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Nonrigid image registration is widely used to estimate tissue deformations in highly deformable anatomies. Among the existing
methods, nonparametric registration algorithms such as optical flow, or Demons, usually have the advantage of being fast and
easy to use. Recently, a diffecomorphic version of the Demons algorithm was proposed. This provides the advantage of producing
invertible displacement fields, which is a necessary condition for these to be physical. However, such methods are based on the
matching of intensities and are not suitable for registering images with different contrast enhancement. In such cases, a registration
method based on the local phase like the Morphons has to be used. In this paper, a diffeomorphic version of the Morphons
registration method is proposed and compared to conventional Morphons, Demons, and diffecomorphic Demons. The method is
validated in the context of radiotherapy for lung cancer patients on several 4D respiratory-correlated CT scans of the thorax with

and without variable contrast enhancement.

1. Introduction

In the context of image-based medical diagnostics and
treatment, highly deformable anatomies are a problem for
multiple-time imaging analysis along the course of treat-
ment. Indeed, a precise tracking of organs is made dif-
ficult because of shape and position variations. Nonrigid
registration may be used to compute a displacement vector
for each voxel of an image [1], enabling the estimation of the
spatial variations of the anatomy. The displacement vectors
are computed as pointing to the best corresponding location
of the voxels in another image according to a metric which is
ameasure of the image matching and under some constraints
on global properties of the resulting deformation, such as
invertibility and smoothness.

Several registration methods have been used in the past
years to estimate deformations in highly deformable anat-
omies [2-5]. Many efforts have been made to improve

the quality of displacement estimates and also to reduce
the amount of required preprocessing or modeling and
improve registration speed [6-8]. Besides, the choice of a
registration method for medical application depends on the
characteristics (e.g., modality) of the images to be registered
[1]. The existing methods [9] can be divided into parametric,
or model-based, methods (B-splines [10], thin-plate splines
[11], radial basis functions [12], linear elastic FEM [13],
etc.) and nonparametric methods (viscous fluid [14], optical
flow [15], etc.). In this second category, the algorithm called
Demons [16, 17] is fast, efficient, and easy to use, as it requires
no particular preprocessing nor patient-specific modeling.
This method aims at calculating a regular displacement
field which produces a good matching of the intensities in
both images by minimizing a metric, such as the sum of
squared differences (SSDs) [18] or the mutual information
(MI) [8] between images along with a measure of the field
regularity.



In a growing number of applications, the displacement
fields resulting from registration are used to deform images
from other modalities or other spatial distribution maps
(e.g., the dose map associated to CT scans in radiotherapy
[19, 20]). Therefore, the matching of structures in images
based on their intensities is not a sufficient constraint
for producing realistic anatomical deformation estimations
[21]. This is the reason why a priori information on the
physical characteristics of anatomical deformations has to
be included in the registration process. Diffeomorphism is
a necessary condition for displacement fields to be physical
[22]. Indeed, organs can be compressed and deformed,
but cannot undergo noninvertible spatial transformations,
for example, showing mirror effects. A method has been
proposed in [23] to limit the displacement fields computed
by the Demons to a set of diffeomorphic transformations,
using diffeomorphic flows and Lie algebra.

In several medical protocols, contrast agents are used in
order to facilitate interpretation. This makes the registration
problem incompatible with the hypothesis of intensity
conservation. Furthermore, an histogram equalization is
often not able to correct for contrast agent variability, as
different regions will be enhanced in different ways inside
the image. Therefore, simple metrics, such as SSD or cross-
correlation, are not suitable for matching those images, and
methods that are suitable for registering variable contrast
images have to be investigated [24, 25].

A method similar to Demons but using a phase-based
approach was first proposed in [26] and was called Mor-
phons. The principle of the method is to match transitions
(between dark and bright zones) rather than intensities, by
looking locally at the spatial oscillations in intensities. This
method uses Gaussian smoothing as regularization of the
displacement field and additive accumulation during the
iterative process. This is nevertheless not sufficient to ensure
the invertibility of the deformation [22, 27].

In this paper, a Morphons registration using a diffeo-
morphic accumulation step is proposed and its accuracy is
assessed in the case of thorax image registration, also in
presence of different contrast enhancements, and compared
to the Demons. The paper is organized as follows. In
Section 2, the main mathematical concepts and definitions
are presented. Then, in Section 3 a generic nonparametric
registration process is presented, and its particularization to
Morphons and to diffeomorphisms is proposed in Section 4.
In Section 5, different registrations are applied on images
of the thorax, without contrast enhancement in the first
experiment and with contrast enhancement in the second.
The results of these experiments are eventually discussed in
Section 6.

2. Mathematical Framework

For the sake of clarity, let us introduce some key mathemati-
cal concepts used throughout this paper.

2.1. Images and Deformation Fields. In this paper, we always
denote 3D images by lower case letters. For instance, in the
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process of estimating a displacement field, the fixed and
the moving images are written f and m, respectively. We
consider them as real valued functions on the volume R’
of points x = (x1,x,%3), that'is, f,m € F = |g
R® — R : x — g(x)}. Most of the time, these functions,
and also the continuous operations performed on them,
such as convolutions or integrals, must be understood as
approximated on the discrete voxel grid § = {(x1,x2,x3) €
73}, omitting the treatment of volume boundaries. In
this study, image convolutions were performed using zero-
padding outside the boundaries.

A displacement field on R? is a vectorial field D €
VYV = {V:R - R)x — V(x)}. Itis associated to
the “deformation” operation A £ 1d + D, that is, A(x) £
x + D(x), with Id the identity deformation: Id(x) £ x
The operation A, and by extension its vector field D, is
said to be diffeomorphic if it is invertible, differentiable, and
its inverse is differentiable. For the transformation A to be
invertible, its Jacobian must not vanish in any point x, that
is, if det()(x) # 0 for all x, with §;; = dA;/0dx;. Moreover, it
has to be positive (det(F)(x) > 0). Indeed, a transformation
A with negative Jacobians does not correspond to physical
deformations (as the mirror operation).

Mathematically, given the images f and m, we will see
that our global objective of our study is to estimate D
such that the warping of m by D is “close” to f, that is,
f = m o A with o the common function composition. We
will use sometimes the notation

moD = mold, (1)

to insist on the warping action of D on m. By extension,
this warping symbol can also be used on vector fields them-
selves, for example, for two displacement fields D, and D,,
D, ¢ D, = D; o A,.

In practice, the warping is applied on discrete images.
The transformation might therefore need to be truncated
(on the volume boundaries) to the closest point inside the
volume in order to avoid extrapolation of the images to be
warped.

2.2. Compositive Accumulation. In this paper, we promote a
particular way to combine, or accumulate, properly two dis-
placement fields D; and D,. Adding them to form D; +D; (as
performed by many nonparametric registration methods; see
Section 3) is of course computationally efficient, but it breaks
the consistency with the composition of the corresponding
spatial transformations, as illustrated in Figure 1.

Indeed, one can clearly see in Figure 1(h) that the warp-
ing of the image in Figure 1(g) by the sum of two diffeomor-
phic fields, D; and D, does not correspond to the successive
warping of this image by D; and then by D,, which is re-
presented in Figure 1(i).

However, the compositive operation, denoted by &, solves
this issue. It is simply defined as

D@Dy 2 A 0N, —1d. (2)

By construction, the deformation operation linked to the de-
formation field D; @ D, is therefore A; o A,. If both
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(a) Dy (b) Dy (c) D1 oDy
—
(d) x+D; (e) x+(D1 +D2) (f) x+(D1 ®D2)

(g) moving image m

(h) m o (Dy +Dy)

(i) m o (D; ® D)

FiGure 1: Comparison between additive and compositive field accumulations. Warping is implemented using linear interpolation. In (a) and
(b), two different displacement fields are defined on the plane (for visual clarity). In (c), the field D; warped by D,, thatis, D; ¢ D, = D; o A,.
In (d), the field D, is applied on the pixel grid. In (e), the grid is warped by the field resulting from an addition-based accumulation of
D and D,. In (f), the grid is warped by the displacement field D; @ D, arising by the composition of A; and A,, which is the sum of the
dark blue and gray arrows (given by A, o A, — Id). This composition is really the accumulation that matters since it corresponds to the way
displacement fields are iteratively applied to an image (see Section 3). Since D; @ D, = D, + D; ¢ D,, the summed vectors in (f) correspond
to the vectors in (a) and (¢). In (g), a moving object m, divided in 4 colors (regions between pixel centers). In (h), the result of the warping of
m by the sum of the fields. Clearly, the surfaces are inverted (mirror effect, visible because of the inversion of colors), leading to nonphysical
deformations (negative Jacobians). In (i), the result of the warping of m by the composition of the fields. One can notice that in spite of the
deformation of the shape of the object, the location of the colors is conserved.

displacement fields are diffeomorphic, their composition is
also diffeomorphic [28].

The operation & has some interesting and useful prop-
erties. First, the neutral accumulation is of course obtained
with the null displacement field, thatis, D & 0 = 0@ D = D.
Second, it is easy to prove the associative relations (D; @ D;) @
D3 = Dy & (D, ® D3) = Dy ® D, @ D; for three displacement
fields Dy, D,, and D3. And finally, @ and ¢ are linked through
the simple relation

Dy® D, =D, +D; ¢ D,, (3)

meaning that the displacement field D; @ D, is equivalent
to summing the field D, with the field D; warped by D,.
This is illustrated in Figure 1: the vectors in Figure 1(i),
corresponding to the successive warping by D; and then D,,
are the sum of the vectors in Figures 1(a) and 1(c), as shown
in Figure 1(f).

2.3. Diffeomorphic Flow and Exponentiation. An important
notion used in Section 4.2 is the concept of (continuous)
diffeomorphic flow [27, 29, 30]. Given a point x € R? and a
smooth vector field D € V, the flow ¢p(x, t) is the dynamic



FIGURE 2: The diffeomorphic flow exp(D) associated to the vector
field D is the solution at time t = 1 on the trajectory tangent to
D at each point (here represented in 2D). We see that the motion
of x induced by exp(D)(x) is more compatible with V than this
produced by A(x) = x + D(x).

solution u(t) € R3 of the following (autonomous) ordinary
differential equation:

d

—u(t) = D(u),
dt”( ) (u) @
u(0) = x.

Ata given “time” t > 0, the position ¢p(x, t) is simply a point
on the trajectory following D tangentially from the initializa-
tion on x (see Figure 2). Following [27], the exponential of
a vector field D, that is, exp(D) € 'V, is the nonlinear defor-
mation operation obtained by the flow of D at time ¢ = 1,
that is, exp(D)(x) = ¢p(x,1). Interestingly, this exponential
map acts as the common scalar-valued exponential, that is,
exp(aD) o exp(BD) = exp((a + f)D) for o, € R, and it
is invertible by simply considering the inverted vector field,
that is, exp(—D) o exp(D) = Id. In addition, for differentiable
D, exp(D) is also a diffeomorphism on R?. In other words,
exp(D) modifies the 3D coordinates with no intersection
between the motions of points. Indeed, such a possibility
would induce a point x with two different motion vectors,
a situation that is forbidden by (4) since D(x) is uniquely
defined.

2.4. Scaling and Squaring. A numerical scheme exists to com-
pute approximately but efficiently exp(D)(x) when x belongs
to a regular grid of voxels §. Indeed, when the field D is close
enough to zero (i.e.,, A ~ Id), the exponential of the field
can be approximated using the first-order Taylor expansion
exp(D) = Id + D = A, that is, by the transformation itself.
On the other hand, the solution of the flow equation (4)
int = 1 can be approximated by “discretizing” ¢ between

0 and 1. Indeed, as exp(D) = exp(Z’kD)zk (where the
exponent 2F expresses the number of times the deformation
operation is combined with itself), one can use the scaling
and squaring strategy for computing the exponential [31]. If
one chooses k such that the field 27%D is close enough to
zero, the first-order approximation can be used to estimate
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exp(27%D) (based on the Padé approximant near the origin).
Then, the solution of the flow equation is computed by
performing k recursive compositions of the field by itself,
given that such compositions are computationally affordable.
Notice that taking k = 0 is equivalent to the simple first-
order approximation. The scaling and squaring steps for field
exponentiation [22] are depicted hereafter.

(i) Scaling. Divide D by a factor 2% such that 27¥D
is small enough, for example, when I27*D|l =
max, |2 ¥D(x)|| < 0.5 voxels.

(ii) Exponentiation. Compute first-order explicit integra-
tion of the flow: A¥(x) = ¢p(x,27%) =~ Id(x) +
27kD(x).

(iii) Squaring. Perform k recursive squarings (using field
composition) of the flow at time 27% in order
to obtain the flow at time 1, which is the field
exponential. In other words, starting with A* = AO)
do k times the computation A* — A* o A*, in order
to get A* = exp(D).

We see that using this method, only k compositions (and
therefore k interpolations) are needed for estimating the
exponential. Compared to standard estimation of the flow
over a regular discretization of the time interval [0, 1] in 2*
steps, the scaling and squaring method limits the numerical
errors due to composition of vector fields, but it does not
decrease the amplification of the error due to the field
estimation at time t = 27,

3. Generic Registration Pipeline

Nonrigid registration methods can be divided into para-
metric and nonparametric methods. Parametric (or model-
based) methods aim at calculating the parameters of a
deformation model in a high-dimensional space in order to
optimize a global objective function that takes into account
image similarity and transformation regularity [10]. In this
case, the a priori information is included in the modelization
and regularity criteria of the nonrigid transformation. For
example, the harmonic energy of transformation can be
explicitely included in the objective function [32].

On the other hand, nonparametric methods make it
possible to decouple similarity optimization from regu-
larization by directly acting on the displacement field.
The a priori information has then to be included in
the optimization process by using proper regularization
techniques. Decoupled optimization makes the registration
computationally efficient [8], mainly because the compu-
tation of each displacement vector is independent from
others, but it prevents us from easily including more complex
regularization constraints in the process, for example, such as
in volume preserving registrations [33, 34].

3.1. Multiscale Nonparametric Registration. Most nonpara-
metric registrations are based on an iterative process which
is composed of 3 steps: (i) field computation, (ii) field
accumulation, and (iii) field regularization. The idea is to
progressively build a proper displacement field by iteratively
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FIGURE 3: The nonparametric registration pipeline is composed of
3 main operations (0, @, and ¥) and the warping of the moving
image. Those operations are performed from coarse to fine scales.
At each scale, the process is applied iteratively, until it reaches a
stopping criterion.

improving the matching between the fixed image and the
moving image warped by this displacement field, according
to a certain metric. Note that, depending on the nature of the
displacement one tries to model, the regularization is applied
either on the increment field or on the accumulated field.
Regularizing the field increment corresponds to a viscous
fluid modeling, while regularizing the global transformation
corresponds to an elastic solid modeling [14]. Only the
second is considered in this study.

In this paper, our general nonparametric registration
framework (e.g., valid for Demons and Morphons) adopts
a multiscale approach; that is, the displacement field esti-
mation is stabilized by decomposing the fixed and the
moving images in several scales, for example, using a simple
smoothing and downsampling procedure [35].

The three steps mentioned above are then applied a
certain number of times (until the algorithm reaches a
certain stopping criterion) to each scale separately from
coarse to fine scales (Figure 3). The general explanation of
these three basic blocks is given hereafter. The way they are
iteratively applied at each scale is described in Section 3.2.

3.1.1. Field Computation. At each iteration of the registration
process, an update displacement field (D,,) is first computed
as a function (®) of the fixed image (f) and the moving
image (m) warped by the displacement field resulting from
previous iterations (Dg):

D, — O(f,moA,), (5)

where A, and A, denote the deformation operations linked
to D, and D, respectively.

Depending on the nature of the images to be registered,
this local displacement estimation can be based on different
local image metrics, such as SSD [17], mutual information
computed on blocks of voxels [8, 36], and local phase [26].

3.1.2. Field Accumulation. After the field computation, the
total displacement D, must be increased by the update field

Da - q)(Da’Du)~ (6)

This accumulation operation @ is sometimes imple-
mented as a simple addition of accumulated and update
fields (as in [18, 37, 38]). However, as explained in
Section 2.2, this accumulation is perhaps computationally
efficient but is not consistent with the composition of
the corresponding spatial transformations. The solution is,
therefore, to replace it by the compositive accumulation
@ introduced earlier. The accumulation D, @ D, of the
displacement fields D, with D, is then compatible with the
way D, is estimated. Indeed, since D, is computed from
m o A,, the accumulation of D, and D, must modify D,
by Dy, a process intrinsically integrated by the operation @.
Moreover, the associativity of @ validates the compositive
accumulation of displacement fields over several iterations,
as illustrated in Figure 3.

3.1.3. Field Regularization. Eventually, the field is regularized
in order to get a smoother transformation and reduce the
impact of image noise on the registration output:

Du D \P(Da) (7)

This operation ¥ is achieved by applying a low-pass filter on
each component of the displacement field. We assume it to be
a Gaussian smoothing with a size 0§ of a few voxels, which
tends to reduce the harmonic energy of the transformation
[32].

It is always possible to produce invertible fields by
performing a very strong Gaussian smoothing. This, how-
ever, may reduce significantly the accuracy of the estimated
displacement by limiting the solution to excessively smooth
displacement fields. On the other hand, by preventing the
displacement field from being noninvertible, the diffeomor-
phic accumulation acts in some way as a regularization,
allowing the estimation of invertible fields while performing
only moderate smoothing.

3.2. Registration Algorithm. Let us explain now the whole
multiscale nonparametric registration algorithm relying
on the three specific procedures {®,®,¥} defined in
Section 3.1.

The algorithm takes as inputs the fixed and the moving
images f and m, some parameters described below, and
outputs the estimated transformation A, = Id + D, such
that f =~ m o A,. The whole procedure described in Table 1
and depicted in Figure 3 involves computations on different
scales j € [0,]], from coarse (j = J) to fine (j = 0). Each
scale is associated to a subsampled grid of voxels §; = «/§,
where « is the subsampling factor (e.g., x = +/2 in this study)
between scale j and scale j + 1. The functions f and g,
defined on the initial grid § = Go = {(x1,x,%3) € Z°},
are downsampled (after antialiasing smoothing) at any scale
j by the operation Down;(). An upsampling operator Up(),
implemented as a simple linear interpolation, is used to



TaBLE 1: Multiscale nonparametric procedure.

Inputs and parameters:

(i) Images f and m defined on 1D4A2.

(ii) Number of scales J.

(iii) A stopping criterion 4.

(iv) Gaussian kernel variance o2 of V.
Output: The displacement field D,.
Algorithm:

(1) Initialization:

Set scale to j = J and initialize D, = 0 on §41.

(2) Transfer on grid §:

Compute m; =Down;(m), f; =Down;(f),
and assign D, — Up(D,).

(3) While 4 is false, do:

(i) Warping: w = m;j o A,
(ii) Field computation: D,, — ©O(fj, w)
(iii) Accumulation: D, — ®(D,, D,)
(iv) Regularization: D, — W(D,)
(4) If j = 0, stop and return D,,
else, set j — j — 1 and return to step (2).

transfer any displacement field defined on a grid § ;41 to the
finer grid §; using x as upsampling factor. For each scale
j € [0,]], the accumulated displacement field is iteratively
updated until one reaches a particular stopping criterion 4§
(e.g., based on the convergence of D, or on the SSD, as
precised in Section 5).

4. Diffeomorphic Morphons

Our paper adapts the global registration method explained in
the previous section to Morphons [26, 39] by taking care of
the invertibility of the accumulated displacement field, that
is, by introducing diffeomorphic field accumulations.

As already mentioned above, the particularity of Mor-
phons, compared to other nonparametric methods, is that
the field computation (function ® in (5)) is based on the
local phase rather than intensity difference. In other words,
knowing the phase difference between periodic signals of
the same frequency allows the estimation of the spatial shift
between them. Therefore, under the assumption that images
can locally be considered as a sum of periodic signals, the
computation of the local phase difference is equivalent to the
estimation of the local displacement between images. This
procedure is stabilized by the multiscale approach described
in Section 3.2. Besides, Morphons combines the estimation
of displacement vectors with a measure of the confidence
we have in these estimations, resulting in a certainty map.
Therefore, for Morphons, given two images f and w = moA,
the displacement field estimation @ is actually split into two
quantities

D, — ®D(f,W),

8
Cu‘_®c(faw)a ®
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Displacement field
from Demons

Displacement field
from Morphons

Deformed image
from Demons

Deformed image
from Morphons

FIGURE 4: Results of the registration between 2 identical-sized
blurred disks with different contrasts, using Demons and Mor-
phons. In yellow: the contour of the disk. In red: the vector field
resulting from the registration. The displacement field resulting
from Morphons was very close to zero. Notice that the SSD is
actually lower using Demons than Morphons. However, the SSD
does not reflect the matching of the shapes, in opposition to the
disk contour after warping.

that is, respectively, an update of the displacement field along
with an update of the certainty map. A similar split is also
performed on subsequent operations ® and V.

Here are the details about the three steps {©, ®, ¥} of the
pipeline of Section 3 for this specific registration, including
our contribution to the field accumulation step.

4.1. Displacement Field Calculation. In Morphons, a dis-
placement field is estimated thanks to the dephasing between
the local phases of the fixed and the moving images. This
local phase can be probed at a certain frequency and in
a particular direction using quadrature filters [40]. More
precisely, Morphons method uses a quadrature filter h,
of direction n € R? (also called loglets [40]) defined in
frequency by the polar separable function

Hy() = x, (170) (172) R(lwll), 9)

where w € R? is the frequency vector, y, (1) = 1ifA > 0 and
Oelse, |wl? = wTw, ® = w/||w]| is the unit vector supporting
w, and R is a radial function centered on p > 0 and defined as
R(r) = exp [~In*(r/p)/In2] for r > 0.

Since their support corresponds to the half volume {w €
R> : #Tw > 0} and since (47@)* = cos’¢ (with ¢ the
angle separating w and #), loglets can be seen as the analytic
counterparts of the steerable filters introduced by Freeman
and Adelson [41]. As a matter of fact, only a limited number
of orientations # are necessary to cover the whole frequency
plane. Typically, in 2D, these directions are taken as nx =
(cos ¢, sin ¢y ) with ¢ = kn/4 for 0 < k < 3, and in 3D,  is
taken as the 6 normal vectors {7k : 0 < k < 5} to the faces of
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TaBLE 2: Results for the POPI experiment: error in landmark position.
RCCT phases Original Demons [4] Morphons D-Demons D-Morphons
Phase 1 0.5/0.5 (2.4) 1.3/0.3 (1.8) 0.7/0.3 (1.6) 0.7/0.3 (1.6) 0.7/0.3 (1.6)
Phase 2 0.5/0.6 (2.6) 1.4/0.2 (2.1) 0.7/0.4 (2.1) 0.7/0.4 (1.6) 0.7/0.4 (2.1)
Phase 3 2.2/1.8 (6.6) 1.4/0.4 (2.3) 1.2/0.6 (2.5) 1.2/0.6 (2.5) 1.2/0.6 (2.4)
Phase 4 4.3/2.5(10) 1.2/0.4 (2.3) 1.0/0.4 (2.2) 1.0/0.5 (2.5) 1.0/0.4 (2.2)
Phase 5 5.8/2.6 (12) 1.3/0.5 (2.6) 1.1/0.5 (2.7) 1.1/0.5 (2.5) 1.1/0.5 (2.8)
Phase 6 6.1/2.9 (14) 1.1/0.4 (2.0) 1.0/0.5 (2.1) 1.1/0.6 (2.8) 1.0/0.5 (2.1)
Phase 7 5.0/2.3 (12) 1.3/0.5 (2.4) 1.1/0.6 (2.8) 1.2/0.6 (2.7) 1.1/0.6 (2.8)
Phase 8 3.7/1.6 (6.2) 1.1/0.3 (1.7) 0.8/0.4 (1.9) 0.8/0.4 (1.8) 0.8/0.4 (1.8)
Phase 9 2.1/1.1 (4.5) 1.1/0.3 (1.9) 0.8/0.4 (2.0) 0.8/0.4 (1.7) 0.8/0.4 (2.0)
All phases 3.3/2.0 (14) 1.2/0.4 (2.6) 0.9/0.5 (2.8) 1.0/0.5 (2.8) 0.9/0.5 (2.8)

TasLE 3: Comparison of volume change, harmonic energy, and errors in center of mass of the delineations of the vessels and tumor on a

single phase.

Original Demons Morphons D-Demons D-Morphons
Volume change (vessels) [in %] 23 0 21 0
Volume change (tumor) [in %] 6 1 6 1
Harmonic energy (vessels) [x107°] 89 8 69 8
Harmonic energy (tumor) [x1073] 39 4 34 4
Error on COM (tumor) [in mm)] 2.1 1.5 1.1 1.5 1.1

TaBLE 4: Classification of the registration algorithms for variable
contrast enhancement.

Low harmonic High harmonic

energy energy
Invertible (Join > 0) D-Morphons D-Demons
Noninvertible (Ji, < 0) Morphons Demons

a hemi-icosahedron [42, 43]. Notice also that each filter /i (x)
in the spatial domain is centered around the origin with a
typical width given by 1/p.

Morphons take advantage of the following behavior.
Given an image f, defining the filtering

ar(sk) = (f * ) (x), (10)

with * the common convolution operation and the short-
hand hx = hy,, we can write q;(x;k) = Aj(x;k)e'dr k)
since g5 € C. Therefore, by processing the warped image w
similarly, the local phase difference can be computed as

Adx(x) = arg(qr (s k) g (x: k), (1)
with (-)* the complex conjugation and A¢y(x) = ¢r(xsk) —
¢w(x; k) the local dephasing between f and w in direction #.

An important observation is that the nonnegative value

Arsk) = | (f % b)) (x)| = ‘J’Rsf(x')Txﬁk(x’)dx’ (12)

represents also Ehe correlati(ln between f(x') and the trans-
lated filter Tyhi(x') = hi(x" — x); that is, the filter

he(x') = he(—x") translated on x. If the image f was
perfectly represented by the latter, that is, if we had locally
f(x") = ch(x’ — x) for any ' € R?® and some constant
¢ € R, a displacement of f by a displacement field D(x)
approximately constant over the support of Tyhx would
induce a dephasing A¢x(x) = pyi D(x) since the frequency
vector of Ty h is —phk. An important implicit assumption
is nevertheless that |py! D(x)| < 7 since the dephasing is
known up to modulo 277. Moreover, only #{ D and not D can
be determined, as another manifestation of the blank wall
problem [44].

In practice, for most of x, f(x) is not perfectly repre-
sented by one filter but by a linear combination of them
where the amplitude A (x; k) measures the adequacy of the

fit between f(x) and T, hy. Consequently, the local update
displacement D, (x) linking f(x) and w(x) = f(x+D,(x)) in
each x € R? is estimated by solving the weighted least square
optimization

Op(f,w) = arg minz[ck (pn{d - A¢k)]2,

deR?® (13)

where the ck(x) = Af(x;k)An(x; k) are the certainty map of
the filter hy. As explained above, ¢ reflects for each voxel
how reliable the field estimation is; that is, how contrasted
the bandpass-filtered images are.

Numerically, the optimization in (13) is a standard
weighted least square minimization; that is, it corresponds
the minimization of the energy E(d) = [[C(Nd — D)3,
using the diagonal matrix C = diag(cy,...,¢s), the matrix
N = (111,...,116)T, and the vector I' = (A¢1,...,A¢6)T.
An easy computation shows that the solution of (13) is
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FIGURE 5: Results of the registration between 2 images using
Morphons and D-Morphons registrations, illustrating the case
where a structure (i.e., the bright hole at the center of the fixed
image) is missing in the moving image. Both methods lead to
deformed images very similar to the fixed image except for the
central bright part (because it was not present in the moving image).
The diffeomorphic method produced very low but still positive
Jacobian values ((J) close to 0) in the center of the disk. Given that
the field is defined on the pixel grid of the fixed image, this means
that the surface of the central bright part (which disappears in the
moving image) corresponds, as expected, almost to a singular point
in the moving image. The conventional method, however, produced
highly negative Jacobians in the central part, leading to the creation
of areas that are “mirrors” of areas in the other image.

then given by the Moore-Penrose pseudoinverse (CN)" =
(NTC2N)'NTC, that is,

®p(f,w) = (CN)'CT, (14)

with @p(f,w) arbitrary set to 0 when (NTC2N) is not
invertible.

Jointly to the estimation (13), a global certainty map
associated to the quality of the estimation of @p is defined
as [43]

Oc(frw) = D ckl(x), (15)
k

that is, the sum of all certainty measures for each quadrature
filter. This update of the certainty map must then be
combined with an accumulated certainty computed from
previous iterations (see Section 4.2).

In the multiscale approach described in Section 3.2,
using the same quadrature filters at decreasing scales H,, is
equivalent to estimating the phase of the bandpass-filtered
image around increasing cutoff frequencies, that is, with p —
2p each time j — j + 1. This sustains the coarse-to-fine
displacement estimation, that is, the computation of ®p and
O, on different scale bands f; and m; of f and m.

Convolutions with quadrature filters can be imple-
mented efficiently in the Fourier domain thanks to the FFT
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and the convolution theorem. However, since the spatial
extent of those filters is small, it is also possible to use efficient
spatial convolutions with truncated kernels, as done in this
study. As the local phase is invariant to local intensity scaling,
the Morphons procedure is suitable for registering images
with various contrast enhancements. Besides, some studies
indicate that the phase extraction allows a fast convergence
and a subvoxel precision in displacement estimation (e.g., see
[39]).

4.2. Field Accumulation. In the original Morphons method,
the accumulated field is computed as a weighted sum of the
update field and the previous accumulated field, as used in
damped optimization schemes. The weights are given by the
certainty on the update field (c,, as computed from ®.) and
the accumulated certainty map (c;). As the certainty map
must also be accumulated in order to reflect the confidence
in all previous displacement computations, the accumulation
step @ must be divided into two operations ®p (field
accumulation) and @, (certainty accumulation):

C
(DD(Du) Dy, ca, Cu) =D, + —uDu) (16)
CqatCy
2+ 2
q)c(ca) Cu) = M) (17)
CqatCy

where in the last formula, similar to the field accumulation,
the certainty map is updated by its own certainty [43].

However, as it was explained before, the addition of
displacement fields is not really appropriate for accumulating
spatial transformations, in contrast to composition. The
compositive accumulation may also be damped using the
certainty as a weighting factor

q)D(DaaDua Ca> Cu) = Da ® u

D.. (18)

a Cu

The (SSD-based) Demons registration is a nonpar-
ametric algorithm which performs the optimization of
the SSD between images. In [27], a diffeomorphic field
accumulation is proposed as improvement of the Demons
method. The idea is to use an adaptation of the optimization
method to Lie groups [45] in order to limit the possible
solutions to diffeomorphic transformations. In practice,
this is done by replacing the accumulation step of the
Demons by an accumulation using the diffeomorphic flow
exp() introduced in Section 2. This accumulation reads
then

®p(D,,Dy,) = D, ® (exp(D,) — 1d), (19)

where the field exponential exp(D,) can be efficiently
estimated using a small number of recursive compositions
of the field D, by itself. Consequently, the displacement
field ®p(D,, Dy,) is linked to the deformation operation A, o
exp(Dy).

In the case of the Morphons, the accumulation step can
be achieved in the same way. This will produce smoother
fields than the traditional addition or composition. However,
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FIGURE 6: Results for the 9 registered phases of the POPI model. (a) Boxplots of the SSD before registration (in yellow) and after all 4
registrations. (b) Boxplots of the energy of deformation after all 4 registrations. (c) Boxplots of the minimum Jacobian after all 4 registrations.
From (a) to (c), these registrations are Demons (light blue), Morphons (light green), diffeomorphic Demons (dark blue), and diffeomorphic
Morphons (dark green). For each box, the center horizontal line represents the median value, the box goes from the lower quartile to the
upper quartile, and the vertical lines represent the most extreme values within 1.5 interquartile range. The crosses represent outlier values.

Phase 1

Reference phase

FIGURE 7: Schematic representation of the ITV creation (with only 4 phases). The CTV delineated on a reference image with contrast
enhancement (on the left) is deformed towards every phases (middle) using displacement fields estimated by registration, and their union is

taken as ITV (on the right).

the accumulation step in the Morphons method involves a
damping based on the certainty. Therefore, we propose the
following accumulation step for diffeomorphic Morphons:

Op(Dy, Dy cascy) = Dy @ <exp< f:c Du) - Id). (20)

a u

Since exp(0 D) = 1d for any vector field D, the accumulation
fades away when ¢, > c,. The accumulation of the certainty
map remains as explained previously in (17).

Notice that, because the field is discretized on a grid of
voxels, interpolation is needed for computing the composi-
tion of two diffeomorphisms. Therefore, errors due to suc-
cessive interpolations could potentially lead to noninvertible
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F1GURE 8: Results for the variable contrast experiment on 30 phases
(3 patients with 10 phases each). (a) Boxplots of the energy of
deformation after all 4 registrations. (b) Boxplots of the minimum
Jacobian after all 4 registrations. From (a) to (b), these registrations
are Demons (light blue), Morphons (light green), diffeomorphic
Demons (dark blue), and diffeomorphic Morphons (dark green).
For each box, the center horizontal line represents the median value,
the box goes from the lower quartile to the upper quartile, and
the vertical lines represent the most extreme values within 1.5 inter
quartile range. The crosses represent outlier values.

transformations. However, such problems were not observed
in practical experiments using reasonable smoothing of the
field.

4.3. Field Regularization. During the displacement estima-
tion step, the relevance of local phase computation is
estimated and used as weight for the accumulation. This
certainty map may also be used for a smart regularization
of the displacement field. Regularization is performed using
a normalized convolution [46] of the field by a Gaussian
kernel, taking into account the certainty map in order to
put greater importance to high certainty locations. The
certainty is also regularized in the same way as displacement
field components in order to preserve the correspondence
between the displacement vectors and their corresponding
certainty.

Mathematically, given a positive function h and a filter
g (typically a Gaussian kernel of variance oy > 0), the
normalized convolution of a (scalar) function s by g as
involved by the normalization h is

hs) *
s*hgé (;)ng (21)

This operation does not increase the maximum amplitude of
the filtered function. Indeed, for a nonnegative kernel g, we
show easily that [|sxpglle < |Is|le, With [Is]le = max,|s(x)].
The accumulated displacement field D, and subsequently
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the certainty map are therefore regularized thanks to this
operation using for normalization the certainty map c,, that
is,

‘I’D(Du; Ca) = Du*cag>
(22)
\Pc(caa Ca) = Ca*¢, g

Notice that, for computing ¥p, the normalized convolution
is performed separately on all components of the vector field.

This operation tends to propagate the displacement field
from high certainty areas to areas which show less significant
filter responses. Besides, by setting to zero the certainty
outside the volume boundaries, normalized convolution
cancels the influence of the padding strategy. This step
produces a smooth version of the accumulated field that
may reduce the accuracy of image matching resulting from
the displacement estimation step, as it limits the possible
solutions to smooth displacement fields.

However, if the iterative algorithm is to converge, the
solution will be regular and invertible (except for large
numerical errors), thanks to accumulation and regulariza-
tion constraints, but it will also be (at least locally) optimal
in terms of local phase difference. Indeed, as the phase is
monotonic and smooth, a mismatch between local structures
will automatically lead to nonzero field update with a high
certainty value, which will tend to improve the displacement
estimate and fit the structures together.

The Jacobian of the displacement field may be used
as a criterion for validating the physical behavior of the
deformation. Indeed, the Jacobian gives for each voxel the
change in volume this voxel encounters during deformation.
Jacobian indicates expansion when it is greater than 1, and
compression when it is smaller than 1. A negative Jacobian
means that the voxel is “inverted” (getting a negative
volume), which is incompatible with the mass-preservation
principle.

In the following, the diffeomorphic version of Demons
and Morphons are denoted respectively D-Demons and D-
Morphons.

5. Experiments and Results

The methods were first compared for several simple 2D
virtual situations in order to demonstrate the interest in
chosing the accurate registration method with respect to the
images to be registered.

For the clinical validation, Morphons and D-Morphons
registrations were first validated on a 10-phase point-
validated pixel-based breathing thorax model (POPI-model)
from the Léon Bérard Cancer Center, Lyon, France [4], in
order to compare the D-Morphons to Morphons, Demons,
and D-Demons in the case of intensity conservation between
images. Then, it was applied to lung images with different
contrast enhancements, in order to illustrate the benefit of
a phase-based approach compared to traditional SSD-based
registration methods in the case where intensities are not
conserved between the images to be registered.
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FiGure 9: Illustration of negative Jacobians resulting from nondiffeomorphic registrations. Left: moving and fixed images. Right: fields
resulting from registrations (red arrows) and their Jacobian (grayscale images). The negative Jacobians regions are contoured in yellow.

All simulations were performed using Linux, on a single
processor Intel Core 2 (2.4 GHz). Our MATLAB implemen-
tation used for the prototyping of the methods was also
used for simulation. Notice that no efforts were made for
achieving good performances in terms of computational
cost and memory requirements in the implementations used
in this study. The local phase estimation was performed
using convolutions with 9 X 9 X 9 quadrature filters.
Less than 1 GB of RAM was required for registering two
volumes of 256 x 256 x 100 voxels using all registrations.
The time required for registering such images, using the
parameters presented hereafter, was around 6 minutes for
Demons, 42 for Morphons, 7 for D-Demons and 43 for D-
Morphons. However, preliminary results based on a C++
implementation of the Morphons, which uses operations in
the Fourier domain instead of convolutions (as done in our
matlab implementation) and using 4 threads on a quad-
core CPU, allowed a division of the computation time by 50,
leading to Morphons registrations taking about one minute
for such a typical image size.

5.1. Hllustrative Virtual Experiments. Two 2D virtual exper-
iments were performed. The first experiment, illustrated in
Figure 4, is based on a virtual disk image after blurring.
Two images of the same disk were created, the only difference
being the scale of intensities (multiplication by 0.75). This
experiment shows the interest in using a phase-based method
(conventional Morphons in this example) while registering
identical shapes with different contrasts, compared to an
intensity-based method (conventional Demons).

The second virtual experiment is based on two images
of a disk (see Figure 5). In the fixed image, a disk of radius
r1 + r, was created, and a hole (disk of radius r,) was
added in its center. In the moving image, a disk of radius |

was created with the same intensity scaling as in the fixed
image. This example illustrates the case where a structure
is missing in one image compared to the other, as it may
occur in practice (e.g., the problem of bowel gas in CT
images of the abdomen). This experiment illustrates how
the diffeomorphic version of the Morphons algorithm can
prevent from producing negative volumes after registration,
without increasing the smoothing by using a larger Gaussian
regularization kernel.

5.2. Accuracy Assessment on a Breathing Thorax Model. The
POPI model [4] is composed of 10 volumes reconstructed
from a 4D respiration-correlated CT scan (RCCT) of the
thorax, each volume corresponding to a particular phase of
an average breathing cycle. 41 landmarks were identified by
medical experts in each of the 10 images for registration
validation.

Conventional Morphons, D-Demons, and D-Morphons
were applied between a reference phase and the 9 others. For
all methods, the number of scales was set to ] = 8, with
final resolution of 2 mm X 2 mm X 2 mm. The variance of the
Gaussian kernel used for regularization was empirically set
to twice the voxel size (0&, = 2 voxels). For this experiment,
a minimum of 10 and a maximum of 20 iterations was
used at each scale. In between, the iterative process was
stopped if the changes, measured in terms of SSD, were
inferior to 0.01%. Such a convergence criterion was usually
reached before the 20th iteration, supporting the fact that
both Demons and Morphons behave like optimization
methods.

The results were then compared with each other and with
the results from a conventional Demons algorithm as used
in [4]. The comparisons were achieved in terms of error in
landmark position, SSD between images, harmonic energy,
and minimum Jacobian.



12 International Journal of Biomedical Imaging

1

() (h)

FIGURE 10: [llustration of the results for the variable contrast experiment. (a) and (b): Fixed image (left) and moving image (right). (c) and
(d): Deformed image with deformed contours and displacement field resulting from D-Demons (left) and from D-Morphons (right). (e) and
(f): Jacobian of the displacement field resulting from both registrations, represented using the same color scale. (g) and (h): Harmonic energy
of the displacement field resulting from both registrations, represented using the same color scale.

(i) The landmark position error evaluates the ability of assumption of intensity conservation. It is computed
the registration in finding the physical motion of as Y (f —mo A)z,
organs.

(iii) The harmonic energy [29, 32] of the displacement
(ii) The SSD between fixed and deformed images is a field D indicates how regular the field is and is
measure of the image matching according to the computed as (1/2) ZX(HVDlH2+||VD2H2+HVD3II2).
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(iv) The Jacobian of the field indicates the volume change
of each voxel. Recall that negative values of the
Jacobian correspond to inverted volumes, which is
not acceptable in a physical point of view. The
Jacobian is computed as det(g), with §;; = 0A;/dx; =
0;j + 0d;/0x;j, where J;; is Kronecker’s delta (§;; =
1ifi = j, 0 else) and d; is the ith component
of the displacement field. In practice, the partial
derivatives dd;/dx; can be computed using centered
finite difference approximations.

The comparisons of landmark position errors (expressed
in mm) resulting from the different registrations can be seen
in Table 2 with, from left to right, the error in landmark
position (norm of the difference) before registration, using
Demons (values from the POPI website), Morphons, D-
Demons, and D-Morphons. Position errors are noted as
follows: mean/std (max). On average, for Morphons, D-
Demons, and D-Morphons, the error in landmark position
was equal or inferior to 1 mm, which is half the size of the
voxels at the finest scale of the registration process.

Results showed that all registrations greatly improved
the matching of intensities. The SSD between fixed and
deformed image was similar for Morphons, D-Demons, and
D-Morphons (see Figure 6). The harmonic energy of the
fields resulting from these registrations was also comparable
(see Figure 6).

The matching and the harmonic energy obtained by
Demons (as presented by the authors of [4] on the POPI
website) was slightly less good than for the 3 other methods.
However, this is most likely due to the parameters used
for registration (e.g., the number of scales, the variance
for smoothing, etc.). In particular, for very similar images
(first 2 phases of the RCCT), the algorithm was not able
to find a smooth displacement field that reduced the
SSD.

The minimum Jacobian of the displacement fields result-
ing from conventional methods gets down to —0.5 for both
Demons and Morphons (see Figure 6), as, respectively, 67
and 460 voxels were inverted for the corresponding phase
when applying the field on the moving image (which is
composed of almost 6 mega voxels). However, when using
diffeomorphic accumulation, the minimum Jacobian was
raised to 0.2 for the Demons and 0.1 for the Morphons,
showing that the diffeomorphic accumulation step prevented
the field from inverting voxels.

5.3. Application to Images of the Thorax with and without
Lodine Contrast Agent. The breathing-correlated motion
of tumor is a typical feature of lung cancer that has
to be dealt with in radiotherapy planning. RCCT images
provide information about the tumor motion throughout
the breathing cycle. From the different respiratory phases, an
adequate margin around the tumor (the ITV, i.e., the Internal
Target Volume) can be estimated, integrating thus all tumor
positions through the respiratory cycle [20].

However, the lack of contrast enhancement, as well as the
high noise level and the presence of artifacts that characterize
4D RCCT, may significantly impair the accurate delineation
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of the target volumes on these images. More particularly,
the iodine contrast agent is of prime importance to help
at differentiating tumor extents from vascular structures
in the centrally located lung tumors. In this context, the
acquisition of a conventional contrast-enhanced CT (CE-
CT) acquired during free breathing should be considered
for the delineation task, while the 4D RCCT is used to
estimate the motion range of the tumor during breathing.
To automatize this process, the delineated tumor volume at
the CE-CT can be deformed on the various respiratory phase
images from the 4D RCCT using nonrigid registration to
finally get the ITV, as illustrated on Figure 7.

The purpose of this experiment is to compare Demons
and Morphons algorithms (conventional and diffeomorphic
versions) for the registration between images with and
without contrast enhancement, while keeping the same
setting as for the POPI experiment.

A CE-CT scan of 3 lung cancer patients was acquired
as well as a 4D RCCT scan at another time point. The
first CT scan was taken in free breathing using an iodine
contrast agent. The 4D RCCT scan was acquired without
any contrast agent and was reconstructed into 10 phases.
Histogram equalization was not able to correct for localized
contrast differences between the CE-CT and RCCT phase
images. For all 3 patients, Demons, Morphons, D-Demons,
and D-Morphons were applied between each of the 10 RCCT
images and the CE-CT, with the same registration parameters
as for the POPI simulation.

The displacement fields resulting from these registrations
were compared in terms of harmonic energy and minimum
Jacobian (see Figure 8). The resulting images were compared
in terms of SSD and mutual information.

The harmonic energy of displacement fields resulting
from Demons and D-Demons was quite higher than that
with the Morphons and D-Morphons, and the minimum
Jacobian of the displacement fields was positive only for
registrations using the diffeomorphic accumulation. In the
worst case, 7455 and 1114 voxels were inverted using
respectively Demons and Morphons without diffeomorphic
accumulation (on an image of 5 mega voxels). An example
of area leading to bad transformations (with negative Jaco-
bians) using conventional methods is depicted in Figure 9.
D-Morphons lead to the smoothest transformation, with
minimum Jacobian values around 0.2. These quite low
values, however, were very sporadic within the image
volume.

We noticed that, unlike the results obtained with the
POPI simulation, the SSD resulting from the Morphons
and D-Morphons was a bit higher than the SSD resulting
from Demons and D-Demons. However, as illustrated in
the example of Figure 4, the SSD does not reflect the
matching in variable contrast areas. On the other hand,
no significant differences in terms of mutual information
were observed between images resulting from the different
registrations. This is likely due to the very low contrasts in
the noncontrasted images within the regions corresponding
to contrast-enhanced tissues in the other image whereas the
main differences in terms of displacement field were located
in these regions, as illustrated in Figure 10.
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In order to illustrate the effect of the registration on
contrast-enhanced tissues, one phase of the RCCT scan
of one of the 3 patients was chosen as example. For this
patient, the tumor was located close to contrasted tissues.
The tumor and the blood vessels were delineated by a
physician, on the contrast-enhanced scan and on one phase
of the RCCT scan. The delineations on the phase image were
deformed according to the fields resulting from the different
registrations. The results are illustrated in Figure 10.

The change in volume due to warping was computed, as
well as the harmonic energy inside the delineated stuctures
and the difference between the center of mass of the tumor
with and without registration.

The change in volume was very small when using a
phase-based field computation for both the vessels (around
0%) and for the tumor delineations (around 1%), while it
rose up to 23% for the vessels and to 6% for the tumor
while using the Demons. In the same way, the harmonic
energy and the error on the center of mass of the tumor
were much smaller for the phase-based registration methods.
These results are summarized in Table 3. One can notice that
the diffeomorphic accumulation of the field in the Morphons
did not change the results in terms of harmonic energy and
volume changes compared to conventional Morphons. This
is due to the fact that the displacement of the considered
organs is small and smooth.

6. Discussion

The first medical experiment showed that D-Morphons and
D-Demons lead to similar matching of both image intensities
and anatomical landmarks. This shows that for monomodal
registration of lung CT scans, the phase difference has an
efficiency comparable to the efficiency of the SSD metric.
Furthermore, the D-Morphons produced displacement fields
as smooth as those obtained with D-Demons. In opposition
to conventional Demons and Morphons, both diffeompor-
phic methods produced invertible displacement fields which
are physically meaningful.

The second medical experiment illustrates the limita-
tions in registering images with various levels of contrast
enhancement with the Demons method. Indeed, the inten-
sity matching resulting from Demons was better than that
from Morphons, but the field was obviously wrong, as the
Demons results in a global shrinking of the contrasted tissues
(arteries) that does not reflect a proper anatomical behavior,
but that is due to the fact that the Demons registration is
based on the minimization of the SSD, which produces an
improper displacement estimation when the intensities of
identical tissues are different in the fixed and moving images.
This mismatch between registered anatomical structures is
clearly visible on Figure 10. As illustrated in the example
of Figure 4, the field produced by Demons tries to match
structures of same intensity, which do not correspond to
identical anatomical structures because of the difference in
contrast agent concentration. Therefore, the field resulting
from Demons (see the field on the left part of Figure 10)
is far less smooth than it should be and can lead to wrong
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deformation estimations as it illustrated in the example (see
Table 3). In this case, the difference in intensity between
the images with and without contrast enhancement lead
to important volume changes for vessels and tumor by
using Demons or D-Demons, while almost no changes
in volume were observed for these tissues when using a
phase-based approach. Besides, the harmonic energy inside
these tissues shows that the field is much more smooth
using the phase-based registration. It is important to notice
that these effects are mostly limited by the regularization
of the displacement field during the Demons and D-
Demons registrations, and that they will still be worse if
less regularization is used (smaller variance of the Gaussian
kernel used for smoothing the displacement field). This
is not the case for the fields produced by the Morphons
and diffeomorphic Morphons, which are much smoother
and preserve the anatomical topology even with contrast
variations between images (see Figure 10). Notice that the
reduction of the smallest segmentation that can be observed
in the Morphons results is mostly due to interslices motion,
as confirmed by the Jacobian close to 1 in this area that
shows that there is no important volume changes within this
segmented region. Finally, one can see that the invertibility of
the displacement field is observed with both diffeomorphic
registrations.

These results can be summarized by classifying the
different registration strategies according to the smoothness
(harmonic energy) and the invertibility (minimum Jacobian)
of the resulting displacement fields (see Table4) for the
variable contrast experiment.

One can notice that the D-Morphons algorithm com-
bines both advantages: the field is invertible and smooth,
which suggests that it is likely a better estimation of the real
transformation which is known to be smooth in this area.

7. Conclusion

The D-Morphons is a multiresolution registration algorithm
which computes a diffeomorphic displacement field based
on the minimization of the local intensity phase. The
method managed to estimate the deformations in a breathing
thorax, with an accuracy comparable to the accuracy of
the D-Demons, and leads to the same requisite property
of invertibility of the field. Moreover, the D-Morphons
managed to accurately estimate the deformations between
images with variable contrast, while the conventional SSD-
based methods led to misalignment of anatomical structures
affected by the contrast variation.
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