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ABSTRACT: Methane fluxes (FCH4) vary significantly across
wetland ecosystems due to complex mechanisms, challenging
accurate estimations. The interactions among environmental
drivers, while crucial in regulating FCH4, have not been well
understood. Here, the interactive effects of six environmental
drivers on FCH4 were first analyzed using 396,322 half-hourly
measurements from 22 sites across various wetland types and
climate zones. Results reveal that soil temperature, latent heat
turbulent flux, and ecosystem respiration primarily exerted direct
effects on FCH4, while air temperature and gross primary
productivity mainly exerted indirect effects by interacting with
other drivers. Significant spatial variability in FCH4 regulatory
mechanisms was highlighted, with different drivers demonstrated
varying direct, indirect, and total effects among sites. This spatial variability was then linked to site-specific annual-average air
temperature (17.7%) and water table (9.0%) conditions, allowing the categorization of CH4 sources into four groups with identified
critical drivers. An improved estimation approach using a random forest model with three critical drivers was consequently proposed,
offering accurate FCH4 predictions with fewer input requirements. By explicitly accounting for environmental interactions and
interpreting spatial variability, this study enhances our understanding of the mechanisms regulating CH4 emissions, contributing to
more efficient modeling and estimation of wetland FCH4.
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1. INTRODUCTION
Methane (CH4) is the second-largest contributor to global
radiative forcing from greenhouse gases after carbon dioxide
(CO2). The 100-year global warming potential of CH4 is 27−
30 times higher than that of CO2.

1 In 2022, CH4 accounted for
19% (0.650 W m−2) of the total radiative forcing, according to
the NOAA Annual Greenhouse Gas Index (https://gml.noaa.
gov/aggi/aggi.html). Wetlands are the largest natural source of
CH4, responsible for about 20−30% of the global total CH4
emissions.2,3 Currently, there is a significant uncertainty (23−
54%, based on top-down or bottom-up model ensembles) in
estimating CH4 contributions from natural wetlands,3,4

preventing the closure of CH4 budget at regional-to-global
scales. Improving the estimation of wetland CH4 fluxes
(FCH4) will help more accurately attribute CH4 sources and
effectively mitigate emissions, ultimately contributing to the
goal of limiting global warming. Nevertheless, there exist severe
challenges that hinder the accurate estimation of global
wetland FCH4, with one of the most prominent being our
unclear understanding of the complex mechanisms regulating
CH4 emissions at ecosystem scale.5

Wetland CH4 emissions are the net result of CH4
production, consumption, and transportation, all of which
are regulated by multiple environmental factors.2 CH4
production in wetlands is primarily an anaerobic process
performed by methanogens, which convert organic matter into
CH4.

6 The production rate is controlled by drivers including
temperature, substrate availability, redox potential, and soil pH,
which affect methanogen activity by regulating environmental
conditions and food sources.7−10 Once produced, CH4 can be
transported from the soil to the atmosphere via diffusion,
ebullition, or plant aerenchyma transport.11,12 These pathways
are influenced by factors such as temperature, water depth,
atmospheric pressure, turbulent conditions, and the type and
density of vegetation, which determine the primary transport
pathway and its rate.13−16 During transportation, CH4 can be
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consumed through both aerobic and anaerobic oxidation.17,18

Critical drivers for these processes include oxygen availability,
soil moisture, electron acceptors, microbial communities,
temperature, and pH.2,7,19,20 These factors collectively
influence the activity of aerobic and anaerobic methanotrophs,
thereby determining the efficiency and extent of CH4 oxidation
before it reaches the atmosphere.
The complexity of CH4 regulatory mechanisms is evident

not only in the multitude of potential environmental
drivers,21,22 but more importantly, in their complicated
interactions. For example, air temperature (TA) could have a
confounding effect when assessing the influence of soil

temperature (TS), soil moisture, and plant productivity, as
TA affects all these variables.23−25 Meanwhile, soil moisture
can influence both TS23 and plant productivity.26 These
interactions suggest the possibility of indirect effects of
environmental factors on CH4 emissions, which may play a
comparable or even more significant role than direct effects.
Previous studies, however, have not adequately explored these
interactions, largely due to the inherent limitation of statistical
methods such as correlation analysis, regression analysis,
generalized additive modeling, and mutual information.
These methods often fall short in explicitly accounting for
the interdependencies and interactions among the driv-

Figure 1. (a) Locations and wetland types of the 22 EC sites across different Köppen climate zones. (b) Annual-average meteorological and water
table conditions of different types of wetlands. The values for each site were calculated by averaging daily measurements over one or more complete
years. The white central marks, white dots, and the bottom and top end points of diamond boxes indicate the median, average, and the 25th and
75th percentiles, respectively. The whiskers extend up and down to the data points with maximum and minimum values. Outliers exceeding 1.5
times the interquartile range are labeled. SW-IN, incoming shortwave radiation; NETRAD, net radiation; TA, air temperature; P, precipitation;
WTD, water table depth; WS, wind speed.
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ers.22,27−29 Therefore, a study addressing this limitation is
critically needed to reveal deeper connections between
potential drivers and CH4 emissions, leading to new insights
that enhance the estimation of global wetland FCH4.
The complexity of CH4 regulatory mechanisms is also

reflected in its notable spatial variability, which has been clearly
observed in many previous studies based on global synthesis of
eddy covariance (EC) measurements. For instance, Knox et
al.14,27 found that TA and TS were the strongest predictors of
FCH4 globally. However, water table depth (WTD) became
more important when focusing on wetland sites with
nonconsistent inundation or small temperature variations.
Additionally, Chang et al.30 demonstrated that the relationship
between FCH4 and TA varies significantly among sites even
within the same wetland type. Similarly, Yuan et al.31 and
Delwiche et al.32 revealed that CH4 emissions were more
sensitive to temperature in cooler regions compared to warmer
ones. These findings highlight the challenge of developing
universally applicable CH4 models without a clear under-
standing of the spatial variability of CH4 regulatory

mechanisms. A deeper investigation into this aspect could
thus offer valuable insights essential for refining CH4 models
and improving global estimates. Regrettably, current research
lacks statistical evidence needed to explain which factors
primarily lead to this spatial variability and how much they
contributed.
In this study, we incorporated half-hourly FCH4 measure-

ments from 22 EC sites (Figure 1), covering four freshwater
wetland types (i.e., bog, fen, marsh, and swamp) and three
Köppen climate zones (i.e., continental, temperate, and
tropical), to construct comprehensive data sets. We utilized
structural equation modeling (SEM) to quantitatively assess
the interactive effects of six primary environmental drivers (i.e.,
TA, WTD, TS, gross primary productivity (GPP), latent heat
turbulent flux (LE), and ecosystem respiration (RECO)) on
FCH4. SEM is a powerful method for elucidating inter-
dependencies among environmental drivers and has been
widely adopted in previous studies on gas flux dynamics in
natural ecosystems.33−35 Despite potential limitations in
analyzing autocorrelated time-series data, the application of

Figure 2. (a) SEM model built based on the interactions between environmental drivers and methane fluxes. The red arrows indicate the direct
effect of environmental drivers on methane flux, and the blue arrows indicate the interactions among environmental drivers. (b) Schematic diagram
showing the purposes of SEM and RDA analyses. (c) Schematic diagram showing the differences between various RF modeling strategies and their
respective purposes. TA, air temperature; WTD, water table depth; TS, soil temperature; GPP, gross primary productivity; LE, latent heat turbulent
flux; RECO, ecosystem respiration; FCH4, methane turbulent flux; SW-IN, incoming shortwave radiation; NETRAD, net radiation; P,
precipitation; WS, wind speed.
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SEM in our study would be instrumental in uncovering the
deeper mechanisms driving FCH4. Additionally, we used
redundancy analysis (RDA) to statistically interpret the spatial
variations in the dominant drivers of FCH4. Building on the
RDA findings, we introduced a novel approach integrating
principal component analysis (PCA) to categorize CH4
sources and using three dominant drivers to accurately
estimate FCH4. Finally, we employed random forest (RF)
models to test the effectiveness of our categorization approach
and the reliability of the identified dominant drivers.
We hypothesize that the dominant drivers of FCH4 vary

across sites with different meteorological and water table
conditions, and accounting for such spatial variability when
building CH4 models can enhance our ability to estimate and
predict wetland FCH4. Overall, our study aims to (i)
investigate how environmental drivers interactively affect
FCH4, (ii) explain why and how the dominant drivers of
FCH4 vary across sites, and (iii) test whether the dominant
drivers identified for each site category can effectively replace
six drivers in predicting wetland FCH4.

2. MATERIALS AND METHODS
2.1. Data Set and Site Description. The data set used in

this study is from the FLUXNET-CH4, a synthesis activity led
by the Global Carbon Project, which compiles and stand-
ardizes global EC FCH4 measurements via the regional
networks of AmeriFlux, EuroFlux, AsiaFlux, and OzFlux.14,32

The EC technique is a promising method for providing high-
quality data stream, demonstrating advantages of ecosystem-
scale capabilities, noninvasive monitoring, quasi-continuous
data collection, and high-frequency sampling.13

We focused on four major types of natural freshwater
wetlands (bog, fen, marsh, and swamp), and selected 22 sites
(Figure 1a), each with data for all six environmental drivers
studied and at least one full year of FCH4 measurements. The
sites were classified based on the site-specific literature32

(Table S1). Half-hourly FCH4 and six environmental drivers
were considered in this study: TA, WTD, TS, GPP, LE, and
RECO. The negative and positive values of WTD indicate
water levels below and above the soil surface, respectively.
When more than one TS observations are available, we used
the average of all observations measured within the upper 20
cm of the soil (see Delwiche et al.32 for detailed TS probe
depth), which has been typically demonstrated as the active
layer for CH4 production.

36−38 The raw half-hourly data were
used since they preserve the original dynamic patterns without
any artificial gap-filling and have the finest temporal resolution.
The six environmental drivers were selected due to their
relatively strong control over FCH4 as analyzed in previous
studies.27,31 Data rows with missing values were deleted. The
annual-average meteorological and water table conditions of
each site, calculated as the average of daily values across one or
more full years, are presented in Figure 1b and Table S1.

2.2. Structural Equation Modeling. SEM was employed
to explicitly quantify the interactive effects of six environmental
drivers on FCH4 at 22 wetland sites (Figure 2b). SEM is a
multivariate approach capable of representing hypotheses
about complex networks and multiple causality.39,40 Based on
biogeochemical knowledge, an SEM model showing the
relational network (pathways) of selected variables was built
(Figure 2a). The biogeochemical basis and corresponding
literature supporting each pathway are provided in Table S2.
The model happened to be saturated, rendering fit indices

irrelevant, with only the path coefficients mattering. In the
model, direct effect was defined as those influences
unmediated by any other variable, indirect effect was defined
as those influences mediated by at least one intervening
variable, and total effect was defined as the sum of direct and
indirect effects.41 The same model was applied separately to
each of the 22 sites using IBM SPSS AMOS software (v24.0.0),
and corresponding standardized direct, indirect, and total
effects were obtained (Figures 3a, S1 and Table S3). To further
attribute the indirect effect of TA to different pathways, PEIVi
(proportional distribution of the indirect effect of TA in the IVi
pathway) was calculated using the following equation

E E

E E
PE (%) 100%

i
IV

di TA IV tot IV FCH

1
5

di TA IV tot IV FCH
i

i i

i i

4

4

=
| × |

| × |
×_ _ _ _

= _ _ _ _ (1)

where Edi TA IVi_ _ is the direct effect of TA on intervening
variable IVi, and Etot IV FCHi 4_ _ is the total effect of IVi on FCH4. i
ranges from 1 to 5, and IV1, IV2, IV3, IV4, and IV5 indicate
WTD, TS, GPP, LE, and RECO, respectively. The results are
presented in Figure 3c and Table S4.

2.3. One-Way Analysis of Variance. One-way analysis of
variance (one-way ANOVA) was employed to test differences
among the direct, indirect, and total effects of the same
environmental driver, as well as differences among environ-
mental drivers within the same type of effect, and differences
among portioned effects in different pathways. Standard P <
0.05 criterion and Dunnett’s T3 post hoc analysis were
employed.

2.4. Redundancy Analysis. RDA was used to elucidate
the variations in mechanisms regulating CH4 emissions across
different sites (Figure 2b). RDA, a multivariate and con-
strained ordination technique, provides valuable insights into
the extent to which changes in the independent variables
account for the variations in the dependent variables.42 The
standardized effects listed in Table S3, along with the annual-
average conditions provided in Table S1, were respectively
chosen as the dependent and independent variables for
performing RDA using Canoco 5 software. The standardized
effects were transformed into absolute values before analysis to
capture the strength of the effects rather than their direction.
The results are presented as an ordination plot and a
summarized conditional effects table (Figure 5 and Table
S5). Conditional effects in this context denote the contribu-
tions of individual independent variables in explaining the
observed variation in the dependent variables, while consid-
ering the influence of other independent.43

2.5. Principal Component Analysis. PCA was employed
for the categorization of all wetland sites based on their annual-
average air temperature (aa-TA) and annual-average water
table depth (aa-WTD). PCA is a statistical technique that
reduces data dimensionality by capturing the primary patterns
as uncorrelated variables known as principal components.
Typically, the first two principal components are used for two-
dimensional data visualization, allowing the visual identifica-
tion of clusters of data points exhibiting similar character-
istics.44 Detailed reasons for selecting PCA as site catego-
rization method are provided in the Supporting Information.
Here, PCA was conducted on the aa-TA and aa-WTD data of
22 sites using Canoco 5 software. According to the areas
divided by the arrows representing aa-TA and aa-WTD (Figure
6a), the 22 sites were then categorized into four scenarios:
scenario A (sites with high aa-TA and high aa-WTD), scenario
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B (sites with high aa-TA and low aa-WTD), scenario C (sites
with low aa-TA and high aa-WTD), and scenario D (sites with
low aa-TA and low aa-WTD). Additionally, the range of each
region was defined based on the extreme values of aa-TA and
aa-WTD within the corresponding scenario (Figure 6b),
hypothesizing that sites falling within the same region exhibit
similar underlying mechanisms regulating CH4 emissions.

2.6. Random Forest. RF was used to test the reliability of
the dominant drivers identified for each site category and
whether they could effectively substitute for the six drivers in
predicting FCH4. RF is an ensemble machine learning model
that combines multiple decision trees to make predictions,
showing advantages of robustness, versatility, and interpret-
ability.45 In this study, FCH4 was modeled separately for each
scenario through three distinct input strategies (Figure 2c):
employing all six environmental drivers, focusing on three
dominant drivers (as detailed in Figure 6b), or utilizing three
dominant drivers with TA substituting TS. RF modeling was
carried out using Python (v3.7.6). Prior to model training, the
original data set was shuffled using the “shuffle” function from
the “sklearn.utils” module to introduce greater randomness
into the subsequent data set division, thus improving the

generalization performance of the model. The data set was
then randomly divided into a training set (80%) and a test set
(20%). RF regressor was trained with the training set, and the
model hyperparameters were fine-tuned using “GridSearchCV”
with 5-fold cross-validation. The hyperparameter “n_estima-
tors” was tuned within the range of [1, 200], while
“min_samples_leaf” was tuned within [1, 10]. Additionally,
“max_depth” was set to 50, “random_state” was set to 0, and
default values were maintained for other hyperparameters.
Description of each hyperparameter in RF modeling and the
fine-tuned hyperparameters are provided respectively in Tables
S6 and S7. The “RandomForestRegressor” was imported from
the “sklearn.ensemble” package, while the “GridSearchCV”
functionality was imported from the “sklearn.model_selection”
package. Following training and validation, the generalization
ability of the RF model was assessed using the test set by
computing the R2, RMSE, NRMSE, MAE, and NMAE scores
(Figure 7a and Table S7). In the case of a data set comprising
n samples, the R2, RMSE, NRMSE, MAE, and NMAE scores
were determined as follows

Figure 3. (a) Heatmap showing the standardized direct, indirect, and total effects of environmental drivers on methane fluxes across 22 EC sites.
Specific values are provided in Table S3. (b) Statistical analysis of the standardized effects (n = 22). Error bars represent mean ±95% confidence
interval of standardized effects. Different capital letters indicate significant differences (P < 0.05) among environmental drivers under the same type
of effect. Different lowercase letters indicate significant differences (P < 0.05) among the direct, indirect, and total effects of the same environmental
driver. (c) Proportional distribution (%) of the indirect effect of air temperature on methane fluxes in different pathways across 22 EC sites
(Materials and Methods). Specific values are provided in Table S4. (d) Statistical analysis of the portioned effects (n = 22). Error bars represent
mean ±95% confidence interval of portioned effects. Different lowercase letters indicate significant differences (P < 0.05) among pathways. TA, air
temperature; WTD, water table depth; TS, soil temperature; GPP, gross primary productivity; LE, latent heat turbulent flux; RECO, ecosystem
respiration.
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where yi is the measured value, yi is the predicted value, y is
the mean of measured values.
The importance of different inputs in the 6-input models

was analyzed using the “feature_importances_” attribute, and
corresponding outcomes are presented in Figure 7b. Addition-
ally, the partial dependence plots (PDP) and accumulated local
effects (ALE) were generated for the 6-input models using the
“partial_dependence” function from the “sklearn.inspection”
package and the “ALE” function from the “alibi.explainers”
package. These plots are presented in Figures S3 and S4,
respectively.

3. RESULTS
3.1. General Regulatory Mechanisms of Wetland CH4

Emissions. For each of the 22 wetland sites, we systematically
assessed the direct effects (i.e., those unmediated by any other
variable), indirect effects (i.e., those mediated by at least one
intervening variable), and total effects (i.e., the sum of direct
and indirect effects) of environmental drivers on FCH4. This
analysis was conducted using a SEM model (Figure 2a), which
was constructed based on established biogeochemical knowl-
edge (Materials and Methods). Detailed results for each site
can be found in Figure S1. The SEM model offered the best
explanation for marshes, achieving an average R2 of 0.52. This
was followed by fens, bogs, and swamps, with average R2 of
0.49, 0.36, and 0.18, respectively. The SEM results are visually
represented in a heatmap (Figure 3a) and subjected to
statistical analysis (Figure 3b).
Overall, our results reveal a generally positive total effect of

various environmental drivers on FCH4, suggesting the
potential for increased levels of TA, TS, WTD, GPP, LE,
and RECO to enhance FCH4. However, we also observed
negative direct effects for TA and GPP, along with a negative
indirect effect for WTD. When comparing the different types
of effect of the same environmental driver over all sites
(indicated by the lowercase letters in Figure 3b), TS, LE, and
RECO were found to have a greater direct effect, whereas TA
and GPP exerted a more indirect influence. Additionally, when

Figure 4. Comparison of the standardized effects of environmental drivers on methane fluxes among different wetland types and Köppen climate
zones. The number of sites (n) included in each category is as follows: bog = 5, fen = 7, marsh = 7, swamp = 3; continental = 12, temperate = 7,
tropical = 3. Error bars represent mean ±95% confidence interval of standardized effects. Specific values are only shown for the columns with a
height ≥10% of the total height of stacked columns. TA, air temperature; WTD, water table depth; TS, soil temperature; GPP, gross primary
productivity; LE, latent heat turbulent flux; RECO, ecosystem respiration.
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examining the effects of different environmental drivers within
the same type of effect (indicated by the capital letters in
Figure 3b), TS emerged as the dominant factor in terms of
direct effect, whereas TA played a dominant role in terms of
indirect effect. Remarkably, among all environmental drivers,
both TA and TS demonstrated significantly higher total effects,
nearing 0.42, while the effect of WTD ranked the bottom.
In order to elucidate the underlying source of the indirect

effect of TA on FCH4, an effect distribution analysis was
conducted for each wetland site individually (Materials and
Methods). The corresponding results are depicted in Figure 3c
and subjected to statistical analysis, as shown in Figure 3d.
Notably, a clear trend emerged, indicating that a significant
portion of the indirect effect was attributed to the TS pathway
(47.84%), surpassing the proportions assigned to the WTD
(7.97%), GPP (11.65%), LE (17.78%), and RECO (14.76%)
pathways. This suggests that the indirect effect of TA primarily
originates from its influence on TS, thereby providing further
evidence for the crucial role played by TS in regulating FCH4
from wetlands. Overall, our findings highlight the significant
potential of employing TS instead of WTD as the primary
factor in modeling or estimating wetland CH4 emissions.

3.2. Variations in Regulatory Mechanisms Across
Sites. Although the mechanisms regulating CH4 emissions at
the 22 wetland sites exhibited clear general patterns, variations
were still observed among the sites, as indicated by the error
bars from the statistical analysis in Figure 3b,d. To account for
these variations, we categorized the sites based on wetland type
and Köppen climate zone, enabling us to compare the
differences in the mechanisms regulating CH4 emissions
among the respective groups (Figure 4). Among the
investigated wetland types, bogs, fens, and marshes showed a
similar pattern, which demonstrated TA and TS as the
dominant drivers, with total effects ranging from 0.342 to
0.559. Meanwhile, RECO played a secondary role, with total
effects ranging from 0.203 to 0.256. The only difference
observed was a slightly greater significance of LE in marshes
compared to bogs and fens. In contrast, swamps displayed a
distinct pattern, where WTD and LE exerted stronger total
effects of 0.253 and 0.300, respectively, while the effects of TA
and TS were less prominent. Furthermore, the effect of RECO
in swamps was notably weaker (<0.01) compared to the other
three types of wetlands.
When comparing different Köppen climate zones, clearer

trends were observed. The effects of TA, TS, and RECO
displayed a consistent decrease from continental to temperate
and then tropical zones, while the effects of WTD and LE
followed the opposite trend (Figure 4). Specifically, the
standardized total effect (absolute value) of TA and TS
declined from >0.50 in the continental zone to <0.10 in the
tropical zone. Similarly, the effect of RECO decreased from
approximately 0.24 in the continental zone to <0.10 in the
tropical zone. In contrast, the effects of WTD and LE increased
from <0.10 in the continental zone to >0.25 in the tropical
zone. Based on the observed variations, it can be inferred that
the mechanism regulating CH4 emissions is influenced by the
natural conditions, such as mean annual temperature and
precipitation, of the specific wetland site.

3.3. Site-Specific Temperature and Water Table
Dependence of CH4 Regulatory Mechanisms. RDA was
employed to identify the specific natural conditions influencing
the regulatory mechanisms of CH4 emissions. The stand-
ardized effects of environmental drivers (refer to Figure 3a and

Table S3) were correlated with the annual-average meteoro-
logical and water table conditions of specific sites (refer to
Figure 1b and Table S1) (Materials and Methods). These
conditions include incoming shortwave radiation (SW-IN), net
radiation (NETRAD), TA, precipitation (P), WTD, and wind
speed (WS). Based on the conditional explaining quantity
presented in Figure 5, it became evident that the aa-TA
(17.7%, P < 0.01) and aa-WTD (9.0%, P < 0.10) played crucial
roles in influencing the relative significance of environmental
drivers in regulating CH4 emissions, which outweighed the
influence of SW-IN (4.3%), NETRAD (1.4%), P (2.0%), and
WS (6.6%). When considered together, aa-TA and aa-WTD
explained 26.7% of the variations in regulatory mechanisms
across the sites. Furthermore, by examining the arrow direction
in Figure 5, we observed that the aa-TA was positively
correlated with the direct and total effects of WTD and LE,
while negatively correlated with the indirect and total effects of
TA and GPP, as well as the direct and total effects of TS and
RECO. This aligns with the variation trends observed across
different climate zones (Figure 4). In contrast, aa-WTD
exhibited positive correlations with the indirect and total
effects of TA and GPP, as well as the direct and total effects of
TS and RECO, while demonstrated negative correlations with
the direct and total effects of WTD and LE. This suggests that
in a specific wetland ecosystem, when one of the critical
conditions, either temperature or water table, is fully satisfied
to provide the necessary energy or create an anoxic
environment for methanogenic activities, it becomes less
important in regulating CH4 emissions, while the remaining
conditions become more important.
Based on these findings, we propose four scenarios to

explore potential changes in the importance of various
environmental drivers in regulating CH4 emissions. These
scenarios are (1) sites with higher aa-TA and aa-WTD; (2)
sites with higher aa-TA but lower aa-WTD; (3) sites with
lower aa-TA but higher aa-WTD; (4) sites with lower aa-TA
and aa-WTD. In scenarios 2 and 3, it is straightforward to
anticipate the changes, as the alterations caused by aa-TA and
aa-WTD occur in the same direction. Specifically, in scenario 2,
WTD and LE would emerge as more influential drivers, while
the effects of TA, TS, RECO, and GPP would gain greater
significance in scenario 3. However, scenario 1 presents a more
complex situation, as the changes caused by aa-TA and aa-
WTD are in different directions. Still, inferences can be drawn
from the approximate correlations indicated by the projected
length in Figure 5. In scenario 1, WTD and RECO, showing
the strongest positive correlation with the aa-TA and aa-WTD,
respectively, would become more significant. Similarly, in
scenario 4, WTD and RECO would play a greater role in
regulating CH4 emissions. These inferences will be applied and
tested in the subsequent section of our study.

3.4. Site Categorization and Random Forest Model-
ing. The CH4 sources were categorized using PCA based on
their aa-TA and aa-WTD conditions. As depicted in Figure 6a,
the 22 wetland sites were divided into four groups,
corresponding to the four scenarios described in the previous
section, by the arrows representing the aa-TA and aa-WTD.
These scenarios disrupt the original classification based on
wetland type (i.e., bogs, fens, marshes, and swamps). In order
to enhance the readability of the PCA results, the 22 sites were
then plotted on a Cartesian coordinate system, considering
their aa-TA and aa-WTD conditions. Subsequently, the
boundaries of each region were determined based on the
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conditions of the most marginal sites within each scenario. The
resulting visualization in Figure 6b exhibits the four regions
distinguished by different colors. We hypothesize that sites
falling into the same region share similar dominant drivers for
FCH4, as indicated in Figure 6b. These drivers were inferred
from Figure 3, which demonstrated the critical role of TS in
regulating FCH4, and Figure 5, which demonstrated the
potential changes in the importance of various drivers in
different scenarios. It is worth noting that despite TA showing
a comparable total effect to TS, it was not considered as a
dominant driver. This decision was based on the under-
standing that TA primarily influenced FCH4 indirectly by
regulating TS. Additionally, there was a strong correlation
observed between TA and TS, as illustrated in Figure S2.
Therefore, if TS has already been chosen as a representative
driver, incorporating TA does not benefit the model
performance. However, from an alternative perspective, a
model incorporating TA offers broader practicality than one
reliant on TS, considering the practical ease of obtaining TA
data compared to TS data.
To test the above hypothesis, RF was employed to model

the FCH4 data for each scenario (Materials and Methods).
These models were developed using three different input
configurations: the full set of six environmental drivers, the
three dominant drivers (Figure 6b), and the three dominant
drivers with TA substituting TS. The comparison between the
measured and predicted FCH4 values in Figure 7a reveals that,
when utilizing all six drivers as inputs, the models developed
for the two scenarios with high aa-WTD (i.e., scenario HTA−
HWTD and LTA−HWTD) demonstrated a good testing
performance (R2 ≈ 0.85). Following this, the LTA−LWTD
scenario (i.e., low aa-TA and aa-WTD) achieved a respectable
R2 of 0.77, while the HTA−LWTD scenario (i.e., high aa-TA
and low aa-WTD) presented the lowest R2 of 0.68.
Remarkably, the feature importance for each scenario (Figure
7b) aligns really well with our theoretically inferred dominant

Figure 5. RDA of the effects of environmental drivers on methane
fluxes and annual-average meteorological and water table conditions.
Each arrow points to the direction of the maximum increase of the
corresponding variable. Acute and obtuse angles between arrows
indicate positive and negative correlations between variables,
respectively. The approximate correlation between two variables can
be read by projecting the length of one arrow onto the direction line
of the other arrow. The number below explanatory variables (TA,
WTD, WS, SW-IN, P, and NETRAD) represents their conditional
explaining quantity (%) for the total variation in response variables
(written in blue font). The asterisks next to the number indicate
significance level (*P < 0.10, ***P < 0.01). GPP, gross primary
productivity; LE, latent heat turbulent flux; NETRAD, net radiation;
P, precipitation; RECO, ecosystem respiration; SW-IN, incoming
shortwave radiation; TA, air temperature; TS, soil temperature; WS,
wind speed; WTD, water table depth; -di, direct effect; -in, indirect
effect; -tot, total effect.

Figure 6. Categorization of all EC sites based on principal components analysis of aa-TA and aa-WTD. (a) PCA results of site-level aa-TA and aa-
WTD. The 22 sites were categorized into four scenarios (indicated by points of different colors and shapes) according to the areas divided by the
arrows representing aa-TA and aa-WTD. (b) The range of regions A, B, C, and D defined by the categorization results in (a) (see details in
Materials and Methods). Region A: high aa-TA and high aa-WTD; region B: high aa-TA and low aa-WTD; region C: low aa-TA and high aa-WTD;
region D: low aa-TA and low aa-WTD. The environmental drivers listed in each region are the key drivers of methane fluxes from sites that fall into
that region. TA, air temperature; WTD, water table depth; TS, soil temperature; GPP, gross primary productivity; LE, latent heat turbulent flux;
RECO, ecosystem respiration.
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drivers. For example, the three dominant drivers identified for
scenarios HTA−HWTD, HTA−LWTD and LTA−HWTD
were also determined by the RF models as the three most
crucial inputs for predicting FCH4. Additionally, the
importance of TS in scenarios with low aa-TA and high aa-
WTD was significantly higher than in those with high aa-TA
and low aa-WTD. Similarly, the importance of WTD in
scenarios with low aa-WTD and high aa-TA was markedly
higher than in those with high aa-WTD and low aa-TA. These

patterns align perfectly with the correlations observed in Figure
5, strongly supporting our hypothesis regarding the potential
shifts in CH4 drivers under different scenarios.
When reducing inputs to three dominant drivers, the HTA−

HWTD and LTA−HWTD scenarios displayed a modest
decrease of less than 0.10 in R2. This indicates that the selected
inputs accounted for a significant portion of the variations in
FCH4. Interestingly, the LTA−LWTD scenario demonstrated
a marginal enhancement in model performance, with R2

Figure 7. (a) Comparison of RF modeling performance of methane fluxes using different input variables. The data size (n) of each scenario is as
follows: HTA−HWTD (high annual-average air temperature and water table depth), n = 139,365; HTA−LWTD (high annual-average air
temperature and low annual-average water table depth), n = 48,426; LTA−HWTD (low annual-average air temperature and high annual-average
water table depth), n = 38,411; LTA−LWTD (low annual-average air temperature and water table depth), n = 170,120. (b) Feature importance of
the 6-input RF models. TA, air temperature; WTD, water table depth; TS, soil temperature; GPP, gross primary productivity; LE, latent heat
turbulent flux; RECO, ecosystem respiration.
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increasing from 0.77 to 0.78. This indicates that the model
built with three dominant drivers not only retained FCH4
variation information but also displayed slightly improved
generalization ability. However, for the HTA−LWTD scenario,
the R2 of the 3-inputs (TS) model decreased by 0.14 compared
to the 6-inputs model, indicating some loss of information
although the 3-inputs (TS) model still captured the majority of
FCH4 variations.
Upon substituting TS with TA, the R2 of the HTA−LWTD

scenario exhibited a marginal decrease of 0.04, while the
remaining three scenarios experienced reductions in R2 ranging
from 0.1 to 0.2. This suggests that TA could serve as an ideal
surrogate predictor for wetland sites characterized by high aa-
TA and low aa-WTD, primarily due to the stronger
dependence of CH4 emissions on the WTD than on TS in
this scenario. For the remaining scenarios, prioritizing TS as
input is preferable, while acknowledging that TA-based models
remain valid alternatives (R2 > 0.55) in cases of limited TS data
availability.

4. DISCUSSION
The net emission of CH4 from wetlands into the atmosphere
depends on the rates of production, consumption, and
transportation.7 Our SEM results reveal a generally positive
total effect of various environmental drivers on FCH4 (Figure
3a,b). These effects could be attributed to several mechanisms,
including creating favorable environmental conditions (TA,
TS, and WTD)46,47 and supplying labile carbon substrates
(GPP and RECO)27,48 for methanogenic activities, as well as
facilitating CH4 transport through diffusion, ebullition, and
aerenchyma in vascular plants (TA, TS, WTD, LE, and
GPP).7,11,13 However, we also observed negative direct effects
for TA and GPP, and a negative indirect effect for WTD. The
negative direct effect of TA can be attributed to its promotion
of microbial consumption of CH4 in the upper soil layer,7

where the impact of TA can more readily reach compared to
the deeper layers. The negative direct effect of GPP may be
attributed to rhizosphere oxygenation, which favors the
oxidation of CH4 in this otherwise anoxic zone.

49 Furthermore,
the negative indirect effect of WTD can be primarily explained
by its negative correlation with TS and RECO, as supported by
previous studies50−52 and also evidenced by the detailed SEM
results presented in Figure S1.
Our SEM analysis identified TS as the most critical driver for

wetland FCH4 (Figure 3b,d), aligning with many related
studies.4,5,13,14,27,31,32,46 However, the effect of WTD was not
significant, ranking lowest among the six drivers. This agrees
with previous studies based on the FLUXNET-CH4 data-
base,14,27,31 but contradicts several studies based on microcosm
experiments,38,53,54 chamber measurements,55,56 and observa-
tions at lower latitude sites.57 One reason could be the data
bias toward higher latitude sites, which typically exhibit lower
aa-TA, resulting in stronger effects of TA and TS but weaker
effect of WTD, as well discussed in previous studies.4,27,32

Another reason might be that CH4 regulatory mechanisms
differ at various spatial scales.58 The interplay of factors such as
temperature, vegetation, and soil conditions at the larger
ecosystem scale could mask or moderate the direct effect of
water level changes observed in smaller-scale chamber studies
and controlled experiments.
Among different wetland types, bogs, fens, and marshes

exhibited a similar pattern, with TA and TS being the primary
drivers and RECO as a secondary driver (Figure 4), consistent

with Yuan et al.31 The slightly higher significance of LE in
marshes could be attributed to the prevalence of aerenchym-
atous vegetation at all marsh sites (Table S1). LE characterizes
the influence of vapor pressure deficit or humidity gradients on
pressurized ventilation in aerenchymatous vegetation, serving
as a useful proxy for CH4 transport through vascular
plants.11,13 The greater direct and total effects of LE in
marsh sites indicate suggest that the produced CH4 could be
primarily transported through vascular plants. In contrast,
swamps were dominated by WTD and LE, while the effects of
TA and TS were less significant (Figure 4). This may be due to
the higher aa-TA but lower aa-WTD at swamp sites (Figure
1b), ensuring sufficient temperature for methanogenesis while
limiting factors become anoxic condition and transport rate.
This aligns with Knox et al.,27 who found WTD to be crucial in
wetlands with smaller temperature variations, such as seasonal
tropical or subtropical wetlands. Additionally, the effect of
RECO in swamps (<0.01) was notably weaker than in other
wetland types. This can be explained by the dominance of trees
in swamp sites (Table S1). Tree-dominated swamps tend to
have more labile carbon in the soil than Sphagnum moss-
dominated ecosystems, primarily due to the faster decom-
position of deciduous plant litter compared to bryophytic litter,
and the additional dissolved organic carbon from rainfall
passing through the forest canopy.59 This results in less
reliance on breaking down complex carbon compounds
through respiration for methanogenesis in these environments.
Generally, our SEM results highlight the dominant role of

TS in driving wetland FCH4, and the existence of diverse
regulatory mechanisms that vary across sites. Building on
previous research, our work delves deeper by explicitly
considering interactions among environmental drivers, thereby
providing new and deeper insights into the mechanisms
regulating CH4 emissions. Nevertheless, we also acknowledge
the limitations of our analysis. Our SEM relied on long-term,
high-temporal-resolution data from widely distributed EC
stations. While this data set excels in spatial and temporal
coverage, it regrettably lacks soil-related indicators such as
dissolved organic carbon,60 pH,61 and various microbial
indices,62 which are more fundamental in driving FCH4
compared to GPP, LE, and RECO. The absence of these
important soil-related variables may partly explain our model’s
relatively poor performance at certain sites, particularly
swamps. However, we recognize that monitoring these
variables on a seasonal basis could pose substantial financial
and logistical hurdles, thus challenging their inclusion in the
data set. Additionally, standard SEM is typically designed to
analyze static and linear relationships, while our data set
consists of time-series data that might exhibit autocorrelations,
asynchronous effects, and nonlinear relationships between
variables such as WTD, GPP, and FCH4.

14,32 These inherent
data characteristics may lead to biased parameter estimates.
Despite these challenges, we believe our SEM still provides
reliable results for several reasons. First, according to Knox et
al.,27 various analytical approaches tend to produce consistent
results in identifying dominant drivers for FCH4, regardless of
their suitability for handling asynchronous and nonlinear
relationships, probably due to the large data set size, which
enhances the stability of the estimates. Additionally, our SEM
results align well with previous studies using methods such as
transfer entropy31 and relative mutual information,27 which are
capable of addressing nonlinearity and asynchrony. Moreover,
the dominant drivers identified for different scenarios in our
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study, as inferred theoretically from SEM and RDA results,
show good consistency with the feature importance
determined by RF, further supporting the reliability of our
SEM findings. Nevertheless, it is highly recommended that
future research explores advanced approaches to incorporate
temporal and nonlinear relationships into SEM, or test other
methods such as conditional variable importance for various
machine learning models,63,64 and conditional or partial mutual
information,65−67 thus further enhancing our understanding of
wetland CH4 emissions.
In this study, we also propose a novel approach for better

estimation of wetland CH4 emissions. This involves: first,
gaining an in-depth understanding of FCH4 regulatory
mechanisms; second, categorizing sites based on their unique
natural conditions and individually prioritizing dominant
drivers for each category; and last, modeling and testing
through machine learning. Our approach provides a possible
solution for making accurate predictions with a few critical
predictors when working with limited data, potentially easing
the modeling process for large-scale CH4 estimation.
Furthermore, our approach places greater emphasis on
accounting for the spatial variability of the dominant drivers
when building CH4 models. It highlights the importance of
tailoring predictors to suit the unique annual average
temperature and water table conditions of different wetland
sites, rather than using a one-size-fits-all set of predictors across
all locations. Still, there is room for improvement in our
proposed approach. For example, the spatial variability of
FCH4 regulatory mechanisms could be better interpreted by
incorporating vegetation-related indicators, such as dominant
vegetation coverage,16 into RDA. The undefined areas in the
CH4 source categorization plot (Figure 6b) could be more
precisely delineated through including additional EC data from
diverse wetland sites, especially those in the tropical regions. A
more effective substitution of TS by TA may be achieved
through establishing a stronger TA-TS connection or
leveraging targeted temperature models, thus enhancing
model practicality without compromising prediction accuracy.
These considerations also suggest potential directions for
follow-up studies.
Moreover, our study has broader implications. The extensive

statistical analysis conducted prior to ML modeling establishes
a solid theoretical foundation. The strong alignment between
the theoretically inferred dominant drivers and the feature
importance determined by the algorithm allows us to shed
light on the inner workings of RF models. This greatly
enhances our ability to explain these models and, consequently,
makes them more trustworthy.68 Additionally, our results offer
a deeper understanding of wetland CH4 emissions at the
ecosystem scale. This could aid in gap-filling EC CH4
measurements, thus contributing to the creation of a higher-
quality local or global database of wetland FCH4.

69 More
importantly, our findings and proposed approach show strong
potential in refining natural wetland FCH4 estimations. Given
the current urgency of global warming, this will aid in the more
accurate attribution of CH4 sources and the formulation of
targeted mitigation strategies,4 ultimately contributing to
combating climate change.
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