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Abstract: Cold stress is one of the main restricting factors affecting plant growth and agricultural pro-
duction. Complex cold signaling pathways induce the expression of hundreds of cold-sensitive genes.
The NAC transcription factor CaNAC035 has previously been reported to significantly influence the
response of pepper to cold stress. Here, using Yeast one-hybrid (Y1H) library screened to search
for other relevant molecular factors, we identified that CabHLH79 directly binds to the CaNAC035
promoter. Different basic helix–loop–helix (bHLH) transcription factors (TFs) in plants significantly
respond to multiple plant stresses, but the mechanism of bHLHs in the cold tolerance of pepper
is still unclear. This study investigated the functional characterization of CabHLH79 in the regula-
tion of cold resistance in pepper. Down-regulation of CabHLH79 in pepper by virus-induced gene
silencing (VIGS) increased its sensitivity to low temperature, whereas overexpression of CabHLH79
in pepper or Arabidopsis enhanced cold resistance. Compared with control plants, VIGS mediated of
CabHLH79 had lower enzyme activity and related gene expression levels, accompanied by higher
reactive oxygen species (ROS) accumulation, relative electrolyte leakage (REL), and malondialdehyde
accumulation (MDA) contents. Transient overexpression of CabHLH79 pepper positively regulated
cold stress response genes and ROS genes, which reduced REL and MDA contents. Similarly, ectopic
expression of CabHLH79 in Arabidopsis showed less ROS accumulation, and higher enzymes activities
and expression levels. These results indicated that CabHLH79 enhanced cold tolerance by enhancing
the expression of ROS-related and other cold stress tolerance-related genes. Taken together, our
results showed a multifaceted module of bHLH79-NAC035 in the cold stress of pepper.

Keywords: CabHLH79; bHLH transcription factor; reactive oxygen species; cold stress

1. Introduction

Cold stress has always been an extreme external environmental factor that deeply
affects plant growth and crop yield, and even leads to plant death [1,2]. Cold stress can
affect the physiological response, germination, accelerated senescence, oxidative damage,
membrane damage, and tissue destruction of plants [3,4]. Therefore, plants have also
evolved a set of complex mechanisms to resist harsh environmental stresses [5–7]. Stress
responses are known to include a variety of signaling pathways that form complex networks
of structural and regulatory proteins encoded by different genes that play a direct or
indirect role in protecting plants from abiotic stresses [8–11]. Transcription factors (TFs) are
important regulatory proteins, which control the expression of target genes by binding to
specific cis-acting elements in promoters [12]. Therefore, identification and characterization
of TFs that respond to stress are crucial to elucidate the molecular network associated
with stress response [13]. Cold stress can induce the expression of multiple TFs, including
C-repeat-binding factor (CBF), APETALA2 (AP2), basic region/leucine zipper (bZIP), basic
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helix–loop–helix (bHLH), MYB, and NAC families, which can bind to the promoter of stress-
related genes and regulates their expression [14–17]. The bHLH TFs are the second largest
family of plant-specific transcription factors after the MYBs. They are widely distributed in
plants and play a key role in coping with adverse environments such as cold, salt, drought,
and osmotic stress. The bHLHs family consists of about 60 amino acids and has two
functional domains, namely a basic domain and a HLH domain [18,19].And, bHLH TFs
can bind to the E-box (5′-CANNTG-3′) or the G-box (5′-CACGTG-3′) element to perform
its function [20].

The bHLH transcription factors have been identified in many plants, such as Arabidop-
sis, rice, Brachypodium distachyon, wheat, maize, Brassica napus, and pepper [21–27]. Many
bHLH transcription factors have been reported to participate in various stresses (e.g., salt,
drought, and cold stress) and play important roles in biotic and abiotic stress responses.
For instance, NtbHLH123 enhances tolerance to cold stress by modulating reactive oxygen
species homeostasis in tobacco [28]. Overexpression of PtrbHLH confers cold tolerance in
pummelo by modulation of H2O2 level via regulating a CAT gene [29]. Arabidopsis AtMYC2
contributes to salt tolerance by directly regulating proline biosynthesis [30]. The bHLH
transcription factor SbbHLH85 of sorghum in modulation of salt tolerance by modulating
root hair growth [31]. Wheat bHLH transcription factor gene TabHLH1 regulates osmotic
tolerance through modulation of the ABA-dependent pathway [32]. Overexpression of
OrbHLH001 enhances the tolerance to freezing and salt stresses in transgenic Arabidop-
sis [33]. AhbHLH112 in peanut positively regulates drought tolerance [34]. MfbHLH38 plays
a positive regulatory role in responding to drought and salinity stresses in Myrothamnus
flabellifolia [35]. Overexpression of OrbHLH2 can enhance salt tolerance [36]. In wheat,
TabHLH49 can regulate drought tolerance [37]. The MYB transcription factor MdMYB308L
in apples interacts with MdbHLH33 positively regulates cold tolerance and anthocyanin
accumulation [38]. In addition, AtbHLH115 plays a key role in the maintenance of Fe
homeostasis in Arabidopsis [39]. OsbHLH6 confers disease resistance by regulating SA
and JA signaling in rice [40]. Overexpression of the SlbHLH22 gene revealed that it is
highly involved in controlling flowering time and promoting fruit ripening and improved
carotenoid accumulation [41]. Although bHLH TFs have been analyzed and characterized
in many plants, the function of the bHLH genes in pepper remains unclear.

35S:CabHLH79-GFP vector was overexpressed in pepper leaves to explore the func-
tion of CabHLH79 in response to cold. Molecular breeding is one of the most efficient
ways of breeding cold-tolerant varieties. When plants respond to cold and drought
stress, bHLH7/bHLH43/bHLH79/bHLH93 genes in the bHLH family are significantly up-
regulated [42]. To date, 122 bHLH transcription factors have been found in pepper [27].
However, only a few bHLH transcription factors have been identified in pepper for their
functions. The regulatory mechanism and biological function of many CabHLH proteins in
peppers are still unclear. In our previous study, we demonstrated that CaNAC035 played
an important role in plant response to abiotic stress, including cold stress [43]. In this
study, we identified CabHLH79 (Capana03g001053) as the upstream factor of CaNAC035
(Capana05g000569) in pepper through Yeast one-hybrid (Y1H) assay. Sequence analysis
revealed that CabHLH79 had the same conserved domains as bHLH transcription factors.
Phylogenetic analysis indicated that CabHLH79 had high homology with potato, tomato,
and tobacco. Many previous studies have found that abiotic stress can induce the expres-
sion of many bHLH TFs with different functions in plants. Therefore, we speculated that
CabHLH79 may play an essential role in regulating various processes. This study provides
valuable information for further analysis of physiological and biochemical characteristics
of bHLH transcription factors in pepper and other plants.

2. Results
2.1. CabHLH79 Directly Targets the CaNAC035 Promoter

Our previous studies have found that CaNAC035 plays important role in the response
to abiotic stress [43]. To investigate the upstream regulator of CaNAC035, the promoter
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fragment of CaNAC035 was used to screen the pepper cDNA library. We identified a total
of ten positive colonies that may interact with the CaNAC035 promoter, and four of them
were TF (Table S2). To confirm the interaction between CabHLH79 and CaNAC035 promoter,
Y1H detection was performed. The full length of CabHLH79 was used as the prey, the
CaNAC035 promoter fragment was used as bait. All Y1H yeast strains grow normally on
SD/-Leu medium but only the positive control and pAbAi−CaNAC035+AD−CabHLH79
survived on the SD/-Leu medium with 200 ng/mL AbA (Figure 1A). These results showed
that CabHLH79 can bind to the CaNAC035 promoter. Subsequently, to investigate the ability
of CabHLH79 to activate the CaNAC035 gene, a dual-luciferase (LUC) assay was performed
using CabHLH79 as an effector in tobacco (Figure 1B). We found that co-transformation of
effector factor and reporter gene significantly increased promoter activity, as indicated by
the LUC/REN ratio (Figure 1C). These results indicated that CabHLH79 can activate the
CaNAC035 promoter.
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Figure 1. CabHLH79 binds to and activates the CaNAC035 promoter. (A) Yeast one-hybrid (Y1H)
assay on binding of CabHLH79 directly to the promoter region of CaNAC035. CaNAC035 promoter +
AD−CabHLH79, insert the CaNAC035 promoter truncated segment (1−520 bp) into the pAbAi vector
as a bait, and CabHLH79 was inserted into the pGADT7 vector as prey. pGADT7−p53+pAbAi−p53
was a positive control and pGADT7 + CaNAC035 was a negative control. Yeast cells were grown
on SD/−Leu plates with 200 ng/ mL Aureobasidin A(AbA). (B) Schematic representation of the
firefly luciferase (LUC) reporter vector containing the CaNAC035 promoter and the effector vec-
tors expressing CabHLH79 under the control of the 35S promoters. The open reading frames
of CabHLH79 were fused to a pGreenII 62−SK vector. The promoter sequence of CaNAC035
was cloned into a pGreenII 0800−LUC vector. (C) LUC/Renillaluciferase (REN) activities de-
tected from the reporter system described in (A), testing the effects of CabHLH79 on the expres-
sion of CaNAC035. Empty vector, pGreenII 62-SK + pGreenII 0800−LUC; pCaNAC035, pGreenII
62−SK+promoterCaNAC035−pGreenII 0800−LUC; CabHLH79+pCaNAC035, CabHLH79−pGreenII
62−SK+promoterCaNAC035−pGreenII 0800−LUC. All data of three independent biological repli-
cates were expressed by Means ± SDs. * representing significant difference (*** p < 0.001).

2.2. Characterization of CabHLH79 and Bioinformatics Analysis

The CDS region of CabHLH79 is 834 bp, which encodes 277 amino acids, has an
isoelectric point of 5.40, and a predicted molecular weight of 29.93 kDa. CabHLH79 belongs
to the MYC-type bHLH transcription factor family because it contains a conserved bHLH
domain. MEGAX software is used by us to construct a phylogenetic tree and analyze the
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evolutionary relationship between CabHLH79 and bHLH proteins of different species such
as Arabidopsis, tobacco, potato, tomato, and cucumber. Phylogenetic analysis showed that
CabHLH79 had high homology with potato, tomato, and tobacco (Figure S1B). To further
analyze the structure of CabHLH79, DNAMAN software was used to compare the amino
acid sequences of CabHLH79 with other species (Figure S1A).

2.3. Silencing of CabHLH79 Decreases Tolerance to Cold Stress in Pepper

In order to determine the expression patterns of CabHLH79, we performed RT-qPCR
assays on RNA extracted from the C. annuum cultivar P70 plant. The results showed
that CabHLH79 was strongly induced by cold stress. The mRNA level of CabHLH79 was
expressed in a large amount in 1–24 h, and the expression level was up to 40 folds in 1 h
(Figure 2A). It was worth noting that CabHLH79 exhibited high expression levels under
cold stress, which clarified that CabHLH79 may be a positive regulator in response to cold
stress. To investigate the function of CabHLH79 under cold stress, CabHLH79-silenced and
control plants were exposed to cold stress (4 ◦C) for 3 days. CabHLH79-silenced plants
showed significantly severe leaf damage symptoms (Figure 2B), which indicated that the
CabHLH79-silenced plants were less resistant to cold stress. The silencing efficiency was
measured through RT-qPCR, which was almost 85% (Figure 2C).
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Figure 2. The measurement of physiological indices of CabHLH79-gene-silenced pepper plants under
cold stress. (A) The expression level of CabHLH79 under cold stress. (B) The phenotype of pepper
plants with reduced expression of CabHLH79 under cold stress used virus-induced gene silencing
(VIGS). The white line is used as a scale bar (length 2 cm). (C) The silencing efficiency of CabHLH79.
(D–F) malondialdehyde accumulation (MDA), relative electrolyte leakage (REL), chlorophyll con-
tents. (G–I) RT-qPCR analysis of CaERD15, CaRD29A, CaCBF1A. All data of three independent
biological replicates were expressed by Means ± SDs. * representing significant difference (* p < 0.05,
*** p < 0.001).

To confirm the silencing of the CabHLH79 response to cold stress, we measured-
malondialdehyde accumulation (MDA), relative electrolyte leakage (REL), and chlorophyll
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contents. After exposure to cold stress, MDA and RELcontents in CabHLH79-silenced
plants were higher than the control plants (Figure 2D,E), which means that the CabHLH79-
silenced plants have more severe cell membrane per-oxidation than the control plants. At
the same time, the chlorophyll contents in the CabHLH79-silenced pepper were lower than
control plants (Figure 2F), revealing that the silenced plants were more damaged under cold
stress. Furthermore, the expressions of cold-related genes (CaERD15, CaRD29A, CaCBF1A)
were determined by RT-qPCR (Figure 2G–I). The data showed that the expression of the
CaERD15, CaRD29A, CaCBF1A were significantly higher in TRV2 plants than CabHLH79-
silenced pepper plants. In summary, the silencing of CabHLH79 reduced tolerance to
cold stress.

2.4. Silencing of CabHLH79 in Pepper Cause Excessive Accumulation of ROS

We also performed the DAB and NBT staining (Figure 3A,B), the results showed
that the CabHLH79-silenced plants were darker after staining, indicating that more H2O2
and O2

•− contents were accumulated in CabHLH79-silenced plants. Additionally, we
measured the activities of the main ROS-scavenging enzymes (CAT, SOD, and POD). The
activities of CAT, SOD, and POD in silenced-CabHLH79 plants were lower in the control
plants (Figure 3C–E). The positive effect of CabHLH79 on antioxidant enzyme activity
suggested that CabHLH79 might be involved in the regulation of reactive oxygen species
(ROS)homeostasis under cold stress. Therefore, we detected the expression levels of ROS-
related genes in silenced-CabHLH79 and control plants under cold treatment. The results
showed that knockdown of CabHLH79 decreased the expression levels of ROS-related genes
(CaCAT2, CaSOD, and CaPOD) (Figure 3F–H). These results suggest that CabHLH79 may
be a key upstream regulator of some ROS-related genes.
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(D) POD activity. (E) CAT activity. (F–H) RT-qPCR analysis of CaSOD, CaPOD, and CaCAT2. All data
of three independent biological replicates were expressed by Means ± SDs. * representing significant
difference (* p < 0.05, ** p < 0.01, *** p < 0.001).

2.5. Transient Overexpression of CabHLH79 in Pepper Enhances Cold Stress Tolerance

35S:CabHLH79-GFP vector was overexpressed in pepper leaves to explore the function
of CabHLH79 in response to cold stress. We detected the transcription level of CabHLH79
transient overexpression (TO) plants by RT-qPCR. It was found that the expression level of
CabHLH79 in CabHLH79-TO pepper was 10 folds higher than that of control (Figure 4B).
To detect the effect of CabHLH79-TO in response to cold stress, CabHLH79-TO and control
plants were exposed to cold stress (4 ◦C) for 3 days. The control plants showed significantly
severe leaf damage symptoms (Figure 4A). Moreover, we measured MDA, REL, and
chlorophyll contents. After exposure to cold stress, MDA and RELin CabHLH79-TO plants
were lower than the control plants (Figure 4C,D). On the contrary, the chlorophyll content
of CabHLH79-TO plants was higher than that of control plants (Figure 4E), indicating that
transient overexpression of CabHLH79 in pepper enhanced the cold resistance.
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Figure 4. The measurement of physiological indices of CabHLH79-TO pepper plants under cold
stress. (A) The transient expression of CabHLH79 gene alleviates the damage of pepper plants to
low temperature. The white line in a, b is used as a scale bar (length 1.75 cm). The white line
in c, d is used as a scale bar (length 0.5 cm). (B) The expression level of CabHLH79. (C–E) MDA,
REL, chlorophyll contents. All data of three independent biological replicates were expressed by
Means ± SDs. * representing significant difference (** p < 0.01, *** p < 0.001).
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Furthermore, the expression of cold-related genes and ROS-related genes (CaERD15,
CaRD29A, CaCBF1A, CaPOD, CaCAT2, and CaAPX1) was determined by RT-qPCR (Figure 5).
After cold stress, the transcript levels of CaERD15, CaRD29A, CaCBF1A, CaPOD, CaCAT2,
and CaAPX1 in CabHLH79-TO plants were significantly higher than those in control plants.
The data indicated that transient overexpression of CabHLH79 in pepper enhanced cold
stress tolerance.
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2.6. Overexpression of CabHLH79 in Arabidopsis Enhances Tolerance to Cold Stress

To investigate the role of CabHLH79 overexpression in Arabidopsis under low tempera-
ture stress, 4-week-old Arabidopsis were treated at 4 ◦C for 3 days. WT plants showed more
severe wilting than transgenic plants, suggesting that CabHLH79 may be involved in cold
resistance (Figure 6A). We detected the transcription level of CabHLH79 transgenic lines
by RT-qPCR. It was found that the expression of CabHLH79 transgenic lines in Arabidopsis
was higher than WT under cold stress (Figure 6B). Subsequently, we tested the MDA, REL,
and chlorophyll contents of WT and transgenic lines. Before stress, the MDA, REL, and
chlorophyll contents of WT and transgenic lines were no obvious differences. However,
after cold treatment, the MDA and REL levels of the transgenic lines were significantly
lower than WT (Figure 6C,D), the chlorophyll content was significantly higher than WT
(Figure 6E). In order to further explore the mechanism of CabHLH79, RT-qPCR was used
to analyze the expression of cold-related genes AtERD15, AtRD29A, AtKIN1, and AtCBF1.
These data indicated that when plants were subjected to cold stress, cold-related genes were
significantly increased in transgenic lines (Figure 6F–I). In summary, our results indicated
that overexpression of CabHLH79 in Arabidopsis significantly improved cold tolerance.
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(A) The phenotype of CabHLH79 overexpression and WT line under cold stress. The white line is used
as a scale bar (length 1 cm). (B) Transcriptional levels of CabHLH79 under cold stress. (C–E) MDA,
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All data of three independent biological replicates were expressed by Means ± SDs. * representing
significant difference (* p < 0.05, ** p < 0.01, *** p < 0.001).

2.7. The Higher Enzymes Activities and Expression Levels of CabHLH79 Transgenic Arabidopsis

When plants are subjected to cold stress, many physiological damages are caused,
including the accumulation of ROS. Antioxidant enzymes play an important role in ROS
detoxification and promote ROS scavenging under abiotic stress [44,45]. After cold stress,
the DAB and NBT staining of the transgenic plant leaves appeared less blue or brown colors
than WT (Figure 7A,B). After cold treatment, the three enzymatic activities of POD, SOD,
and CAT in transgenic plants were significantly higher than WT (Figure 7C–E), which was
consistent with the lower ROS accumulation. In order to further understand the molecular
mechanism of CabHLH79 overexpression enhancing cold tolerance, RT-qPCR was used to
analyze the mRNA expression levels of antioxidant genes AtSOD, AtPOD, and AtCAT2 in
WT and transgenic lines. The transcription levels of these three tested genes in transgenic
lines were all higher than WT (Figure 7F–H), indicating that overexpression of CabHLH79
lines had higher antioxidant stress resistance.
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3. Discussion

BHLH TFs are a superfamily of plant-specific transcription factors, which play a vital
role in plants to different harsh environments by regulating related stress genes. This
study found that CabHLH79 is a stress-responsive TF that plays a positive role in cold stress
tolerance. RT-qPCR results showed that CabHLH79 was consistently highly expressed under
cold treatment, suggesting that CabHLH79 may be involved in the cold stress response
(Figure 2A). To validate our hypothesis and better understand the function of CabHLH79,
we silenced CabHLH79 in pepper and overexpression of CabHLH79 in pepper or Arabidopsis.
We found that silence of CabHLH79 in pepper decreased its tolerance to cold stress, while
transient overexpression of CabHLH79 in pepper enhanced the cold resistance of plants. The
CabHLH79 transgenic Arabidopsis also had better growth status compared to WT under cold
stress conditions. Additionally, quite a few stress-responsive genes (AtRD29A, AtERD15,
and AtCBF1) were significantly up-regulated in CabHLH79 transgenic plants compared
to WT under low temperature stress. These results further illustrate the importance of
CabHLH79 in cold-responsive stress.

When plants are subjected to abiotic stress, a large number of ROS will be produced in
plants, the excessive accumulation of toxic ROS will cause damage to various components in
plants [46]. Therefore, elimination and reduction of ROS levels are essential for maintaining
cellular homeostasis [47]. It is well known that otherwise the toxic influence of plant cells,
ROS as a signal factor plays a vital role in the regulation of plant responses to various abiotic
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stress [48]. In order to maintain the stability of ROS levels in plants and reduce the damage
caused by oxidative stress to plants, antioxidant enzymes play a key role in removing
excess ROS [49]. Under cold conditions, SOD, POD, and CAT activities of gene-silenced
CabHLH79 plants were lower than those of TRV2 plants (Figure 3C–E), indicating that the
silencing of the CabHLH79 gene led to the declination of eliminate levels for ROS, and then
causes to more fearful membrane damage. However, the CabHLH79 transgenic Arabidopsis
showed higher SOD, POD, and CAT activity than the WT (Figure 7C–E).And, CabHLH79
transgenic plants enhanced the ability of ROS scavenging antioxidant enzymes to maintain
cellular homeostasis. These results suggest that CabHLH79 improves cold tolerance, in part
due to its superior ROS scavenging system.

MDA and REL are related to the membrane system [5,50]. MDA content is a repre-
sentative physiological index to evaluate plant stress tolerance, which can indicate the
degree of cell damage [51]. Electrolyte leakage is also an important physiological indicator
of membrane injury [52]. Thus, MDA content and electrolyte leakage were performed to
analyze the function of CabHLH79 overexpression in decreasing membrane injury under
cold conditions. In this study, the MDA content and REL in control plants were higher
than CabHLH79 transgenic plants under cold stress. However, CabHLH79-silenced had
higher MDA contents and REL. Collectively, these results show that CabHLH79 positively
regulates cold stress. In response to cold stress, the DAB and NBT staining showed that
the CabHLH79-silenced plants had higher super-oxide radicals and H2O2 contents com-
pared to control plants. On the contrary, CabHLH79-overexpressing plants showed lower
super-oxide radicals and H2O2 contents than WT. The results showed that CabHLH79 en-
hanced plant tolerance to oxidative stress, and thus improved the cold resistance of plants.
Under cold stress, the expression of cold stress-related genes and antioxidant-related
genes increased significantly in CabHLH79 overexpressed plants (Figure 5). Notably, tran-
sient overexpression of CabHLH79 induced transcription of cold-related genes CaERD15,
CaRD29A, and CaCBF1A, suggesting that CabHLH79 may regulate the expression of these
genes to improve cold resistance in plants. However, the regulatory relationship between
CabHLH79 and its cold-related genes remains to be further studied.

In conclusion, CabHLH79 enhanced cold resistance by regulating the expression of
antioxidant system and cold-related genes. In this study, CabHLH79 played as an up-
stream transcription regulator of CaNAC035 in pepper. virus-induced gene silencing
(VIGS)knockdown CabHLH79 enhanced the sensitivity of plants to cold stress, and overex-
pression of CabHLH79 enhanced cold tolerance of Arabidopsis and pepper. These findings
demonstrated the cold resistance of CabHLH79 from physiological and molecular aspects.

4. Materials and Methods
4.1. Yeast One-Hybrid (Y1H) Assays

The leaves of ‘P70’ pepper were used as materials exposed to cold treatment (4 ◦C)
to construct a yeast one-hybrid cDNA library. The method of Y1H screening library was
carried out according to the instructions of Matchmaker Gold Kit (Clontech, CA, USA). The
truncated fragment of CaNAC035 promoter (1–520 bp) was inserted into pAbAi vector then
transform Y1H Gold to construct a yeast bait vector, which was used to screen cDNA library.
After the bait yeast was grown on SD/-Leu100 (Aureobasidin A, 100 ng/mL) medium for
3–5 days, a single colony of yeast in a normal state was picked for PCR identification. The
PCR products that showed positive were sequenced using T7 and 3’AD sequencing primers.
After completion, the sequencing results of successful sequencing will be compared in the
NCBI database for blast comparison.

For Y1H assays, the CDS region of the transcription factor CabHLH79 was fused to
pGADT7 to form a prey vector and transformed into the bait recombinant plasmid yeast
strain containing the CaNAC035 promoter. Positive yeast transformed cells were screened
on selective SD/-Ura/AbA200 (Aureobasidin A, 200 ng/mL) plates. To determine the
DNA-protein interaction, the yeast co-transformants were serially diluted (1:1, 1:10, 1:100,
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1:1000) and cultured on SD/-Leu/AbA200 (Aureobasidin A, 200 ng/mL) deficient selection
plates at 30 ◦C for 3–5 days.

4.2. Dual-Luciferase Assays

Dual-luciferase assay measured the transactivation effect of CabHLH79 on the
CaNAC035 promoter. Using pepper DNA as a template, select restriction sites accord-
ing to the vector sequence, design homologous recombination primers, amplify the 520bp
promoter truncated sequence of CaNAC035, and inserted into the vector pGreenII0800-LUC
containing restriction sites to generate the reporter plasmid proCaNAC035-LUC. Use the
same method to select a suitable restriction site and insert the coding sequence of CabHLH79
into pGreenII62-SK to form an effector plasmid CabHLH79-SK. Transform the recombi-
nant plasmid into Agrobacterium GV3101. The pGreenII0800-LUC and pGreenII0800-
CaNAC035-LUC vectors are used as reporter genes, the pGreenII62-SK and pGreenII62-
CabHLH79-SK vectors are used as effector genes. Mix the Agrobacterium liquid containing
Effector and Reporter in a ratio of 9:1, and inject the mixed bacterial liquid into the tobacco
leaves. Three days after the injection, the leaves of different combinations were quickly
ground into powder in liquid nitrogen and added to the cell lysate to mix for 5 min, cen-
trifuged, and collected the supernatant. Use the Dual-Lucy Assay kit (Solarbio, Beijing,
China) to detect the fluorescence activity according to the instructions.

4.3. Bioinformatics Analysis of CabHLH79

We obtained the full-length sequence of CabHLH79 (Capana03g001053) through the
pepper genome database (http://peppergenome.snu.ac.kr/) (accessed on 20 July 2020).
Use online tools (http://web.expasy.org/compute_pi/) (accessed on 20 July 2020) to es-
timate the isoelectric point (pI) and molecular weight (Mw) of CabHLH79. Download
the protein sequences of other crops from the GenBank database (https://www.ncbi.nlm.
nih.gov/GenBank/) (accessed on 23 January 2021). In order to detect the phylogenetic
relationship of bHLH, we used DNAMAN software to perform a multiple sequence align-
ment of CabHLH79 protein to Arabidopsis bHLH protein. In the MEGA X software, a
neighbor-joining (NJ) phylogenetic tree was constructed using JTT matrix-based model,
1000 bootstrap repeats.

4.4. Plant Materials and Growth Conditions

The WT Arabidopsis thaliana (Columbia ecotype), cultivar “P70” cold-tolerant strain
pepper, and Nicotiana benthamiand were used throughout this study. All seeds were obtained
from the College of Horticulture, Northwest A&F University, China. Both pepper plants and
transgenic Arabidopsis thaliana were managed in an incubator with temperature conditions at
a 22/18 ◦C (day/night) temperature cycle under 16h/8h (light/dark) long-day conditions,
and the relative humidity is 75%.

4.5. RNA Extraction and RT-qPCR

Plant total RNA was extracted from 100 mg of young tissues of Arabidopsis thaliana and
pepper. The RNA extraction method was following the instructions in the TianGen RNA
extraction kit. (TianGen, Beijing, China). The synthetic method of single-stranded cDNA
and RT-qPCR was as described by Chen et al. [53]. The pepper ubiquitin-binding gene
CaUbi3 (GenBank Accession No. AY486137.1), Arabidopsis Atactin gene (GenBank Accession
No. AY572427.1) were used as internal reference genes for pepper and Arabidopsis [54]. The
relative expression level of the gene was determined using the 2-∆∆CT method [55]. The
primers used in RT-qPCR were shown in Supplementary Table S1.

4.6. Virus-Induced Gene Silencing (VIGS) Assay of CabHLH79 in Pepper

To silence CabHLH79, use the website Sol Genomics Network (https://solgenomics.
net/organism/Capsicum_annuum/genome) (accessed on 27 July 2020)to predict the spe-
cific region of the bHLH79 sequence, and select a 376 bp sequence in the specific region.

http://peppergenome.snu.ac.kr/
http://web.expasy.org/compute_pi/
https://www.ncbi.nlm.nih.gov/GenBank/
https://www.ncbi.nlm.nih.gov/GenBank/
https://solgenomics.net/organism/Capsicum_annuum/genome
https://solgenomics.net/organism/Capsicum_annuum/genome
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Use specific primer forward F (F5′ GCTCTAGAAAGGGGCCAAGCTACTGAT 3′ XbaI)
and reverse primer R (R5′ CGGGATCCTCATGTTGCTCTGTCAAAGCT 3′ BamHI) to
amplify the CabHLH79 fragment using pepper cDNA as a template and clone it into the
pMD19T vector. The silent specific fragment was inserted into the pTRV2 vector containing
the XbaI-BamHI site to form the pTRV2: CabHLH79 recombinant plasmid. Subsequently,
two-true-leaf stage peppers were injected according to the method of Wang et al. [56]. After
about 30 days, when the leaves of the positive control plants appear to be chlorosis, plants
were used for the silencing assay.

4.7. Transient Expression of CabHLH79 in Pepper Leaves

In order to the transient expression in pepper leaves, the recombination plasmid
35:CabHLH79-GFP and 35S:GFP were transformed into the Agrobacterium tumefaciens
strain GV3101, the transient expression in pepper was followed by Cai et al. [57]. Transcrip-
tional levels of CabHLH79 in pepper leaves were detected by RT-qPCR.

4.8. Construction of Transgenic Arabidopsis Line Overexpressing CabHLH79

To construct the 35S:CabHLH79-GFP recombinant plasmid, the specific primer for-
ward primer (F5′ TGCTCTAGA ATGGATCCACCTATTATTAATGAATC 3′XbaI) and re-
verse primer (R5′ CGGGGTACC TGTTGCTCTGTCAAAGCTGCT 3′KpnI) were used to
amplify the CabHLH79 coding region. The PCR amplified product was cloned into 35S:GFP
vector. Use the freeze-thaw method to transfer the recombinant plasmid 35S:CabHLH79-
GFP into Agrobacterium, and use the floral dipping methods to cultivate transgenic lines.
The obtained seeds were screened in 1/2MS solid medium supplemented with 50 mg/L
kanamycin to obtain transgenic plants, and T3 generation plants were harvested for subse-
quent use. In order to determine the successfully transgenic lines, DNA and RNA were
extracted from the three-week-old transgenic Arabidopsis leaves of T3 generation [58]. The
expression level of CabHLH79 was detected via PCR and RT-qPCR, thereby two transgenic
lines (OE3, OE15) were identified.

4.9. Cold Stress Tolerance Assays

To analyze the loss of function of CabHLH79 pepper seedlings under cold stress, the
CabHLH79 silenced pepper plants were obtained by VIGS method. In order to explore
the function of CabHLH79 on cold stress in plants, transgenic Arabidopsis and transient
overexpression of CabHLH79 pepper were used as materials. For cold stress treatment,
gene-silenced plants and overexpressed plants were treated at 4 ◦C for 3 days.

4.10. Biochemical Indices

The malondialdehyde (MDA) content was determined according to the method of
Campos et al. [59] to estimate the amount of lipid peroxidation in the chloroplast membrane.
To assess the permeability of the membrane, relative electrolyte leakage (REL) was detected
as described by Danyluk et al. [60]. The total chlorophyll content of the extracted plant
was calculated by spectrophotometry as described previously [61]. The activity of SOD,
POD, and CAT were assayed following Dionisio-Sese and Jariteh et al. [62,63]. Using
3,30 diaminobenzidine (DAB) and nitro blue tetrazolium (NBT) staining to determine the
accumulation of hydrogen peroxide (H2O2) and superoxide (O2

•−) under cold stress [64].

4.11. Statistical Analysis

SPSS software was used for statistical analysis. Use the Mean ± SD (standard devia-
tion) of three independent biological replicates to represent error bars. A one-way ANOVA
test based on Fisher’s LSD test was used to calculate the significant difference analysis
and significant differences relative to controls are indicated at * p < 0.05, ** p < 0.01, and
*** p < 0.001.
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