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Abstract 

Background:  The application of plant extracts has received great interest for the treatment of bovine mastitis. 
Isoliquiritigenin (ISL) is a rich dietary flavonoid that has significant antioxidative, anti-inflammatory and anticancer 
activities. This study was conducted to explore the protective efficacy and related mechanism of ISL against lipopoly-
saccharide (LPS)-stimulated oxidation and inflammation in bovine mammary epithelial cells (MAC-T) by in vitro 
experiments.

Results:  Real-time PCR and ELISA assays indicated that ISL treatment at 2.5, 5 and 10 μg/mL significantly reduced the 
mRNA and protein expression of the oxidative indicators cyclooxygenase-2 and inducible nitric oxide synthase (P < 
0.01), and of the inflammatory cytokines interleukin-6 (P < 0.05), interleukin-1β (P < 0.01) and tumor necrosis factor-α 
(P < 0.01) in LPS-stimulated MAC-T cells. Moreover, Western blotting and immunofluorescence tests indicated that the 
phosphorylation levels of nuclear factor kappa (NF-κB) p65 and the inhibitor of NF-κB were significantly decreased by 
ISL treatment, thus blocking the nuclear transfer of NF-κB p65. In addition, ISL attenuated the phosphorylation levels 
of p38, extracellular signal-regulated kinase and c-jun NH2 terminal kinase.

Conclusions:  Our data demonstrated that ISL downregulated the LPS-induced inflammatory response in MAC-T 
cells. The anti-inflammatory and antioxidative activity of ISL involves the NF-κB and MAPK cascades.
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Background
Bovine mastitis is considered the most costly disease in 
dairy cattle due to inflammation of the mammary gland. 
Bovine mastitis is caused by infection with microbial 
pathogens and physical, environmental and genetic fac-
tors as well [1]. Escherichia coli is one of the most com-
mon agents of clinical mastitis. Lipopolysaccharide 
(LPS) is the major component of the outer membrane in 

Escherichia coli [2], and it activates the nuclear factor-κB 
(NF-κB) pathway via Toll-like receptor 4 (TLR4) dimeri-
zation [3]. Mitogen-activated protein kinases (MAPKs) 
are also fundamental in the control of the inflammatory 
response through the crosstalk with the NF-κB path-
way [3]. Both MAPK and NF-κB activation promote the 
production of proinflammatory factors IL-1β, IL-6 and 
TNF-α as well as inflammatory mediators cyclooxy-
genase-2 (COX-2) and inducible nitric oxide synthase 
(iNOS) [4, 5].

Antibiotics are widely applied in mastitis treatment; 
however, the abuse of antibiotics results in drug-resistant 
bacteria and antibiotic residues in the food chain that are 
harmful to consumers’ health [6]. As plant active ingredi-
ents are nontoxic and have medicinal and health benefits, 
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their application in inflammation treatment has received 
widespread attention.

Isoliquiritigenin (ISL) is a flavonoid with a chalcone 
structure extracted from licorice. ISL has been reported 
to have pharmacological activities, including antioxida-
tion, anti-inflammation, antiplatelet aggregation and 
antineoplastic properties [7, 8]. In vitro experiments 
have demonstrated that ISL attenuates the inflammatory 
response of macrophages by suppressing the homodi-
merization of TLR4 [9]. In vivo studies revealed that ISL 
inhibited NF-κB activation in septic mice, thus reduc-
ing the expression of IL-6, TNF-α and COX-2 [10, 11]. 
Additionally, upstream signaling pathways, including the 
phosphorylation of p38 in the MAPK pathway and DNA 
binding of NF-κB p65, were prohibited by ISL [12].

Despite these encouraging studies, it is still unclear 
whether ISL has a beneficial function in LPS-induced 
bovine mastitis. Here, we investigated the potential pre-
ventive effects of ISL in LPS-induced bovine mammary 
epithelial cells (MAC-T). In particular, we determined 
the molecular mechanism underlying the antioxidative 
and anti-inflammatory effects of ISL.

Results
Cytotoxicity of ISL in MAC‑T cells
The cytotoxicity of ISL in MAC-T cells was examined by 
MTT assay. ISL had no effect on the viability of MAC-T 
cells at concentrations of 2.5, 5 and 10 μg/mL; however, 
cell viability was significantly decreased upon 24 h treat-
ment with ISL at 20 and 40 μg/mL (P < 0.05, Fig.  1A). 
Thus, ISL concentrations of 2.5, 5 and 10 μg/mL, which 
showed no cytotoxicity towards MAC-T cells, were 

applied in further studies. To demonstrate that there was 
no endogenous endotoxin present and only the effects of 
ISL on MAC-T cells, endogenous endotoxin was tested in 
the cells administered ISL at 0, 2.5, 5, 10 and 20 μg/mL 
(Fig.1B). The results showed much lower levels of endo-
toxin in the blank group than in the ISL groups (P < 0.01), 
and the endotoxin level in each cell group was below the 
threshold of cytotoxic response (< 200 ng/L), indicating 
that the plant compound is free of endotoxin.

Anti‑inflammatory and antioxidative effects of ISL 
in MAC‑T cells
The inflammatory effect stimulated by LPS in MAC-T 
cells was measured using the mRNA levels of IL-6. IL-6 
mRNA levels were significantly higher in LPS-treated 
cells than in controls (P < 0.01), but there was no dif-
ference in IL-6 mRNA levels upon treatment with 1, 5, 
10 and 20 μg/mL LPS (P > 0.05, Supplementary Fig. 1). 
Therefore, 1 μg/mL LPS was applied for further studies 
[3, 13].

Furthermore, real-time PCR and ELISA were used to 
detect the expression of inflammatory markers and the 
inhibitory effect of ISL on inflammation. The expression 
of TNF-α, IL-1β and IL-6 at the mRNA and protein lev-
els was significantly upregulated in the LPS-treated cells 
compared with the sham-treated cells (P < 0.01, Fig. 2). 
When ISL was administered, the mRNA levels of TNF-α 
(P < 0.01), IL-1β (P < 0.01) and IL-6 (P < 0.05) was sig-
nificantly decreased, and ISL had better effects at 10 
μg/mL than DEX (Fig.  2A-C). Importantly, ISL signifi-
cantly inhibited the protein expression of these inflam-
matory biomarkers in LPS-stimulated MAC-T cells (P 

Fig. 1  Viability and endotoxin test of MAC-T cells by MTT assay after 24 h of treatment with isoliquiritigenin (ISL). A Cell viability was measured 
using the MTT assay, where the viability of nontreatment control cells was set as 100%. B Cell endotoxin (ET) was tested using ELISA. Values 
represent the means ± SEM of three independent experiments. In the above bars, the same letters indicate P > 0.05; different lowercase letters 
indicate P < 0.05 while different uppercase letters indicate P < 0.01
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< 0.01, Fig.  2D-F), supporting the results of qRT-PCR 
experiments.

In addition, we investigated ISL influence on the 
expression of iNOS and COX-2, which have been 
reported as oxidative stress indicators. The results 
showed that both DEX and ISL significantly reduced 
LPS-induced iNOS and COX-2 mRNA abundance in 
MAC-T cells (P < 0.01, Fig. 3A-B). ELISA also showed the 
inhibitory effect of ISL on iNOS and COX-2 expression 
in LPS-stimulated MAC-T cells (Fig. 3C-D).

Effects of ISL on LPS‑stimulated activation of MAPK 
and NF‑κB pathways
We estimated how the NF-κB pathway, which is critical 
for the production of proinflammatory cytokines, was 
influenced. As shown in Fig.  4A-B and Supplementary 
Fig. 2A, the protein levels of p65, which is a key member 
in the NF-κB pathway, did not differ between LPS, DEX 
and ISL treatment, but the levels of phosphorylated p65 
(p-p65) was significantly decreased in cells treated with 
ISL (2.5, 5 and 10 μg/mL) and DEX (P < 0.01). Moreover, 
ISL at 5 and 10 μg/mL increased the protein levels of IκB, 
which is another key member of the NF-κB pathway (P < 

0.01, Fig. 4C). In addition, ISL markedly inhibited p-IκB 
levels increased by LPS (Fig.  4D) and dose-dependently 
decreased the p-p65/p65 and p-IκB/IκB ratios (P < 0.01, 
Supplementary Fig. 2B-C).

We further determined the phosphorylation of MAPK 
members, critical cascades upstream of proinflammatory 
mediators and NF-κB. ISL administration significantly 
reduced LPS-induced activation of p-JNK, p-p38, and 
p-ERK (P < 0.01), as revealed by both their phosphoryla-
tion/total protein ratios (P < 0.01, Supplementary Fig. 3) 
and their phosphorylation/β-actin ratios (Fig. 5).

Effect of ISL on LPS‑stimulated p65 nuclear translocation
Finally, we examined the nuclear translocation of NF-κB 
p65 in MAC-T cells challenged with LPS using an 
inverted fluorescence microscope. In contrast to the uni-
form distribution of red fluorescently labeled p65 in the 
cytoplasm in the control cells, LPS administration led 
to p65 accumulation in the blue-labeled nuclei (Fig. 6A). 
However, LPS-enhanced translocation of p65 was pro-
hibited by ISL treatment at 2.5, 5 and 10 μg/mL (Fig. 6B), 
similar to the effect of DEX (Fig.6A).

Fig. 2  Expression analysis of proinflammatory cytokines in MAC-T cells. Cells were treated with lipopolysaccharide (LPS) at 1 μg/mL for 24 h in 
combination with dexamethasone (DEX) (20 μg/mL) or isoliquiritigenin (ISL) (2.5, 5 and 10 μg/mL). With β-actin as an endogenous control, real-time 
PCR and ELISA were used to detect mRNA (A-C) and protein (D-F) levels. Values represent the means ± SEM of four independent experiments. In 
the above bars, ** indicate significance at P < 0.01 between the control and the LPS treatment without DEX and ISL. Among LPS in combination 
with DEX and ISL treatments, the same letters indicate P > 0.05; different lowercase letters indicate P < 0.05 while different uppercase letters indicate 
P < 0.01
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The p65 fraction in the nucleus was further detected. 
As shown in Fig. 6C, LPS stimulation resulted in higher 
levels of p65 in the nucleus than that of the nontreatment 
control (P < 0.01). However, the LPS-induced nuclear 
content of p65 was significantly reduced after the admin-
istration of 2.5, 5 and 10 μg/mL ISL (P < 0.01), supporting 
the immunofluorescence results.

Discussion
To the best of our knowledge, this study is the first to 
demonstrate the anti-inflammatory effect of ISL in 
MAC-T cells. Bovine mastitis is often involved in bac-
terial infections during parturition and early lactation 

in bovine mammary glands [14]. The MAC-T cell line 
was established by transfection of simian virus-40 large 
T-antigen into bovine mammary epithelial cells; thus, the 
cell line has a biological response similar to that of pri-
mary cells [15] and is used as a model for studying bovine 
mammary gland inflammation. To this end, we chose 
MAC-T cells to clarify their response to ISL in this study.

It has been reported that LPS, the main component of 
cell membranes in Escherichia coli, triggers a comprehen-
sive immune response in MAC-T cells via TLR4/NF-κB 
and MAPK cascades [16, 17]. Ma et al [13] indicated an 
inflammatory response of MAC-T cells after stimulation 
with 1 μg/ml LPS. Additionally, 1 μg/mL LPS markedly 
increased the mRNA and protein levels of IL-6, IL-1β and 

Fig. 3  Expression analysis of COX-2 and iNOS in MAC-T cells. Cells were incubated with 1 μg/mL lipopolysaccharide (LPS) in combination with 20 
μg/mL dexamethasone (DEX) or isoliquiritigenin (ISL) at 2.5, 5 and 10 μg/mL for 24 h. With β-actin as an endogenous control, real-time PCR and 
ELISA were used to detect mRNA (A and B) and protein (C and D) levels, respectively. Values represent the means ± SEM of four independent 
experiments. In the above bars, ** indicate significance at P < 0.01 between the control and the LPS treatment without DEX and ISL. Among LPS in 
combination with DEX and ISL treatments, the same letters indicate P > 0.05; different lowercase letters indicate P < 0.05 while different uppercase 
letters indicate P < 0.01
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TNF-α (Fig.  2) in this study. Accordingly, 1 μg/mL LPS 
and ISL at 2.5, 5 and 10 μg/mL without cytotoxicity in 
MAC-T cells (Fig. 1) were chosen.

Numerous studies have shown that ISL can reduce 
the production of proinflammatory factors, including 
IL-6, IL-1β and TNF-α, by blocking TLR4 binding to 
LPS [17–19]. Our data also showed that ISL downregu-
lated the expression of these proinflammatory factors in 
LPS-stimulated MAC-T cells (Fig. 2), suggesting the anti-
inflammatory effect of ISL. Although there is no report 
involving ISL efficacy in mammary epithelial cells, the 
anti-inflammatory effects of ISL in oral squamous cell 
carcinoma and intestinal and retinal epithelial cells [20–
23] are consistent with our results in MAC-T cells.

Other studies have shown that ISL can reduce the 
expression of COX-2 and iNOS in septic mice [11] and 
HT-29 cells [22]. COX-2 is an inducible enzyme acti-
vated by cytokines and growth factors, such as IL-1 and 
IL-6, while iNOS is a nitric oxide synthetase activated 
by pathologic stimuli. Induction of COX-2 and iNOS is 
responsible for the cell levels of cytotoxic mediators pros-
taglandin (PG) and NO, respectively [24–26]. Hence, 
both COX-2 and iNOS are considered markers of oxida-
tive stress and inflammation. The finding that ISL down-
regulated LPS-enhanced expression of COX-2 and iNOS 
in MAC-T cells (Fig. 3) indicates the antioxidative effect 
of ISL on bovine mastitis.

It has been well documented that ISL inhibits NF-κB 
activity in neurological inflammation, hypertensive renal 

Fig. 4  Detection of NF-κB activity in MAC-T cells by Western blotting. Cells were coincubated with 1 μg/mL lipopolysaccharide (LPS) and 
dexamethasone (DEX) (20 μg/mL) or isoliquiritigenin (ISL) (2.5, 5 and 10 μg/mL) for 24 h. The levels of p65 (A), p-p65 (B), IκB (C) and p-IκB (D) 
proteins were relative to β-actin. Values represent the means ± SEM of three independent experiments. In the above bars, ** indicate significance at 
P < 0.01 between the control and the LPS treatment without DEX and ISL. Among LPS in combination with DEX and ISL treatments, the same letters 
indicate P > 0.05; different lowercase letters indicate P < 0.05 while different uppercase letters indicate P < 0.01
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injury, traumatic brain injury and other inflammatory 
diseases in rats [11, 27, 28]. NF-κB was first discovered 
in B cell nuclear proteins bound to the kappa enhancer 
of the immunoglobulin kappa light chain gene, and it is 
involved in a series of physiological activities, such as 
cell growth, inflammation and immune response [29, 
30]. NF-κB exists as an inactive complex with IκBα in the 
cytoplasm. Activation of NF-κB leads to IκB phospho-
rylation by IκB kinase (IKK) and subsequent degradation 
via ubiquitination, thereby releasing and translocating 
NF-κB p65 to the nucleus, where the transcription fac-
tor promotes transcription of its target genes, including 
proinflammatory cytokines, iNOS and COX-2 [31]. Our 
data revealed that ISL increased the abundance of IκB, 
but lowered the phosphorylation of IκB and p65 in LPS-
stimulated cells (Fig. 4 and Supplementary Fig. 2), conse-
quently blocking p65 translocation to the nucleus (Fig. 6 
). Therefore, the reduced expression of LPS-induced 
TNF-α, IL-6, IL-1β, iNOS and COX-2 can be due to the 
suppression of NF-κB activity.

MAPKs are a group of serine/threonine protein kinases 
that can be activated by a variety of stimuli and regulate 
the phosphorylation of downstream signaling pathways 
[32, 33]. MAPKs, consisting of p38, ERK and JNK, are 
involved in a cascade regulating NF-κB-mediated tran-
scription of the proinflammatory cytokines, i.e. IL-6, 

IL-1β and TNF-α, and inflammatory mediators, such 
as NO, iNOS, COX-2 and prostaglandin E2 [24, 34, 35]. 
Previous reports indicated that ISL inhibited MAPK 
activities in human liver cancer and colitis [36, 37]. Our 
results demonstrated significant inhibition of ISL on 
LPS-induced phosphorylation of p38, ERK1/2 and JNK in 
MAC-T cells (Fig. 5). These results indicate the involve-
ment of ISL in MAPK-mediated anti-inflammatory and 
antioxidative effects.

In the current study, we revealed that ISL attenuated 
the inflammatory and oxidative response in vitro, but did 
not investigated the in vivo efficacy of ISL. Especially, we 
have not carried out clinical trials to explore the clini-
cal efficacy of ISL in the treatment of bovine mastitis at 
present. Nevertheless, findings from previous studies 
have highlighted the anti-inflammatory and antioxida-
tive activities of ISL via the NF-κB, MAPK or other path-
ways in rats with carrageenan-induced pleurisy [38] and 
in mice with dextran sulfate sodium-induced colitis [37]. 
The above data together with the findings from the pre-
sent studies will help to determine the potential appli-
cation of ISL in the prevention and treatment of bovine 
mastitis.

Fig. 5  Detection of MAPK activity in MAC-T cells using Western blotting. Cells were coincubated with 1 μg/mL lipopolysaccharide (LPS) and 
dexamethasone (DEX) (20 μg/mL) or isoliquiritigenin (ISL) (2.5, 5 and 10 μg/mL) for 24 h. (A-F) The protein levels of ERK1/2, p38 , JNK, p-ERK, p-p38 
and p-JNK were relative to those of β-actin, respectively. Values represent the means ± SEM of three independent experiments. In the above bars, 
** indicate significance at P < 0.01 between the control and the LPS treatment without DEX and ISL. Among LPS in combination with DEX and ISL 
treatments, the same letters indicate P > 0.05; different lowercase letters indicate P < 0.05 while different uppercase letters indicate P < 0.01
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Conclusions
ISL downregulats LPS-induced expression of inflam-
matory cytokines, i.e. TNF-α, IL-1β and IL-6, and 
oxidative stress indicators, which include iNOS and 
COX-2, in MAC-T cells. The anti-inflammatory effect 
of ISL involves the inhibition of the NF-κB and MAPK 
pathways.

Methods
Reagents and chemicals
ISL and dexamethasone (DEX) were provided by 
Macleans (Shanghai, China). LPS from Escherichia 
coli 055:B5 serotype, purity ≥ 99%, item number: 
L8880) and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-di-
phenyltetrazole bromide] were provided by Solarbio 
(Beijing, China). The fluorescence quantification kits 
were purchased from Takara (Beijing, China). Pri-
mary antibodies were obtained commercially, includ-
ing p-p65, p-IκBα, p65, IκBα, p-ERK1/2 and ERK1/2 
(Bioss, Beijing, China) as well as JNK, p38, p-JNK and 
p-p38 (Wanleibio, Shenyang, China). Fetal bovine 
serum (FBS) and Dulbecco’s modified Eagle’s medium 
(DMEM) were supplied by Gibco (Suzhou, China). The 
ELISA and NF-κB Activation Nuclear Transport Test 

Kits were available from SinoBestBio (Shanghai, China) 
and Beyotime (Shanghai, China), respectively. Tris-
buffered saline plus Tween 20 (TBST) was obtained 
from Solarbio (Shanghai, China).

Cell culture and treatments
MAC-T cells were kept in our laboratory and were seeded 
at 37°C and 5% CO2 in an incubator in DMEM basic, 
which contained 10% FBS, 100 U/mL streptomycin and 
100 μg/mL penicillin. The cells were grown to 90-100% 
confluency at logarithmic phase, and then the cells were 
administered with 1 μg/mL LPS combined with 2.5, 5, 
or 10 μg/mL ISL in five replicates for 24 h. LPS (1 μg/
mL) was used according to recent reports [3, 4], and ISL 
concentrations were determined from the cell viability 
experiments. Cells in LPS (1 μg/mL) without ISL and in 
LPS with 20 μg/mL of DEX, a drug for anti-inflammation, 
were used as negative and positive controls, respectively.

Cytotoxicity test
Cells were plated in a 96-well plate in 5 replicates and 
treated with ISL at 0, 2.5, 5, 10, 20 and 40 μg/mL for 
24 h. The culture medium was replaced with 10 μL of 
MTT solution and 90 μL of DMEM, and the cells were 

Fig. 6  Immunofluorescence analysis (A) and quantification (B) of p65 nuclear translocation in MAC-T cells. Cells treated with LPS (1 μg/mL) were 
coincubated with DEX (20 μg/mL) or ISL (2.5, 5 and 10 μg/mL) for 24 h. p-p65 was labeled red with Cy3, while the nucleus was marked blue with 
DAPI. Values represent the means ± SEM of four independent experiments. In the above bars, ** indicate significance at P < 0.01 between the 
control and the LPS treatment without DEX and ISL. Among LPS in combination with DEX and ISL treatments, the same letters indicate P > 0.05; 
different lowercase letters indicate P < 0.05 while different uppercase letters indicate P < 0.01
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incubated for another 4 h. After centrifugal precipitation 
at 1000 rpm for 5 min, the cells were incubated again in 
110 μL of formazan solution for 10 minutes. Measure-
ment of optical density (OD, 490 nm) was performed in 
xMarkTM (BIO-RAD, California, America).

Real‑time PCR analysis
Cells were seeded in 12-well plates. After extraction of 
total RNA using the RNAiso Plus, cDNA was synthesized 
using the Reverse Transcription System (Takara, Beijing, 
China). Real-time PCRs were performed in triplicate 
using the TB Green® Premix Ex Taq™ II (Takara, Beijing, 
China) with the primers in Table  1. The melting curve 
analysis, PCR cycling parameters and conditions were 
documented recently [39]. The 2−ΔΔCt method was used 
to measure the mRNA levels of genes related to the gene 
of β-actin [13].

ELISA (enzyme‑linked immunosorbnent assay) 
and endotoxin test
Cells were seeded in a 6-well plate and a 24-well plate for 
the detection of cytokines and endogenous endotoxin, 
respectively. Cell protein was extracted and quantified 
with Total Protein Extraction Kits and then BCA Pro-
tein Quantification Kits (Vazyme, Nanjing, China). The 
contents of IL-1β, TNF-α, IL-6, iNOS and COX-2 were 
detected by commercial ELISA kits (Youxuan, Shang-
hai, China) in triplicate, while endogenous endotoxin 
in cells was determined using Endotoxin (ET) ELISA 
kits (Jiangsu Jingmei Biological Technology, Yangcheng, 
China ). The OD values at 450 nm were measured in 
xMarkTM (BIO-RAD, California, America).

Western blotting analysis
Cells were cultured and treated as described above in a 
6-well plate. Western blotting detection of IκBα, p-IκBα, 
p65, p-p65, p38, p-p38, JNK, p-JNK, ERK and p-ERK was 
performed as recently described [13]. Each experiment 
was repeated three times, and the β-actin protein was 
used as an endogenous control as described in a previous 
report in MAC-T cells [13]. Band intensity was measured 
using Image Lab software (version 5.2.1, Bio-Rad, Cali-
fornia, America).

Measurement of p65 nuclear translocation
Immunofluorescence and ELISA assays for p65 nuclear 
translocation were analyzed as recently described [3, 13]. 
Briefly, MAC-T cells were cultured in a 6-well plate until 
5,000 cells/well. The cells were incubated sequentially 
with the primary antibody against p-p65 and rabbit anti-
goat IgG/Cy3 antibody. The nucleus was stained blue 
with 4’,6-diamino-2-phenylindole (DAPI) and observed 
under a fluorescence inverted microscope (Leica, Wetzlar 
GER). For detection of p65 nuclear translocation, nuclear 
protein was extracted and quantified using a nuclear pro-
tein extraction kit and a BCA protein quantification kit 
(Vazyme, Nanjing, China), respectively. The levels of p65 
in the nucleus were measured with commercial ELISA 
kits as described above.

Statistical Analysis
Statistical analysis was performed using SPSS 23.0. The 
data are expressed as the means ± standard error of the 
mean (SEM). The t-test was conducted between controls 
and LPS treatments without DEX or ISL. One-way analy-
sis of variance, followed by Tukey’s post hoc test, was 
used to compare the significance among LPS combined 

Table 1  Primer information for real-time PCR

Gene name Primer Sequence 5′–3′ Size (bp) Annealing (°C) Accession No.

TNF-alpha F: TCT​GGT​TCA​AAC​ACT​CAG​GTCC​ 120 59 NM_173966

R: AGG​GCA​TTG​GCA​TAC​GAG​TC

IL-1beta F: AGA​GGC​AGT​TTG​GGA​GAC​GA 241 59 NM_174093

R: GGG​ACT​GGC​ATG​GCA​AAT​GG

IL-6 F: CAC​CCC​AGG​CAG​ACT​ACT​TC 216 59 NM_173923

R:AAG​CAA​ATC​GCC​TGA​TTG​AACC​

iNOS F: CTG​GAG​GAA​GTG​GGC​AGA​AG 190 59 NM_001076799

R: CTC​GGG​AGC​GGT​ACT​CAT​TC

COX-2 F: TAA​AGC​CAG​GGG​AGC​TAC​GA 191 59 NC_006853

R: TAA​GCC​TGG​ACG​GGA​CGA​TA

Beta-actin F: AGC​AGA​TGT​GGA​TCA​GCA​AG 82 59 NM_173979

R: TAA​CAG​TCC​GCC​TAG​AAG​CA
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with DEX and ISL treatments. Statistical significance was 
set at P < 0.05 or P < 0.01.

Abbreviations
ISL: Isoliquiritigenin; NF-κB: Nuclear factor kappa B; TLR4: Toll-like receptor 4; 
MAPK: Mitogen-activated protein kinase; LPS: Lipopolysaccharide; MAC-T: 
Bovine mammary epithelial cells; IKK: IκB kinase; IL-1β: Interleukin-1β; TNF-α: 
Tumor necrosis factor-α; ERK: Extracellular signal-regulated kinase; JNK: C-jun 
NH2 terminal kinase; IL-6: Interleukin-6; COX-2: Cyclooxygenase-2; iNOS: Induc-
ible nitric oxide synthase.
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Additional file 1: Supplemental Fig. 1. LPS-induction of IL-6 mRNA in 
MAC-T cells. Cells were respectively coincubated with LPS at 1, 5, 10 and 
20 μg/mL for 24 h. Real-time PCR was used to measure IL-6 mRNA levels 
with β-actin as an internal control. Values represent the means ± SEM of 
four independent experiments. In the above bars, ** indicate significance 
at P < 0.01 between the control and the LPS treatment without DEX and 
ISL. Among LPS in combination with DEX and ISL treatments, the same 
letters indicate P > 0.05. Supplemental Fig. 2. Western blotting analysis 
of p-p65/p65 and p-IκB/IκB in MAC-T cells. (A) Western blotting. (B and 
C) p-p65/p65 and p-IκB/IκB, respectively. Cells were treated with 1 μg/
mL lipopolysaccharide (LPS) in combination with dexamethasone (DEX) 
(20 μg/mL) or ISL (2.5, 5 and 10 μg/mL) for 24 h. The displayed gels were 
cropped from the original images in the additional files. In the above 
bars, ** indicate significance at P < 0.01 between the control and the LPS 
treatment without DEX and ISL. Among LPS in combination with DEX 
and ISL treatments, the same letters indicate P > 0.05; different lowercase 
letters indicate P < 0.05 while different uppercase letters indicate P < 0.01. 
Supplemental Fig. 3. Western blotting analysis of p-p38/p38, p-ERK/
ERK and p-JNK/JNK in MAC-T cells. (A) Western blotting. (B-D) p-ERK/ERK, 
p-p38/p38 and p-JNK/JNK, respectively. Cells were incubated with 1 μg/
mL lipopolysaccharide (LPS) in combination with dexamethasone (DEX) 
(20 μg/mL) or isoliquiritigenin (ISL) (2.5, 5 and 10 μg/mL) for 24 h. The 
displayed gels were cropped from the original images in the additional 
files. In the above bars, ** indicate significance at P < 0.01 between 
the control and the LPS treatment without DEX and ISL. Among LPS in 
combination with DEX and ISL treatments, the same letters indicate P > 
0.05; different lowercase letters indicate P < 0.05 while different uppercase 
letters indicate P < 0.01.
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