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Atherosclerosis (AS) is the main cause of coronary heart disease, cerebral infarction,
and peripheral vascular disease, which comprise serious hazards to human health.
Atherosclerosis is characterized by the deposition of lipids on the interior walls of
blood vessels, causing an inflammatory response of immune cells, endothelial cells,
and smooth muscle cells, and a proliferation cascade reaction. Despite years of
research, the underlying pathogenesis of AS is not fully defined. Recent advances in
our understanding of the molecular mechanisms by which non-coding RNA influences
the initiation and progression of AS have shown that long non-coding RNAs (lncRNAs)
regulate important stages in the atherosclerotic process. In this review, we summarize
current knowledge of lncRNAs, which influence the development of AS. We review
the regulatory processes of lncRNAs on core stages of atherosclerotic progression,
including lipid metabolism, inflammation, vascular cell proliferation, apoptosis, adhesion
and migration, and angiogenesis. A growing body of evidence suggests that lncRNAs
have great potential as new therapeutic targets for the treatment of vascular diseases.
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INTRODUCTION

Atherosclerosis (AS) is an important risk factor for cardiovascular and cerebrovascular events
including myocardial infarction and cerebral infarction (Lu et al., 2015; Sun W. et al., 2018).
Continuing research on the pathogenesis of AS has led to the development of several key
theories, including the lipid infiltration theory, the injury–response theory, the endothelial function
theory, the inflammation theory, and the genetic–environment interaction theory, which reflect
the pathogenesis of AS at different levels (Schaftenaar et al., 2016; Kobiyama and Ley, 2018).
Atherosclerosis is a slowly progressing disease in which most patients may not show clinical
manifestations for years or even decades. The structure of the arterial wall is remodeled during the
formation of atherosclerotic plaque. The arterial wall first expands outward, keeping the width of
the lumen unchanged. However, if the plaque progresses beyond a certain level, inward progression
may occur leading to stenosis. When stenosis exceeds 60% of the lumen diameter, the compensatory
expansion ability of the artery may be weakened or even be destroyed, resulting in a series of adverse
reactions such as ischemia and thrombosis (Herrero-Fernandez et al., 2019).
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Lipid metabolism disorders form the pathological basis of
AS, a progressive vascular disease characterized by inflammation,
endothelial cell injury, monocyte adhesion, foam cell formation,
smooth muscle cell migration from the media to the intima and
subsequent proliferation, and atherosclerotic plaque formation
(Bäck et al., 2019). Mature atherosclerotic plaques contain large
amounts of lipids, foam cells, proliferating smooth muscle cells,
and matrix components (Legein et al., 2013). The symptoms of
AS depend on the extent of vascular occlusion and the degree
of ischemia in the affected organs (Poston and Davies, 1974).
Myocardial and cerebral infarctions caused by atherosclerotic
involvement are often severely debilitating with high mortality
rates (Parthasarathy et al., 2010; Kumarswamy et al., 2014).
In recent years, long non-coding RNA molecules (lncRNAs)
have been found to play a variety of biological functions in
the vascular system, such as promoting apoptosis of endothelial
cells (Wang J. et al., 2015), inhibiting the migration of vascular
smooth muscle cells (VSMCs; Bell et al., 2014; Zhang et al.,
2018), and activating apolipoprotein A1 (APOA1)-mediated
macrophage cholesterol efflux (Hu et al., 2014; Pan, 2017).
There is abundant showing that lncRNAs are involved in
all stages of AS plaque formation, regulating key stages of
plaque development, such as lipid metabolism, inflammatory
cascade reactions, vascular cell proliferation, apoptosis, adhesion
and migration, and angiogenesis (Table 1; Li et al., 2016,
2017; Aryal and Suárez, 2019). Therefore, levels and patterns
of lncRNAs in peripheral blood may be clinically useful
as markers of AS-related cardiovascular disease and may
provide new prevention and diagnostic strategies for AS-related
cardiovascular diseases.

Research to date shows that complex regulatory mutations
may affect the expression of the antisense non-coding RNA
(ANRIL) at the INK4 locus, thereby increasing the risk of clinical
and subclinical coronary and aortic diseases. Therefore, lncRNA
ANRIL is considered to be a risk factor for cardiovascular
disease (Johnson et al., 2013). Changes in myocardial infarction-
related transcripts (MIAT) that are caused by single nucleotide
polymorphisms (SNPs), may be related to the pathogenesis of
myocardial infarction, and in vitro translation analysis indicates
that MIAT did not encode any translation products, indicating
that it may be a functional lncRNA (Ishii et al., 2006).
Kumarswamy et al. (2014) reported that mitochondrial lncRNA
uc022bqs.1 (LIPCAR) is associated with cardiac remodeling and
chronic heart failure and may be a potential biomarker. These
studies have identified the functional relevance of lncRNAs in
cardiovascular disease and helped to delineate the important role
played by lncRNAs in AS thrombotic events.

The molecular mechanisms of the lncRNAs involved in the
regulation of AS have recently become a new research focus.
This review summarizes the core events related to lncRNAs at
each stage, including lipid metabolism regulation, inflammation
cascade, vascular cell proliferation, apoptosis, adhesion and
migration, and angiogenesis. We analyze the role of lncRNAs
in the pathogenesis of AS and discuss their potential functions
as new therapeutic targets. Long non-coding RNAs may emerge
as a relevant target group for early detection and the prognostic
monitoring of AS, providing ideas and targets for developing new

AS drugs and ultimately realizing the effective prevention and
control of AS.

BRIEF INTRODUCTION OF lncRNAs

Non-coding RNA molecules (ncRNAs) comprise a class of RNAs
with no protein-coding function that can be divided into three
subcategories based on their size: (1) short ncRNAs with 20–50
nucleotides; (2) mid ncRNAs with 50–200 nucleotides; and (3)
lncRNAs with greater than 200 nucleotides. Long non-coding
RNAs are readily distinguishable from protein coding genes
because they lack open reading frames (ORFs) and typical
start/stop codons (Cen et al., 2019). Long non-coding RNAs were
previously considered to be “transcription noise” because they
show a high degree of tissue specificity and are generally less
conservative in evolution (Kornfeld and Brüning, 2014). Other
studies have shown that lncRNAs are involved in regulating
various physiological and pathological processes (Gu et al., 2019),
including genetic imprinting, chromatin modification, epigenetic
regulation, the cell cycle, and cell differentiation (Qi et al.,
2020). Long non-coding RNAs are now known to be important
regulators in gene expression networks because lncRNAs can
increase or decrease the stability of mRNA in the cytoplasm,
activate or inhibit mRNA translation, and post-translational
modification processes, and ultimately affect protein expression.
In the nucleus, lncRNAs may participate in epigenetic processes
and regulate gene expression at the transcriptional and post-
transcriptional levels (Kornfeld and Brüning, 2014). The precise
molecular mechanisms of lncRNA function remain unclear.
Wang and Chang (2011) proposed four functional categories for
lncRNAs: signal, bait, guide, and scaffold. In short, an in-depth
understanding of the structure and function of lncRNAs will help
us explore the regulatory relationship between lncRNAs and the
occurrence and development of AS.

LncRNAs IN LIPID METABOLISM

The main pathological feature of AS is that macrophages and
VSMCs ingest the accumulated lipoprotein in the damaged artery
wall, which is finally transformed into foam cells (Chaabane et al.,
2014; Zhu et al., 2018; Maguire et al., 2019). This accumulates to
form lipid streaks and even lipid plaques, further aggravating the
development of AS (Maguire et al., 2019). Activated macrophages
enter the blood vessel wall, engulf cholesterol to form foam
cells, and then release inflammatory factors, which intensifies the
accumulation of additional macrophages. The accumulation of
lipids in macrophages and the enhanced inflammatory response
are two key factors in the pathogenesis of AS (Nabel and
Braunwald, 2012). Studies have shown that the ATP binding
cassette transporter A1 (ABCA1) requires APOA1 as a receptor
to mediate lipid outflow (Knight, 2004). Hu et al. (2014) found
that the highly expressed lncRNA DYNLRB2-2 can upregulate
the expression of the G protein coupled receptor 119 (GPR119),
and ABCA1 through the glucagon-like polypeptide receptor
signaling pathway, activating the APOA1-mediated cholesterol
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TABLE 1 | Long non-coding RNAs with functional relevance in atherosclerosis.

Functional
classification

LncRNA symbol Relation
with AS

Observed AS characteristics Species References

Lipid metabolism DYNLRB2-2 ↓ ↑ Macrophage cholesterol efflux h + m (Hu et al., 2014)

MeXis ↓ ↑ The expression of ABCA1 m (Sallam et al., 2018)

RP5-833A20.1 ↑ ↓ Macrophage cholesterol efflux h + m (Hu et al., 2015)

APOA1-AS ↑ ↓ The expression of APOA1 h + m (Halley et al., 2014)

NOS3-AS APOA1-AS ↑ ↑ TC, LDL-C, oxLDL h (Abd-Elmawla et al., 2018)

Inflammatory
response

FA2H-2 ↑ ↑ IL-1β, TNF-α, IL-18, IL-8, IL-6, VCAM-1, MCP-1 h + m (Guo et al., 2019)

H19 ↑ ↑ TNF-α, IL-1β m (Han et al., 2018)

XIAT ↑ ↑ IL-1β, IL-6 h (Hu et al., 2019)

MALAT1 ↓ ↓ Inflammatory cells;↑ Autophagy m/h (Cremer et al., 2019) (Wang
et al., 2019)

AF131217.1 ↓ ↓ ICAM-1,VCAM-1 h (Lu et al., 2019)

Vascular cell
proliferation and
apoptosis

H19 ↑ ↑ Proliferation; ↓ Apoptosis (ECs) h (Pan, 2017)

HIF1A-AS1 ↑ ↑ Apoptosis (damaged ECs) h (Wang J. et al., 2015)

GAS5 ↑ ↑ Apoptosis (ECs) h (Chen et al., 2017)

HIF1A-AS1 ↓ ↑ Apoptosis; ↓ Proliferation (VSMCs) h (Wang S. et al., 2015)

p21 ↓ ↑ Apoptosis; ↓ Proliferation (VSMCs) h + m (Wu et al., 2014)

SMILR ↑ ↑ Proliferation (VSMCs) h (Ballantyne et al., 2016)

Vascular cell
adhesion and
migration

AF131217.1 ↓ ↓ Adhesion of monocytes to ECs h (Lu et al., 2019)

RP11-714G18.1 ↓ ↓ Adhesion of monocytes to ECs h (Zhang et al., 2018)

MANTIS ↓ ↓ Adhesion of monocytes to ECs h (Leisegang et al., 2019)

ANRIL ↑ ↑ Adhesion of monocytes to ECs h (Samani and Schunkert,
2008) (Holdt et al., 2013)

ENAST00113 ↑ ↑ VSMCs proliferation and migration h (Yao et al., 2018)

ENST00000430945 ↑ ↑ VSMCs proliferation and migration h (Cui et al., 2019)

SENCR ↓ ↑ Contractile genes; ↓ Pro-migratory genes h (Bell et al., 2014)

RP11-714G18.1 ↓ ↓ VSMCs migration; ↓ Angiogenesis h (Zhang et al., 2018)

Angiogenesis TCONS_00024652 ↑ ↑ HUVECs proliferation and angiogenesis h (Halimulati et al., 2018)

ATB ↑ ↑ HMECs viability, migration and angiogenesis h (Zhu A.D. et al., 2019)

HULC ↑ ↑ HMECs viability, migration and angiogenesis h (Yin et al., 2018b)

MIAT ↑ ↑ HMVECs angiogenesis h/m (Yan et al., 2015) (Sun
et al., 2019)

SENCR ↑ ↑ HUVECs angiogenesis h (Boulberdaa et al., 2016)

UCA1 ↑ ↑ HMECs angiogenesis h (Yin et al., 2018a)

MEG3 ↓ ↓ HMECs migration and angiogenesis;↑ Apoptosis h + m (Xu et al., 2020)

LINC00657 ↑ ↑ oxLDL-treated HUVECs migration and
angiogenesis

h (Bao et al., 2018)

H19 ↑ ↑ Vulnerable plaque formation and intraplaque
angiogenesis

m (Zhang et al., 2017)

SNHG1 ↓ ↑ Damaged HUVECs proliferation, migration and
angiogenesis

h (Zhang et al., 2020)

h, human(cells); m, mouse(cells); +, and; /, or; ABCA1, ATP binding cassette transporter A1; APOA1, apolipoprotein A1; TC, total cholesterol; LDL-C, low-density
lipoprotein cholesterol; ox-LDL, oxidized low-density lipoprotein; IL-1β, interleukin-1β; IL-18, interleukin-18; IL-8, interleukin-8; IL-6, interleukin-6; TNF-α, tumor necrosis
factor-α; VCAM-1, vascular cell adhesion molecule-1; ICAM-1, intercellular cell adhesion molecule-1; MCP-1, monocyte chemotactic protein-1; ECs, endothelial cells;
VSMCs, vascular smooth muscle cells; HUVECs, human umbilical vein endothelial cells; HMECs, human microvascular endothelial cells.

efflux to reduce the cholesterol content in macrophages, and
playing an anti-AS function. In addition to lncRNA DYNLRB2-
2, lncRNA MeXis plays a key regulatory role in the overload
response of macrophages to cholesterol. Sallam et al. found that
MeXis can enhance the expression of ABCA1 by regulating the
chromatin structure of ABCA1, while suppression of MeXis can
accelerate the formation of foam cells and promote AS formation
in Apoe−/− mice (Sallam et al., 2018). Using pigs as a model
to study fat formation and lipid metabolism, Huang’s team

found that 55 lncRNAs were differentially expressed between
Laiwu and Large White (Large Yorkshire) pigs (Huang et al.,
2018). XLOC_046142, XLOC_004398, and XLOC_015408 were
hypothesized to play a key role in the regulation of fat formation
and lipid accumulation in pig muscle tissues, while LOC_064871
and XLOC_011001 may play a role in diseases related to lipid
metabolism. Reverse cholesterol transport (RCT) maintains lipid
metabolism homeostasis and may play a protective role against
AS development (Tosheska Trajkovska and Topuzovska, 2017).
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Studies have found that a site-specific DNA binding protein
(NFIA) enhances RCT and inhibits the formation of AS plaques
(Song et al., 2010). Hu et al. reported that lncRNA RP5-833A20.1
inhibits the RCT pathway through the RP5-833A20.1/miR-382-
5p/NFIA signal transduction pathway and reduces the efflux of
excess cholesterol in the body. Thus, the lncRNA RP5-833A20.1
may play an important role in regulating cholesterol homeostasis
and inflammation in macrophages (Hu et al., 2015).

Activating apolipoprotein A1 is the main component of high-
density lipoprotein (HDL) in plasma. Studies have shown that
the lncRNA APOA1-AS recruits histone-modifying enzymes to
regulate histone methylation of the APO gene cluster, acting
as a negative transcriptional regulator of APOA1, resulting
in a reduction in activation markers and an increase of
inhibition markers (Halley et al., 2014). In addition to APOA1-
AS, other research has revealed that an increase of lncRNA
KCNQ1OT1 and lncRNA HIF1A-AS2 in human peripheral
blood mononuclear cells (PBMCs) predicts the occurrence of
coronary AS and may be useful as a biomarker of coronary
artery disease (CAD; Zhang et al., 2019). A recent study showed
that patients with systemic lupus erythematosus (SLE) and AS,
had higher levels of lncRNA NOS3-AS and lncRNA APOA1-
AS expression compared to SLE patients without AS. Systemic
lupus erythematosus patients with AS also had higher levels of
total cholesterol (TC), low-density lipoprotein cholesterol (LDL-
C), and oxidized low-density lipoprotein (ox-LDL) in plasma,
suggesting that NOS3-AS and APOA1-AS may be useful as
biomarkers of AS in SLE patients (Abd-Elmawla et al., 2018).

LncRNAs IN THE INFLAMMATORY
RESPONSE

Excessive long-term inflammation of the blood vessel wall
may lead to increased endothelial cell permeability and
enhanced rates of lipid entry, thus exacerbating the development
of AS. Inflammatory cytokines and other acute reactants
released by endothelial cells during inflammation accelerate
endothelial dysfunction (Arnold and Koenig, 2019). A growing
body of research indicates that lncRNAs can regulate the
balance of inflammatory cytokines within the vascular system.
Inappropriate transcriptional activation of innate immunity is
a pathological feature of many cardiac and metabolic diseases.
Liu et al. (2014) analyzed the lncRNAs in blood and fat cells
of experimental subjects exposed to low-dose endotoxins and
confirmed that lipopolysaccharides (LPS) regulating lncRNAs
originated from fat cells and monocytes. This finding provided
new insight into the regulation of inflammatory lncRNAs in
cardiac and metabolic diseases at the histological level. Models
of endothelial cell inflammation have found that ox-LDL can
regulate the expression of certain lncRNAs and play a role
in promoting AS (Sun J.J. et al., 2018; Zhu Z. et al., 2019).
For example, ox-LDL can down-regulate the expression of
lncRNA FA2H-2 in human umbilical vein endothelial cells
(HUVECs) to induce inflammation and inhibit autophagic flux,
thereby aggravating the development of AS (Guo et al., 2019).
Investigating the regulatory effects of lncRNAs on inflammation,

Han et al. (2018) found that the expression of lncRNA H19
increased in blood samples of AS patients and cells treated with
ox-LDL. Knock down of H19 effectively reduced expression levels
of pro-inflammatory factors TNF-α and IL-1β, indicating that
H19 can regulate the inflammatory response of cells and provide
a new target for AS treatment (Han et al., 2018). Inhibiting the
expression of lncRNA XIAT can also reduce ox-LDL-induced
inflammation of HUVECs (Hu et al., 2019). In recent years,
the role of lncRNA MALAT1 in anti-AS inflammation has
attracted attention in the research community. Cremer et al.
fed MALAT1-deficient (MALAT1−/−) Apoe−/− mice a high-
fat diet and found that, compared with Apoe−/− MALAT1+/+
mice, Apoe−/− MALAT1−/− mice showed larger plaques and
more inflammatory cell infiltration in the vascular wall (Cremer
et al., 2019). Subsequent mechanistic studies have shown that
the molecular sponge effect of MALAT1 leads to a reduction in
miR-503 and anti-inflammatory effects. The molecular sponge
effect of MALAT1 was also noted in a study by Wang et al., who
found that MALAT1 in HUVECs can adsorb miR-216a-5p and
regulate the expression of Beclin-1 to enhance autophagy and
inhibit the inflammatory process (Wang et al., 2019), suggesting
that MALAT1 may be a potential therapeutic target for AS. Our
recent research discovered a new lncRNA, AF131217.1, which
is upregulated in HUVECs after laminar shear treatment and
can effectively inhibit the expression of vascular cell adhesion
molecule-1 (VCAM-1) and intercellular adhesion molecule-1
(ICAM-1; Lu et al., 2019). Continued research and an increasing
awareness of lncRNAs will better define the important role that
lncRNAs play in inflammation and the development of AS.

LncRNAs IN VASCULAR CELL
PROLIFERATION AND APOPTOSIS

Endothelial Cells
Oxidative stress can induce apoptosis of vascular endothelial
cells, destroy the integrity of monolayer endothelial cells, and
increase endothelial permeability, leading to vascular endothelial
damage. Abnormal endothelial cell proliferation and apoptosis
are important in the initiation and progression of AS (Sun et al.,
2013). There is a large body of evidence that lncRNAs are closely
related to the proliferation and apoptosis of endothelial cells,
highlighting the important role of lncRNAs in the process of
AS. Blood levels of lncRNA H19 were found to be higher in
AS patients compared to healthy controls. Subsequent in vitro
experiments confirmed that overexpression of H19 in HUVECs
led to an increase in cell proliferation capacity and inhibition
of apoptosis (Pan, 2017). In a vascular endothelial cell injury
model using palmitic acid (PA), Wang J. et al. (2015) observed
that apoptosis of endothelial cells was significantly inhibited in
PA treated endothelial cells transfected with the small interfering
(si)-lncRNA HIF1A-AS1, suggesting that inhibition of HIF1A-
AS1 expression may play a role in vascular endothelial protection.

Research on exosomes in recent years indicates that exosome-
derived lncRNAs have an important regulatory effect on the
proliferation and apoptosis of endothelial cells. For example,
Chen et al. found that vascular endothelial cells undergo
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apoptosis after ingesting lncRNA GAS5 from THP-1 cell
exosomes and that endothelial cell apoptosis is suppressed when
GAS5 in exosomes is inhibited (Chen et al., 2017). These results
suggest that lncRNAs regulate proliferation and apoptosis of
endothelial cells and contribute to the maintenance of endothelial
cell function, especially in human endothelial cell models.

Vascular Smooth Muscle Cells
The normal differentiation of VSMCs requires the fine-tuning of
gene expression through microRNAs (Small and Olson, 2011).
Due to the close regulatory relationship between lncRNAs and
microRNAs, it can be hypothesized that lncRNAs also play a
key role in regulating the expression of VSMC differentiation
genes, exerting functions related to the phenotype of vascular
cells. Other studies have revealed that some lncRNAs play a
role in the differentiation and the function of more than one
vascular cell type. For example, lncRNA HIF1A-AS1 plays a
regulatory role in endothelial cells, and also regulates vascular
smooth muscle cells. Studies have found that HIF1A-AS1 can
induce aortic VSMC apoptosis by interacting with mammalian
chromatin remodeling complex core catalytic subunit related
gene 1 (BRG1) and can inhibit abnormal cell proliferation
(Wang S. et al., 2015). In addition, lncRNA p21 can inhibit
the abnormal proliferation of VSMCs and induce apoptosis.
Expression of p21 was significantly down-regulated in the AS
plaques of Apoe−/− mice and the lesions of patients with
coronary heart disease. Subsequent molecular mechanism studies
have shown that p21 can bind to E3 ubiquitin protein ligase
(MDM2) to release MDM2 repression of p53 and enhance p53
transcriptional activity (Wu et al., 2014). Activation of p53
can lead to the inhibition of apoptosis and proliferation of
VSMCs (Holdt et al., 2016). Conversely, suppression of p53
expression can promote the development of AS (Haupt et al.,
1997). The human hyaluronan synthase 2 gene (HAS2) can
synthesize hyaluronic acid and promote the proliferation of
vascular smooth muscle cells, which is one of the indicators
of AS progression. Studies have found that expression of the
lncRNA SMILR is increased in human AS plaques. When
SMILR in VSMCs is inhibited, the expression of HAS2 may be
down-regulated, thereby inhibiting the abnormal proliferation of
VSMCs. Thus, the regulation of SMILR may be a new treatment
strategy to reduce vascular disease (Ballantyne et al., 2016). Given
the growing interest in developing new strategies that directly
target diseased cells, the detection of lncRNAs associated with
endothelial cells or smooth muscle cells may lead to improved
treatment methods.

LncRNAs IN VASCULAR CELL
ADHESION AND MIGRATION

Endothelial Cells
The vascular intima formed by endothelial cells in the
cardiovascular system is a “natural container of blood”
(Gimbrone, 1987), which may be damaged when stimulated
by inflammatory signals. The resulting increase in adhesion
molecule expression facilitates the adhesion of monocytes to the

damaged endothelial cells and aggravates the progression of AS.
We studied the role of lncRNA AF131217.1 in the adhesion
of monocytes to endothelial cells. When sh-AF131217.1-3 was
used to transfect HUVECs, the number of monocytes adhered to
HUVECs increased significantly (Lu et al., 2019), suggesting that
AF131217.1 plays an important role in endothelial cell adhesion.

Many lncRNAs can simultaneously conduct different
molecular functions. For example, lncRNA RP11-714G18.1
can inhibit VSMC migration and reduce the adhesion of
monocytes to endothelial cells (Zhang et al., 2018). According to
Leisegang et al., the lncRNA MANTIS can be strictly regulated
by the transcription factors KLF2 and KLF4, which may inhibit
ICAM-1-mediated adhesion of monocytes to endothelial cells,
thereby slowing the progression of AS (Leisegang et al., 2019).
The lncRNA ANRIL is associated with cardiovascular disease
(Samani and Schunkert, 2008; Holdt et al., 2013). Antisense
non-coding RNA has been observed to reduce the apoptosis
of human PBMCs and enhance the adhesion of monocytes to
endothelial cells through the trans-regulation of target genes,
providing molecular mechanisms for the role of ANRIL in
promoting AS. Long non-coding RNAs often play an important
role in critical periods of AS development, which may be useful
for studying the occurrence and development of AS-related
cardiovascular diseases.

Vascular Smooth Muscle Cells
During the pathogenesis of AS, VSMCs migrate from the
media to the subintimal space, proliferate abnormally, and
accelerate the development of AS lesions. Although some
lncRNAs may function as regulators of VSMC migration,
their functions and roles in AS have yet to be defined.
Yao et al. (2018) observed increased expression of lncRNA
ENAST00113 in the blood of AS patients. In vitro experiments
showed that ENAST00113 can activate the PI3K/Akt/mTOR
signaling pathway to promote migration of VSMCs and
that down-regulation of ENAST00113 can significantly inhibit
proliferation and migration of VSMCs (Yao et al., 2018).
Similarly, Cui et al. found that lncRNA ENST00000430945
can promote the proliferation and migration of VSMCs (Cui
et al., 2019). These findings indicate that ENAST00113 and
ENST00000430945 may play an important role in the migration
of VSMCs and suggest that these lncRNAs may be promising
therapeutic targets for AS.

LncRNAs that inhibit the migration of VSMCs have also
been extensively studied. For example, cytoplasmic lncRNA
SENCR transcribed from the 5′ end of the friend leukemia
integrated transcription factor 1 (FLI1) gene can inhibit the
migration of VSMCs. Likewise, suppressing the expression
of SENCR can reduce the expression of smooth muscle
contraction genes and increase the expression of migration-
associated genes. Zhang et al. (2018) found that lncRNA
RP11-714G18.1 can reduce the migration rate of VSMCs and
inhibit angiogenesis. SENCR and RP11-714G18.1 may be used
as inhibitory molecules for smooth muscle cell migration, to
exert certain anti-AS effects (Bell et al., 2014; Zhang et al.,
2018). In short, lncRNAs may be useful as regulators of
VSMC migration to enhance or inhibit the migration ability of
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VSMCs, thereby aggravating or alleviating the occurrence and
development of AS.

LncRNAs IN ANGIOGENESIS

Early Stages of AS
Endothelial cell dysfunction is a primary contributor to the
pathogenesis of AS, and pathological angiogenesis is a key
factor causing endothelial cell dysfunction within the arterial
wall (Xiao et al., 2015; Xu et al., 2015). A large number of
studies have shown that lncRNAs have an important regulatory
role in angiogenesis during the early stages of AS (Halimulati
et al., 2018; Yin et al., 2018b; Yu and Wang, 2018; Zhu
A.D. et al., 2019). Halimulati et al. (2018) found that lncRNA
TCONS_00024652 affects endothelial cell proliferation and
angiogenesis by regulating the expression of miR-21. Similarly,
miR-21 has been shown to inhibit angiogenesis (Sabatel et al.,
2011; Li et al., 2014). Zhu A.D. et al. (2019) studied the functional
role of the lncRNA ATB in angiogenesis of human mammary
epithelial cells (HMECs) and found that overexpression of ATB
enhanced the tube forming ability of HMEC-1 in Matrigel R©-
coated plates while promoting the expression of key angiogenesis
factors (VEGF) in pathological angiogenesis (Zachary, 2003;
Krishnan et al., 2015). In addition to lncRNA ATB, lncRNA
HULC also plays an important role in the angiogenesis of
endothelial cells. Studies have found that silencing HULC can
significantly reduce the tube formation ability of HMEC-1 and

protein expression levels of VEGF and VEGFR2. Subsequent
research has found that HULC can adsorb miR-124 and protect
myeloid cell leukemia-1 (MCL-1) from degradation by miR-124,
thereby accelerating the activation of PI3K/AKT, and JAK/STAT
signaling pathways to play a role in promoting angiogenesis
(Yin et al., 2018b).

The molecular sponge action of several lncRNAs plays an
important role in the molecular mechanisms of angiogenesis.
During angiogenesis, the expression of lncRNA MIAT in
endothelial cells was significantly up-regulated, and MIAT could
up-regulate the expression of VEGF by adsorbing miR-150-
5p (Yan et al., 2015). Subsequently, Sun et al. have proposed
that MIAT regulates angiogenesis in AS mice by activating the
PI3K/Akt signaling pathway (Sun et al., 2019). Thus, MIAT may
have important regulatory significance for angiogenesis in the
development of AS. The lncRNA SENCR also plays an important
role in endothelial cell angiogenesis. After knocking down
SENCR in HUVECs, the expression of angiogenic genes (CCL5,
CEACAM1, and CX3CL1) was down-regulated (Boulberdaa
et al., 2016). This pro-angiogenic effect is also reflected in
the lncRNA UCA1. The results of in vitro studies by Yin
et al. showed that silencing UCA1 can up-regulate miR-195 to
inactivate MEK/ERK and mTOR signaling pathways, thereby
inhibiting the growth and tube formation ability of HMECs
(Yin et al., 2018a). The above-mentioned lncRNAs have shown
a pro-angiogenic effect, however, in the pathogenesis of AS, some
lncRNAs can inhibit angiogenesis and thus play an anti-AS role.
For example, lncRNA MEG3 down-regulates the expression of

FIGURE 1 | Schematic of long non-coding RNAs regulating atherosclerotic processes. The upper row depicts lncRNAs that promote the development of
atherosclerosis, whereas, the lower row shows lncRNAs that inhibit the development of atherosclerosis. NFIA, nuclear factor I-A; APOA1, apolipoprotein A1; TC,
total cholesterol; LDL-C, low-density lipoprotein cholesterol; ox-LDL, oxidized low-density lipoprotein; MLKL, mixed lineage kinase domain-like protein; PTEN,
phosphatase and tensin homolog deleted on chromosome 10; HAS2, hyaluronan synthase 2; ROR2, receptor tyrosine kinase-like orphan receptor 2; RhoA, ras
homolog gene family member A; MCL-1, myeloid cell leukemia-1; VEGF, vascular endothelial growth factor; GPR119, G protein coupled receptor 119; ABCA1, ATP
binding cassette transporter A1; KLF4, Kruppel-like factor 4; BRG1, brahma-related gene 1 protein; MDM2, mouse double minute 2; ICAM-1, intercellular cell
adhesion molecule-1; MAPK6, mitogen-activated protein kinase 6.
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ICAM-1 by acting as a competing endogenous RNA (ceRNA)
of miR-147, thereby inhibiting the growth, migration, and tube
formation ability of HMECs and delaying the development of
AS (Xu et al., 2020). In short, lncRNAs related to endothelial cell
angiogenesis are believed to play an important regulatory role in
the occurrence and development of AS.

The Developmental Stage of AS
The special local environment of atherosclerotic lesions (relative
hypoxia, inflammatory aggregation, and oxidative stress) can
induce the production of pro-angiogenic factors and stimulate
the formation of new blood vessels in AS plaques (Michel
et al., 2007; Sluimer and Daemen, 2009; Marsch et al., 2013;
Camaré et al., 2017). The formation of new blood vessels
increases the supply of nutrients and improves the local
hypoxic environment, leading to further plaque development.
At the same time, angiogenesis in the plaque intensifies
the infiltration of lipids and inflammatory factors that cause
intraplaque hemorrhage (IPH), an important factor leading
to plaque instability and further AS development (Moreno
et al., 2006; Michel et al., 2014). Therefore, exploring the
process of angiogenesis in plaques and mechanisms that
promote AS development may aid in the discovery of new
anti-AS therapeutic targets. Bao et al. (2018) found that in
HUVECs treated with ox-LDL, the highly expressed lncRNA
LINC00657 can attenuate the inhibitory effect of miR-590-
3p on hypoxia-inducible factor-1α (HIF-1α) and upregulate
VEGF, MMP-2, and MMP-9 expression to promote endothelial
cell proliferation, migration, and angiogenesis. Long non-
coding RNAs H19 is closely related to the occurrence and
development of CAD in the general population (Zhang et al.,
2017), and H19 levels are higher in the peripheral blood of
AS patients (Gao et al., 2015). Yang et al. found that H19
up-regulated the expression of MMP-2, VEGF, and p53 in
Apoe−/− mice and down-regulated expression of the tissue
inhibitor of metalloproteinases-1 (TIMP-1), thus promoting
angiogenesis in plaques of AS mice (Yang et al., 2019). A recent
study found that the lncRNA SNHG1/miR-196a/MAPK6 axis
is involved in regulating the proliferation, migration, and
angiogenesis of HUVECs induced by TNF-α, indicating that
SNHG1 may be a potential molecular marker of AS (Zhang
et al., 2020). There is a large amount of evidence indicating
that angiogenesis in plaques may be a core event in the
progression of AS, and further in-depth study of relevant
lncRNAs in the future will revolutionize our understanding of
the etiology of AS.

CONCLUSION AND PERSPECTIVE

Recent evidence indicates that a large portion of the mammalian
genome is transcribed into ncRNA. Long non-coding RNAs are
important epigenetic regulators involved in gene expression.
Long non-coding RNAs play different physiological or
pathological roles under different conditions, regulating the
functions of cells and tissues in the body. Growing evidence
suggests that lncRNAs play an important role and may become

effective targets for intervention in AS-related cardiovascular
diseases (Figure 1). In recent years, research on lncRNAs has
greatly changed our views of disease etiology, This discovery
provides hope that the difficult problems surrounding human
cardiovascular diseases can be avoided and prevented. For
example, rapamycin (RPM) is often used as a drug coating for
drug-eluting stents (DES) because it can inhibit the growth
of smooth muscle cells. However, RPM also inhibits the
proliferation and migration of vascular endothelial cells and
damages the endothelium during DES implantation. Therefore, it
is important to develop strategies to protect vascular endothelial
cells after DES implantation. Interestingly, overexpression of
lncRNA SENCR after RPM treatment can significantly reduce the
inhibitory effects of RPM on HUVEC proliferation, migration,
and cell cycle progression (Sun H. et al., 2018). Thus, SENCR may
be used as a new combination agent to overcome the limitations
of RPM in DES implantation. Integrating lncRNAs into
traditional treatment strategies has great potential and should
be an important aspect of future disease research. Although
current research on lncRNAs gives us great expectations for
the prevention and treatment of diseases, many important
problems remain unresolved. For example, expression levels
for most lncRNAs in the body are very low, which complicates
the reliability and repeatability of large-scale lncRNA research.
Normally, protein-coding transcripts are transported from
the nucleus to the cytoplasm and combined with ribosomes
to translate proteins; however, most ncRNA remains in the
nucleus, making structural and functional studies difficult.
Moreover, recent studies have suggested that some lncRNAs are
contained in fluid exosomes and that these exosome-contained
lncRNAs may play an important role in the development and
diagnosis of a variety of human diseases (Gezer et al., 2014;
Işın et al., 2015).

Several key issues that must be addressed to fully realize
the therapeutic potential of lncRNAs in AS include: (1)
the exact biological role of lncRNAs in AS and AS-related
cardiovascular diseases; (2) the ability to develop drugs that
mimic lncRNA functions and simulate ncRNA in vivo; (3)
the safety and adverse reactions of lncRNA treatment; and
(4) developing optimal animal models for preclinical studies
(Devaux et al., 2015). The cost of discovering clinically
useful lncRNAs is very high due to the fact that it involves
a large amount of gene sequencing and requires a high
analytical capacity to accurately predict biological functions.
Subsequently, many more in vitro and in vivo experiments
will be needed to further verify previous experiments.
The functions of newly discovered lncRNAs are normally
inferred indirectly from the known function of their target
mRNAs because little functional information can be obtained
from the primary sequence of lncRNAs (Li et al., 2016).
A growing body of evidence indicates that lncRNAs play a
vital regulatory role in various biological processes. A more
complete understanding and recognition of their role in the
field of human diseases, especially cardiovascular diseases, will
aid in the development of novel diagnostic and therapeutic
methods. Despite the therapeutic promise of lncRNAs, there
are many problems related to integrating lncRNAs into
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pre-existing miRNA–mRNA–protein regulatory networks,
or mRNA–protein regulatory networks remain unresolved.
Although studies have found that hundreds of lncRNAs are
associated with cardiovascular diseases, the role of these lncRNAs
in the diagnosis, prognosis, and treatment of diseases requires
further verification.
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