
NOTE  Parasitology

Expression of regulatory dendritic cell-related cytokines in cattle experimentally 
infected with Trypanosoma evansi

Hirohisa MEKATA1,2), Shiro MURATA1), Claro Niegos MINGALA3), Kazuhiko OHASHI1) and Satoru KONNAI1)*

1)Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita 
18 Nishi 9, Sapporo 060–0818, Japan

2)Project for Zoonoses Education and Research, Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1–1 
Gakuen-Kibanadai-Nishi, Miyazaki 889–2192, Japan

3)Animal Health Unit, Philippine Carabao Center National Headquarters and Gene Pool, 3120 Nueva Ecija, Science City of Munoz, 
Philippines

(Received 29 January 2015/Accepted 16 March 2015/Published online in J-STAGE 27 March 2015)

ABSTRACT.	 Trypanosoma evansi causes wasting disease in many livestock. T. evansi infection gives rise to inflammatory immune responses, 
which contribute to the development of inflammation-associated tissue injury. We previously reported that regulatory dendritic cells (DCs), 
which act as potential regulators of inflammation, were activated in infected mice and transfer of regulatory DCs to infected mice prolonged 
their survival. However, the kinetics of regulatory DCs in cattle, which are natural hosts of T. evansi, remained unclear. In this study, we re-
port that the expressions of CCL8 and IL-10, which promote the development of regulatory DCs, were up-regulated in cattle experimentally 
infected with T. evansi. This finding is potentially useful for studying the control strategy of T. evansi infection in cattle.
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Trypanosoma evansi (T. evansi) is a widely distributed 
species of trypanosome that causes a disease called surra in 
most livestock [5, 17]. Surra is a wasting disease, and the 
clinical symptoms include fever, anemia and weight loss. 
T. evansi is spread by mechanical transmission of infected 
blood through biting flies, such as horse fly (Tabanus) and 
stable fly (Stomoxys spp.) [2, 18]. In recent years, the dam-
age of surra has been increasing, because of expansion of 
the biting fly’s range as well as transportation of infected 
livestock. The well-known immune evasion systems of try-
panosome make it difficult to develop an effective vaccine 
[20]. Therefore, the elucidation of surra immune pathology 
in livestock is required to establish the treatment protocol 
and construct disease-tolerant livestock.

Effective elimination of pathogens requires the induction 
of inflammatory immune responses. Inflammatory cytokines, 
such as interferon-γ (IFN-γ) and tumor necrosis factor-α 
(TNF-α), play major roles in the control of trypanosome in-
fections [3, 7–9, 15]. However, the production of excessive 
inflammatory cytokines or chemokines was already identi-
fied as a key player in trypanosome infection-associated 
pathogenicity [1, 6, 10, 13]. The cellular and molecular 
components that govern this delicate balance are necessary 
to understand the pathology of T. evansi infection. We have 

previously reported that regulatory dendritic cells (DCs), 
which secret a high dose of IL-10 and activate regulatory T 
cells [19, 22], were induced in mice experimentally infected 
with T. evansi and controlled excessive inflammation [11]. 
In this study, we reveal that the phenomenon also occurs in 
cattle, the natural hosts of T. evansi.

In this study, four Holstein cattle (Bos taurus, 8–9-month-
old males) were used for experimental infection. All cattle 
were obtained from the Experiment Farm, Field Science 
Center for Northern Biosphere, Hokkaido University (Sap-
poro, Japan) and reared in the experimental animal facility of 
the Graduate School of Veterinary Medicine, Hokkaido Uni-
versity. This study was conducted in strict accordance with 
the recommendations set out in the Guidelines for Animal 
Experimentation of the Japanese Association for Laboratory 
Animal Science. The protocol for the animal experiment 
was approved by the Hokkaido University Animal Care and 
Use Committee (Approval number: 1028 and 11-0060). T. 
evansi strains L2 and L3 [12], isolated from water buffalo 
in Philippines, were subcutaneously injected into the cattle’s 
cervical region. Two cattle were infected with strain L2. The 
others were infected with strain L3. The pathogenicity in 
mice and cattle was different between strains L2 and L3, and 
strain L2 had higher pathogenicity than strain L3 [12]. One 
day and just before the injection of trypanosome to cattle, 
we collected blood from the cattle and confirmed that those 
cattle were not infected with trypanosome. The number of 
trypanosome in blood was estimated by quantitative real-
time polymerase chain reaction (PCR) as described by Kon-
nai et al. [4]. Extraction of total RNA from the peripheral 
blood mononuclear cells (PBMCs) and quantification of the 
cytokines by real-time PCR were performed as described by 
Mekata et al. [11]. We set the mean cytokine expression of 
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one day and just before the injection of trypanosome as the 
reference of relative ratio. The primers used for quantifica-
tion of cytokines in this study are listed in Table 1.

In order to clarify the immunobiological aspects, we used 
two strains of T. evansi that differ in virulence in mice and 
cattle. In cattle infected with strains L2 and L3, the parasite 
was initially detected at 4–5 days post-infection, and parasit-
emic waves were observed at 4–5-day intervals (Fig. 1). The 
mRNA expression of IL-10 was up-regulated in 5–7 days 
post-infection (Fig. 2a). The expression of IL-10 in cattle 
infected with strain L2 decreased after 8 days post-infection. 
However, IL-10 expression increase was sustained for one 
month in strain L3. Although the maximum increase in IL-10 
expression in T. evansi-infected mice was approximately 80-
fold [11], the maximum up-regulation in infected cattle was 
only 3 to 6-fold. The difference in gene expression increase 
may be a result of the difference in infection sensitivity be-
tween mice and cattle. The expression of CCL8 was strongly 
up-regulated in 5–6 days post-infection and down-regulated 
in the late phase (Fig. 2b). The expression pattern of CCL8 
during the early phase of infection was similar to that of T. 
evansi-infected mice [11]. CCL8 and IL-10 are known to 
promote the development of and increase in regulatory DCs 
in mice [16, 19]. Therefore, the increase in CCL8 and IL-10 
production in cattle indicates the induction and development 
of regulatory DCs. However, the detailed function of regula-
tory DCs in cattle remains unclear. We need to confirm that 

regulatory DCs in cattle have a similar function and charac-
ter as those in mice.

In contrast to trypanosomiasis in mice, the immunobio-
logical aspects of T. evansi infection in livestock have hardly 
been documented. The pathogenicity of T. evansi infection 
widely differs among the animal species. The symptoms of 
T. evansi-infected camels and horses become worse than 

Table 1.	 Primers used for cytokine gene quantification in this study

Target gene Primer name Nucleotide sequence
CCL8 Bos-CCL8-F 5′-GGG ATT CTG TGT CTG CTG CT-3′

Bos-CCL8-R 5′-GCA GGT GAT TGG GGT AGA AA-3′
IL-10 Bos-IL10-F 5′-TGT TGA CCC AGT CTC TGC TG-3′

Bos-IL10-R 5′-GGC ATC ACC TCT TCC AGG TA-3′
Glucuronidase β Bos-Gusb-F 5′-CAG ATG CCA TTG AAG GGT TT-3′

Bos-Gusb-R 5′-TTT GGT CCA GAA CCA CAT GA-3′
Heat shock protein 90 Bos-Hsp90-F 5′-GCC AAG TCT GGC ACT AAA GC-3′

Bos-Hsp90-R 5′-AGG CAG AGT AGA AGC CCA CA-3′

Fig. 1.	 The changes in parasitemia in four experimentally infected 
cattle. Cattle were subcutaneously inoculated with 2.0 × 107 T. 
evansi strain L2 or L3 [12]. The black (box and diamond) and 
white (triangle and circle) shapes indicate the parasitemia changes 
of each cattle infected with T. evansi strain L2 (high virulence) 
and L3 (low virulence), respectively. The black and dotted lines 
indicate the mean parasitemia of strains L2 and L3, respectively.

Fig. 2.	 The expression levels of CCL8 and IL-10 in PBMCs of T. evansi-infected cattle. The quantitative PCR results for the transcripts of IL-
10 (a) and CCL8 (b) in PBMCs of T. evansi-infected cattle during 28 days post-infection are shown. Relative values of cytokine expression 
were calculated as the ratio divided by average quantity of cytokine expression in one day and just before T. evansi infections. The black (box 
and diamond) and white (triangle and circle) shapes indicate the amount of transcript of each cattle infected with T. evansi strain L2 (high 
virulence) and L3 (low virulence), respectively. The black and dotted lines indicate the mean transcripts of strains L2 and L3, respectively.
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those of cattle or water buffalo [21]. In Philippines, water 
buffalo is the major livestock, and the damage of surra is 
mainly from cattle and water buffalo. These animals are 
closely related and have small differences in the cytokine 
structure [14]. Clarifying the immune responses against 
trypanosome infection in cattle also assists in understand-
ing of immune response in water buffalo. Many factors 
are involved in the sensitivity of trypanosome infections. 
Excessive inflammation control is an important factor to 
resist trypanosome virulence [1, 6, 10, 13]. In this study, 
we revealed that CCL8 and IL-10 expression was increased 
with T. evansi infection in cattle. The result did not directly 
prove the existence of regulatory DCs in cattle, because of 
the unavailability of monoclonal antibodies of CD11c and 
CD45RB in cattle. However, this research will be helpful for 
developing a therapeutic agent or constructing a T. evansi-
tolerant livestock strain.
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