-cell was responsible for resistance 
to a-PD1 being the a-PD-1 mAbs, initially binding PD-1 on 
tumor-infiltrating CD8 + T cells captured, within minutes, by 
tumor- associated macrophages via their FcγRs [9].

Location of myeloid cells in the TME can be influenced 
by different factors, including chemokines produced by 
tumor and stromal cells. In the lung TME, malignant can-
cer cells can reprogram the tumor-infiltrating stromal cells, 
which in turn contribute to carcinogenesis either directly or 
though further conditioning the nearby immune cells.

The diversity of stromal cells in NSCLC TME is little 
considered but rather relevant for myeloid cell distribution. 
Figure 2 shows that different stromal cells composition can 
be associated with variable degree of myeloid and T-cell 
infiltration and/or with their PD-L1 expression. Smooth 
muscle and fibroblast-rich stroma is associated to high 
tumor PD-L1, high stromal T-cells and low myeloid cells. 
On the contrary stroma rich in myofibroblasts and fibroblasts 
was associated with high myeloid cell infiltration and low 
T-cells.
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Although in a completely different tumor context such as 
diffuse large B-cell lymphoma, we have recently shown that 
different mesenchymal populations can differently modu-
late the expression of key transcriptional pathway involved 
in lymphoma outgrowth such as Myc or damage response 
programs and immune checkpoints.

All these data should be interpreted in light of the under-
estimated immune modulatory role of mesenchymal cells 
[10] that only in part has been characterized in solid tumors 
for the possible impact on immune therapy.

Neutrophils dominate the lung cancer myeloid 
landscape

Although a variety of myeloid populations characterize 
lung cancer TME, neutrophils dominate this peculiar land-
scape [11, 12]. Reasons for such predominance can be 
found in the physiology of this organ, which is “primed” 

toward neutrophil recruitment and expansion. The respira-
tory system is continually exposed to microorganisms and 
one of the most important components of the early innate 
response is the vigorous recruitment of neutrophils. Bacte-
ria initially interact with alveolar epithelial cells and mac-
rophages, which respond with the secretion of cytokines 
and neutrophil chemo-attractants. The lung microvascu-
lature is a site for marginated neutrophils to immediately 
respond to and capture bloodstream pathogens. Inter-
estingly, differently from the spleen or liver, which are 
dominated by macrophage-mediated host defense the lung 
microvascular host defense is dominated by neutrophils 
[13]). Since 1920, it has been observed that bacterial infec-
tion of lower respiratory tract induces the recruitment of 
morphologically immature neutrophils from the bone mar-
row into circulation, an event recognized as “left shift”. 
A similar and evident left shift characterized also viral 
infection, for example a comprehensive flow cytometry of 

Fig. 1  In NSCLC microenvironment  macrophages can display a 
prominent elongated or stellate morphology, mostly in cells infil-
trating the tumor stroma, or monocytoid and epitheliod shape often 

observed in macrophages intermingling with tumor cells. Arrow 
show multinucleated cells detected among epithelioid histiocytes
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whole blood samples from 54 COVID-19 patients revealed 
increased immature neutrophils in correlation with disease 
severity [14]. Similarly the expansion of these immature 
populations has been shown in NSCLC cancer patients, an 
event now called leukemoid reaction [15].

This evidence suggests that lung cancer can co-opt 
mechanisms proper infection to exacerbate a vicious tumor 
promoting loop. Leukemoid reaction is common to several 
solid tumors. Granger and coll. evaluated 3770 consecutive 
cases and found that 10% of them were characterized by 
extreme leukocytosis. Among those cases, 53% of patients 
overall had tumors involving the lungs (including metasta-
sis from other sites) and 17% of them had non-small cell 
lung cancer (NSCLC). This suggests that the lung micro-
environment could predispose to the development of leuke-
moid reaction, independently from the tumor origin. In lung 
cancer 66% of patients diagnosed with leukemoid reaction 
died within 12 weeks [16] and similar dismal prognosis has 

been reported by Kasuga and coll. [17] that also correlated 
leukemoid reaction with high G-CSF in serum.

The expansion of immature neutrophils can be easily 
detected in the peripheral blood. Indeed, immature “low 
density “ neutrophils remain in the PBMC layer during 
Ficoll gradient separation [18] and, if analyzed by FACS, 
they clearly show the lack of CD10 and CD16 expression 
[19]. The relevance of this population is mainly due to 
its immune suppressive properties on T-cell proliferation, 
as shown in preclinical model [20]. Notably low-density 
granulocyte population comprises human myeloid derived 
suppressor cells that are more commonly characterized, 
as HLADR-, CD33 + and CD11b + , and are a mixture of 
monocytic and granulocytic subpopulations. Polymorpho-
nuclear (PMN) MDSCs are HLA-DR − CD14 −  CD15+ 
or  CD66b+, whereas monocytic (M) MDSC are HLA-DR 
−/low  CD14+  CD15− [21].

The negative impact of immature neutrophils in 
the TME is also metabolic and due to their capacity to 

Fig. 2  Stroma composition determines T-and myeloid-cell infiltra-
tion  in lung adenocarcinoma. Smooth muscle and fibroblast-rich 
stroma is associated to high tumor PD-L1, stromal T-cell infiltra-

tion and low myeloid cells. On the contrary a  stroma rich in myofi-
broblasts and fibroblasts is associated with high myeloid cell infiltra-
tion and low T-cells 
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overcome nutrient limitations and to suppress anti-tumor 
immunity in the glucose deprived TME. These “oxida-
tive neutrophils” are able to maintain NADPH-oxidase 
dependent ROS production in the absence of glucose usage 
through fatty acid dependent mitochondrial function [22].

Extrusion of DNA‑based traps

Immune suppression in not the only way through which neu-
trophils may have an impact on lung cancer spread. Indeed, 
the extrusions of DNA-based traps (NET) have been recently 
suggested to play a relevant role. Whether NET extrusion is 
a feature of mature or immature neutrophils is still debated, 
indeed although NET are formed by mature neutrophils 
as part of their anti-microbial functions some groups have 
reported NET extruded by MDSCs or immature cells [23, 
24].

In 2004 a pathologist was the first is showing that neu-
trophils can extrude spider web-like chromatin structures to 
entrap bacteria, which were called neutrophil extracellular 
traps [25]. Extracellular chromatin is composed by dsDNA 
and histones also decorated with anti-microbial proteins 
like myeloperoxidase (MPO) and neutrophil elastase [25]. 
After their discovering, several types of innate immune 
cells have also been reported to extrude their DNA, the list 
includes eosinophils [26] macrophages [27], mast cells [28] 
but also cells of the adaptive arm of the immune system 
like B-cells [29] and CD4 T-helper cells [30]. NET play a 
direct pathogenic role in promoting tissue damages [31] and 
auto (ANCA)-antibodies development in systemic vasculitis 
[32] and lupus erythematous [33]. Many different papers are 
now describing NET in the context of cancer [34–36]. Using 
murine models of TNBC, Park et al. showed that NET stimu-
late invasion and migration of breast cancer cells. Inhibit-
ing NET formation or digesting NET with DNAse I in vivo 
reduced lung metastasis [37]. Using pre-clinical murine 
models of lung and colon cancer in combination with intra-
vital video microscopy, Rayes and coll. showed that NET 
functionally regulate disease progression and that blocking 
NETosis through multiple strategies significantly inhibits 
spontaneous metastasis to the lung and liver [38]. Similarly, 
Najmeh using the A549 lung cancer cell line showed that 
NET facilitate liver metastasis through 1 integrin mediated 
adhesion to tumor cells [39]. Furthermore, NET induced 
in the lung by tobacco smoke exposure or nasal instillation 
of LPS awaken dormant cancer cells and convert them into 
growing metastases [40]. In an interesting paper Cools-Lar-
tigue and coll. correlated infection conditions with micro-
vascular NET deposition and the consequent pro-metastatic 
trapping of circulating lung carcinoma cells [41]. Whether a 
local infection, which is a frequent condition in lung cancer 
patients, could influence neutrophil trap formation in the 
lung and tumor growth is unclear. When tested in vitro upon 

PMA stimulation, neutrophils from healthy and LC patients 
had the same capacity to extrude NET [42]. Therefore, it is 
likely that tumor-specific conditions (i.e. cytokine produc-
tion) or local infections or hypoxia [43] can impact on NET 
extrusion and therefore on cancer progression.

Mechanisms underlying myeloid cell 
heterogeneity in lung cancer

Within NSCLCs, lung adenocarcinoma is characterized by 
high mutational diversity [44] also associated with high 
stroma cell variability. Indeed, driver mutations might pro-
mote tumor-intrinsic pathway activating specific immune 
infiltration and local immune suppression [45]. The activa-
tion of Myc in KRAS-G12D mutant mice, promotes tumor 
aggressiveness through the recruitment of macrophages and 
the reduction of T and B-cells infiltration via CCL9 and 
IL23, respectively [46]. KRAS or HRAS mutants increase 
the stability of PDL1mRNA via MEK activation and induce 
PDL1 expression through phosphorylated ERK (pERK) 
signaling [47]. Similarly, in EGFR mutant the activation of 
pERK pathways upregulated PDL1 expression and therefore 
immune suppression [48]. The additional loss of the tumor 
suppressor LKB1 in KRAS-mutant mouse tumors is asso-
ciated with increased accumulation of immunosuppressive 
neutrophils, exhausted T cells, increased pro- inflammatory 
cytokines, including interleukin-6 (IL-6), decreased PDL1 
expression and reduction of IFN + T-cells [49].

Finally, in addition to the known driving mutations 
that might impact on immune infiltration, multi-omics 
approaches applied to multiple loci, showed another level of 
complexity due to the existence of heterogeneous mutations 
leading to immunological hot and cold areas, within a single 
tumor [50]. Interestingly such increased antigenicity did not 
correlate with T-cell cytotoxicity that was rather decreased 
through a feedback loop resulting in the local recruitment of 
immune suppressive cells.

Myeloid cells in response to immune 
checkpoint inhibitors (ICI) in lung cancer

ICI have changed fundamentally the treatment paradigm 
of NSCLC patients. Anti-PD-1/PD-L1 agents have shown 
improved responses and survival benefit when given as 
single agent or in combination with either chemotherapy 
or anti-CTLA4, in first line setting [51]. However, pro-
gression rate with anti-PD-1/PD-L1 in combination with 
chemotherapy or anti-CTLA4 is 15% [52, 53] and may rise 
to 40% [54] in patients treated with a single agent either 
PD-1 or PD-L1 inhibitor. In addition, HPD upon ICI has 
been reported between 13.8% [55] and up to 37% [56] of 
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NSCLC suggesting that specific adaptive [57] or innate 
[7] immune cells may predispose a subgroup of patients 
to increased tumor growth upon PD-1/PD-L1 inhibitors. 
Myeloid cells are able to sustain cancer stem cells [58] to 
promote immune evasion as well as to induce resistance 
to systemic treatment. Circulating neutrophils and mono-
cytes have been associated with lack of benefit from ICI 
in advanced NSCLC patients [59]. Absolute neutrophils 
count (ANC), neutrophil to lymphocyte ratio (NLR) and 
derived neutrophil lymphocytes ratio (dNLR) correlate 
with cancer associated inflammation, and are considered 
active players of disease progression and poor survival in 
several solid tumors. Baseline ANC ≥ 7500/µL correlates 
with worse overall survival (OS) [hazard ratio (HR) = 3.46, 
p = 0.03] and progression free survival (PFS) (HR = 3.97, 
p = 0.001) in advanced NSCLC patients treated with 
nivolumab [60]. Similarly, both pretreatment NLR ≥ 5 [61] 
and the dynamic monitoring of the ratio between pre and 
post anti-PD1 treatment NLR [62] significantly correlate 
with worse survival outcomes (HR = 1.43, p = 0.04) upon 
nivolumab. dNLR [absolute neutrophil count/(white blood 
cell count-absolute neutrophil count)] may be more rel-
evant than NLR because it includes monocytes and other 
granulocyte subpopulations. dNLR has been associated 
to worse OS (HR = 1.70, p < 0.001) in advanced NSCLC 
treated with ICI but not with chemotherapy [63]. Further-
more, dNLR > 4 significantly correlates with HPD upon 
ICI in a retrospective series of NSCLC patients [64]. 
Considering these results, NLR and/or dNLR have been 
included in several indexes and prognostic models and 
represent useful tools to stratify NSCLC patients’ risk of 
progression before ICI initiation [65] [66]. Despite most 
of the current evidences on circulating neutrophils has 
been reported regarding ICI treated patients, dNLR has 
been described as a poor prognostic factor also in NSCLC 
patients treated with cytotoxic chemotherapy [67, 68] or 
tyrosine kinase inhibitors [68], suggesting that cancer 
related inflammation reflected by circulating myeloid 
parameters is associated with worse survival regardless 
of treatment type.

Absolute monocytes count (AMC) and lymphocyte to 
monocyte ratio (LMR) have also been associated with 
worse outcome upon anti-PD-1/PD-L1 agents in NSCLC 
patients. In fact, post-nivolumab AMC was higher in non-
responders compared to responders [69], similarly, high 
baseline LMR was a good predictor of response in NSCLC 
patients upon nivolumab.

Besides blood parameters, a more detailed analysis of 
myeloid cell subpopulations by flow cytometry is of para-
mount significance to characterize the mechanisms beyond 
ICI resistance. In this regard, immature neutrophils identi-
fied by FACS through the lack of CD10 and CD16 [70] 

or CD15 + CD16- [71] immature neutrophils were both 
associated with rapid progression upon ICI in advanced 
NSCLC patients.

Circulating human MDSCs have also been correlated 
with poor prognosis upon ICI. Human MDSCs express 
markers of myeloid lineage, as CD33 and CD11b, and 
are a mixture of monocytic and granulocytic subpopu-
lations. Polymorphonuclear (PMN) MDSCs are HLA-
DR−  CD14−  CD15+ or  CD66b+, whereas monocytic (M) 
MDSC are HLA-DR−/low  CD14+  CD15− [21]. Early accu-
mulation of M-MDSC expressing the immunomodulatory 
galectin-9 was related to primary and secondary resistance 
to nivolumab in metastatic NSCLC patients through the 
impairment of IFN-y secretion by CD8 + T cells [72]. Sim-
ilarly, PMN-MDSCs expressing lectin-type oxidized LDL 
receptor (Lox-1) or high levels of chemokine and soluble 
factors capable of MDSC recruitment and proliferation 
were significantly higher in NSCLC with no response to 
nivolumab therapy [73].

Future studies in search of myeloid circulating biomark-
ers predicting response to ICI will consider the immuno-
metabolic features of innate immune cells. In this regard, 
circulating neutrophils with an immature phenotype are 
capable of oxidative metabolism and of inducing T-cell 
immune suppression through radical oxygen species 
(ROS) production [22].

Although most biomarkers of response to ICI treat-
ment on tissue samples were related to adaptive immune 
compartment, a recent retrospective analysis has shown an 
epigenetic signature, called EPIMMUNE, which correlates 
with PFS in advanced NSCLC patients treated with anti-
PD1 agents. In particular, EPIMMUNE negative tumors 
were enriched in macrophages and neutrophils and were 
prevalent among non-responders, on the contrary, EPIM-
MUNE positive biopsies were infiltrated by lymphocytes 
and were more frequent among responders [74]. However, 
some subtypes of myeloid cells commonly promote antitu-
mor immunity, as observed for a M1 macrophages whose 
signature has been associated with durable clinical benefit 
upon anti-PD1 in NSCLC patients [75]. Similarly, PD-1/
PD-L1 axis on macrophages can induce a non-inflamma-
tory non-phagocytic state that could be reversed by anti-
PD-1/PD-L1 agents [76]. These findings suggest that non 
only T-lymphocytes but also myeloid cells are directly 
affected by ICI.

As for circulating biomarkers, a comprehensive char-
acterization tumor infiltrating myeloid cells by multipara-
metric flow cytometry, multidimensional IHC or single 
cell RNA sequencing are urgently needed to provide new 
and in deep knowledge on the role of innate immunity in 
shaping response to ICI in NSCLC patients.
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Targeting myeloid cells in lung cancer

Given the impact of myeloid cells on the response to 
immunotherapy in lung cancer, testing chemokine and 
cytokine pathways involved into the recruitment and main-
tenance of these immunosuppressive cells might offer new 
hints to design new drug combinations with ICI.

Tumor associated macrophages (TAM) and MDSC 
remain the preferential target for this approach [77]. In 
fact, although potentially promising, neutrophil target-
ing strategies may have limited clinical application. As 
an example, depleting neutrophils may increase the risk 
of severe infections, on the other hand, reprogramming 
neutrophil functions from pro-tumor to antitumor may be 
associated with increased inflammation and tissue damage 
[78]. Different preclinical mouse models have tested the 
possibility of targeting MDSCs. In the 3LL model, gem-
citabine, cimetidine and anti-Ly6G Ab depleted MDSC 
recruitment hampering tumor growth, while increas-
ing NK and CD8 T cell activity. Resveratrol or CCL2 
antagonists were effective in reducing both recruitment 
and immune suppressive function of MDSC in the 3LL 
model (reviewed in [79]). On the same line Merad and 
coll. used single-cell RNAseq and mass spectrometry to 
identify chemokine and cytokine pathways involved in the 
recruitment and maintenance of MDSCs, validated the rel-
evance of these pathways in preclinical studies and are 
now designing a neoadjuvant “window-of-opportunity” 
trial to evaluate the synergy of PD-1 blockade with disrup-
tion of CCR2/5 or interleukin-8 mediated myeloid recruit-
ment in early-stage NSCLC lesions [80].

Chemotherapy has the potential to eliminate myeloid 
cells and their detrimental effect during ICI treatment. 
Indeed, preclinical data obtained using 5-FU and gem-
citabine in preclinical mouse models have shown a posi-
tive effect of these chemotherapeutic agents in inducing 
MDSC apoptosis. However, other compounds, such as 
doxorubicin or high-dose cyclophosphamide, have been 
shown to increased MDSC number and suppressive activ-
ity. Ding et al. showed that cyclophosphamide promotes 
the expansion of suppressive monocytic MDSC [81]. This 
event was the result of a feedback regulatory loop aiming 
at restoring myeloid cell level, after the initial depletion 
induced by chemotherapy, and to inhibit the inflamma-
tory condition elicited by chemotherapy. Therefore after 
an initial “reset” of the tumor microenvironment, chemo-
therapy-induced inflammatory responses may re-enforce 
MDSC recruitment and suppressive functions and worsen 
the therapeutic outcome.

Besides chemotherapy also antiangiogenic drugs influ-
ence myeloid cell functions. In a clinical trial on stage IV 
NSCLC patients with EGFR mutation, Bevacizumab was 

effective in controlling intracranial lesions when used in 
combination with TKI inhibitors. The analysis of myeloid 
and T cells showed that such combination was effective in 
reducing the level of circulating S100A9 + MDSCs while 
increasing CD8 and Th1 signatures [82]. A similar study 
in NSCLC patients by Koinis F. et al. showed that bev-
acizumab-based chemotherapy significantly reduced the 
levels of granulocytic MDSCs [83]. However, an increase 
in the levels of CD15-positive monocytic MDSCs was 
associated with poor response to treatment and disease 
progression.

Although TAMs are a promising target in the treatment 
of lung cancer, no drugs have been used so far in patients.

Differently selective macrophages targeting agents are 
currently being tested in several cancer types. MARCO 
and CSF1/CSF1R axis are other promising targets able to 
reprogram or inhibit TAM recruitment within the TME in 
different solid tumor models [84] and preliminary results 
of the anti-CSFR1 antibody cabiralizumab and nivolumab 
have been reported in PDAC patients [85]. However, 
CSF1R inhibition is an example of compensatory immune 
crosstalk as a mechanism of resistance to immune target-
ing agents. In fact, CSF1R is highly expressed also by can-
cer associated fibroblasts and its blockade on these cells 
induce a significant MDSC and neutrophils recruitment 
within the tumor site limiting antitumor responses. Triple 
blockade with CSFR-1 inhibitors, anti -PD1 agents and 
CXCR2 antagonist can bypass this crosstalk and inhibit 
tumor growth in preclinical models [86]. Similarly, dual 
targeting of CXCR2 + neutrophils and CCR2 + TAM 
increased antitumor immunity and response to cytotoxic 
chemotherapy in PDAC models [87] suggesting that 
double or triple blockade may counteract compensatory 
immunological bypass tracks.

A possible warning on strategies aiming to block 
TAM recruitment comes  from data showing a possible 
detrimental rebound after CCL2 blockade. Bonapace et 
al. showed in mice that CCL2 blockade was effective in 
reducing TAM and limiting tumor growth however cessa-
tion of the therapy stimulates their quick rebound within 
the tumors leading to accelerated metastatic disease also 
promoting angiogenesis [88]. Overall these data suggest 
that eliminating or decreasing macrophages/myeloid cells 
could not be a rational approach if leading to a rebound 
effect. By contrast, ‘reeducating’ macrophages could be 
preferred as a strategic approach to improve immunother-
apy [89].
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Author Contribution SS, RF &MPC wrote the review, CT selected 
images and assembled the Figure, MG reviewed the manuscript.
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