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Abstract

Schistosomiasis affects over 200 million people worldwide, most of whom are children.

Research and control strategies directed at preschool-aged children (PSAC), i.e.,�5 years

old, have lagged behind those in older children and adults. With the recent WHO revision of

the schistosomiasis treatment guidelines to include PSAC, and the recognition of gaps in

our current knowledge on the disease and its treatment in this age group, there is now a con-

certed effort to address these shortcomings. Global and national schistosome control strate-

gies are yet to include PSAC in treatment schedules. Maximum impact of schistosome

treatment programmes will be realised through effective treatment of PSAC. In this review,

we (i) discuss the current knowledge on the dynamics and consequences of paediatric

schistosomiasis and (ii) identify knowledge and policy gaps relevant to these areas and to

the successful control of schistosome infection and disease in this age group. Herein, we

highlight risk factors, immune mechanisms, pathology, and optimal timing for screening,

diagnosis, and treatment of paediatric schistosomiasis. We also discuss the tools required

for treating schistosomiasis in PSAC and strategies for accessing them for treatment.

Introduction

Schistosomiasis is a tropical and subtropical disease affecting communities with limited access

to safe water and adequate sanitation provision [1–3]. It affects over 200 million people world-

wide (90% in sub-Saharan Africa), of which a significant number (123 million) are children [3,

4]. The health impact includes poor growth and cognition in affected children [5, 6].

Despite the higher prevalence of schistosomiasis in children, preschool-aged children

(PSAC), i.e., those aged�5 years, for a long time were considered to be at a low risk of infec-

tion [7]; and even if infected, the impact on their health was unknown or considered negligible.

Operational difficulties, including obtaining parasitology samples for diagnosis, failure to

detect light infections, and inadequate knowledge about risk factors in PSAC, have biased

studies towards school-aged children (SAC), i.e.,�6 years old and adults. Infection prevalence

data from a number of epidemiological studies have led to the estimation that at least 50 mil-

lion PSAC in Africa are infected with schistosomiasis [8], but the true global infection and
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disease burden remains to be quantified. This makes it difficult to make operational and eco-

nomic plans for controlling schistosomiasis in PSAC. Furthermore, gaps relating to infection,

disease dynamics, and treatment need addressing if we are to deliver sustainable schistosome

infection and disease control in PSAC and strengthen schistosomiasis elimination

programmes.

Here, we summarise the current knowledge of paediatric schistosome infection, disease

dynamics, and treatment. We also identify important knowledge gaps in paediatric schistoso-

miasis practice.

Epidemiology of paediatric schistosomiasis

In schistosome-endemic areas, a significant amount of the exposure to infection in PSAC is

passive (i.e., use of contaminated water in the home or children being bathed/sitting in a dish

of fresh water while the guardian conducts domestic chores), particularly in the youngest chil-

dren. Exposure becomes more active as the children grow (e.g., accompanying caregivers to

water sources for domestic chores) [9, 10]. Therefore, in the early years of infants and young

children, exposure to infection is closely linked to that of the caregiver. This disassociates as

children grow older, become independent, and frequently visit contaminated water sources

with friends and/or older siblings.

Exposure to infection is incremental, and almost all children in high transmission areas will

have been exposed to schistosome cercariae by age one [11], with infection prevalence and

intensity increasing as children grow up [12]. Thus, there is a need for inclusion of PSAC in

large-scale projects that map the distribution of schistosomiasis, to inform planning for drug

procurement and operational strategies for including these children in national control

programmes.

In addition to the lack of burden estimates of schistosome infection and disease in PSAC,

there is a paucity of incidence data in this age group. Longitudinal studies tracking the inci-

dence of schistosome infection are required to identify and quantify exposure patterns, risks,

and health impacts of infection at an early age and, most importantly, to plan treatment

strategies.

Risk factors for schistosome infection

Several factors influence the risk for schistosome infection in PSAC, including those already

identified in other age groups [Fig 1]. Environmental factors (including temperature, seasonal

rainfall patterns, and altitudes) influence the survival of the intermediate host snail, as well as

parasite development in the snail, affecting the force of transmission and infection [13, 14].

Exposure patterns of the human host are also affected by climatic changes (e.g., hotter seasons

prompt increased recreational use of infected water sources), and passive contact with infective

water can increase amongst PSAC, while they are waiting for their caregivers to complete

chores. Exposure will vary in both the surface area exposed as well as the duration and fre-

quency of exposure [15].

In addition to these well-studied risk factors, we are beginning to appreciate the impact of

the human gut and urinary microbiome [22–24]. The gut microbiome is believed to be partic-

ularly variable in the early years of life [25]; for example, we have reported that the relative

abundance of different bacterial taxa varies within the first three years of life [26]. The gut

microbiome plays a vital role in maintaining barrier integrity, and subsequently impacts the

host immune system [27], and contributes to the observed differences in infection patterns

[28]. Recently, we demonstrated a significant difference in the microbiome structure (fre-

quency and diversity of the host bacteria species) between schistosome-infected and
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uninfected Zimbabwean children aged 1 to 10 years [26]. From the study design, the mecha-

nistic direction of this relationship and the influence by other factors was unclear. These

aspects together with any mechanistic pathways are yet to be elucidated. In this age group, the

impact of gut microbiome dysbiosis on nutritional status is of particular importance.

Emerging ideas from initiatives such as the Human Microbiome Consortium suggest that

our focus on PSAC should be to understand how the microbiome functions and influences

innate susceptibility to schistosome infection, if at all [29]. Helminths modulate host immune

responses for their survival, and this in turn has a negative impact on the host microbiome

Fig 1. Risk factors for schistosome infection in PSAC. Adapted from: 1 [14]; 2 [14, 15]; 3 [16]; 4 [15], 5 [15, 17, 18]; 6 [13, 14]; 7 [19]; 8 [14]; 9 [18]; 10 [20]; 11 [21].

https://doi.org/10.1371/journal.pntd.0006144.g001
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structure and nutrition [23]. Increasing research in nutraceuticals should thus inform addi-

tional child supplementation programmes in affected countries. At present, schistosomiasis

interventions targeting the microbiome remain theoretical, as mechanistic studies to establish

and quantify causal relationships are lacking.

In schistosome-endemic areas, malnutrition and undernourishment are significant child-

hood problems. Nonetheless, there are no studies detailing the attributable fraction of malnu-

trition due to schistosomiasis or more importantly, the impact of treatment on these factors.

This information is necessary to advocate for control strategies to prioritise PSAC. Studies

have also yet to establish the role/relevance of anthropometric measures as a tool for identifica-

tion of the risk of malnourishment among PSAC in schistosome-endemic areas.

Schistosome-specific immune responses and clinical relevance

The interest in immunity in schistosome infections is twofold. First, hosts in endemic areas

develop protective acquired immunity against infection/reinfection, and second, the severe and

chronic clinical manifestations of schistosomiasis are immune mediated. Decades of studying

immune responses in both human and experimental models have given insights into the aetiol-

ogy and clinical manifestation of morbidity and immunopathology and into the development

of schistosome-specific protective immune responses. The paradigms presented by these studies

are not easy to extrapolate to PSAC, due to differences in the natural history of infection.

Human studies have largely focused on SAC and adults with distinct histories of infection,

which impacts on their immune phenotype [30]. Furthermore, most experimental studies on

schistosome immunology use mouse models, which are limited in their ability to recapitulate

morbidity and pathology occurring in the natural human host. For instance, eggs implanted in

mice were recently used to develop an experimental model for urogenital schistosome pathol-

ogy [31], but the relevance of this to the human disease forms in young children is unclear.

Acute and chronic stages of schistosome infection

In endemic areas, the acute stage of schistosome infection—including the Katayama syndrome—

receives very little research or clinical intervention compared to other areas [32, 33]. As detailed

above, the first infection event in most endemic areas occurs early at the pre-school age, but to

date, no studies of schistosome cercarial dermatitis in PSAC have been published. The immune

responses occurring in the early stages of infection are poorly documented in humans, and these

events in PSAC would be very informative on the nature and development of both pathological

and parasite-protective immunity.

In studies of SAC, protective immunity against schistosomiasis is characterized by a

dynamic shift in the balance between effector and regulatory (humoral and cellular) immune

responses, with effector responses surpassing the regulatory responses as infection progresses

and exemplified by Nausch and colleagues [34]. We have previously proposed a threshold

hypothesis [35] to explain the switch from a predominantly regulatory phenotype to an effector

immune phenotype as infection progresses. Nonetheless, there is a paucity of immunology

studies in PSAC detailing the dynamics occurring at the transition of infection from acute to

chronic. Knowledge of these responses will be informative for schistosome vaccine development

and deployment, as the ideal vaccine would target all children at risk of schistosome infection

who may have already experienced their first schistosome infection exposure/infection event.

Drug-induced protective immunity

Studies in SAC and adults have shown that treatment of schistosome infections with Prazi-

quantel (PZQ) enhances schistosome-specific immune responses by (i) removing the
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immuno-suppressive effects of the adult worms [35–37], and (ii) introducing large amounts

of parasite-specific antigens to the immune system to reach the threshold required to induce

an immune response [38–40]. These changes are associated with reduced reinfection rates

[38, 41]. One of the consequences of the previous schistosome treatment guidelines was

that studies on the effects of PZQ were focused more on SAC and adults. Thus, the immuno-

logical consequences of PZQ in PSAC remain poorly characterised. In a recent study in Zim-

babwean PSAC, we showed an increase in anti-parasite IgM and IgE titres, six weeks after

treatment with PZQ, and this was associated with resistance to reinfection [42]. This mimics

the development of naturally acquired immunity, albeit (in this case) accelerated by treatment

[39, 40, 43].

Evidence from experimental studies suggest that a more rational approach to the timing of

helminth treatment may have additional benefits beyond the transient removal of infection

and may also speed up the development of protective immunity more effectively than treating

chronic infection. These studies have shown that treatment of the first helminth infection

induces earlier and greater levels of protection against reinfection by preferentially inducing

the effector over regulatory responses [44–46]. In this case, chronic infection induces a con-

stant state of anti-parasite Th2 response, reducing the overall effect of Th1 effector responses

required to fight infection [47]. This suggests that treatment of the first schistosome infection

could have a longer-lasting impact on susceptibility to reinfection and presents the possibility

of targeting treatment for maximum benefit in terms of the future health of the child. As

detailed above, a single PZQ treatment can induce resistance to reinfection in PSAC [48], sug-

gesting that if treatment of PSAC is optimally timed then repetitive treatments may be reduced

or not required [49, 50]. Longitudinal studies determining the optimal treatment time are

needed to inform the treatment guidelines for PSAC. Now, we have a window to conduct

these studies, while there is a concerted effort to make a paediatric formulation of PZQ for

deployment within the next few years.

Pathology and morbidity

Schistosome pathology and morbidity are still being defined in older children and adults, e.g.,

only recently was urinary schistosomiasis renamed urogenital schistosomiasis to reflect the

increased recognition of the genital manifestations of S. haematobium-related disease [51].

Pathology and morbidity remain poorly described and studied in PSAC [10] compared to

SAC. However, studies are beginning to shed light on schistosome morbidity in this group,

e.g., a recent study using ultrasound has contributed to describing urinary morbidity in PSAC

[52].

Describing morbidity and pathology at all stages of schistosome infection in PSAC will

inform overall healthcare in this age group. In PSAC, clinical symptoms upon schistosome

exposure and infection (e.g., cercarial dermatitis and fever) may go unrecognised [5, 53, 54] or

be mistaken for symptoms of other illnesses such as malaria, which present with similar symp-

toms (e.g., fever).

It is also possible that schistosome infections have wider impacts in childhood health. In

PSAC, chronic prenatal exposure/sensitisation to helminth infection is reported to be associ-

ated with reduced efficacy of childhood vaccines through induction of a persistent Th2

response phenotype [55, 56]. Chronic exposure is also thought to be associated with environ-

mental enteropathy, which affects the efficacy of vaccines at infancy [57]. Reduced vaccine effi-

cacy means infection and disease from the vaccine-preventable infections. Thus, controlling

schistosomiasis in PSAC may have the added health benefit of improving vaccine efficacy;

appropriate studies are required to investigate if this would be the case.
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Schistosome infections damage epithelial barriers, resulting in anaemia, poor nutrition, and

growth [58, 59]. Thus, even with the low parasite burdens in PSAC, the pro-inflammatory

response generated can quickly lead to chronic morbidity [60]. For example, schistosome-

associated anaemia and malnutrition in older Kenyan children (5–18 years old) was attributed

to pathology beginning much earlier in life [58]. The nutritional effects could also be attributed

to microbiome dysbiosis as reported in the experimental mouse model of helminth infection

[61]. Thus, the impact of schistosomiasis in PSAC should be an integral part of interventions,

targeted at improving early child health and development.

Poor awareness, recognition, and lack of understanding and quantification of schistosome-

associated morbidity has previously made schistosome control in PSAC a lower priority than

in older children and adults, but concerted efforts are now beginning to correct this. There is a

need for biomarkers of environmental enteropathy in PSAC [59], mechanistic studies to infer

causality, and well-defined predictors of growth and nutrition in PSAC exposed to

schistosomiasis.

Paediatric schistosomiasis in coinfected hosts

Similar to all other age groups in tropical regions, PSAC are at risk of coinfections and there-

fore, comorbidities. Studies in older children (5–18 years old) indicate that the presence of

multiple infections in endemic areas lead to significant morbidity, including anaemia and mal-

nutrition and these are important in the formative years of PSAC [58]. Specific coinfection

studies include malaria–schistosomiasis, where studies in SAC suggest that malaria severity is

compounded by schistosome infection, and malaria treatment is more effective when schisto-

some infection is also treated [62, 63]. To date, no detailed studies have been conducted on the

fraction of malaria deaths in PSAC that are attributable to schistosome coinfection. In addi-

tion, S. haematobium infection has been shown to reduce the level of protective IgG responses

to malaria vaccine candidates [64]. In another instance, in vitro studies have shown that Sal-
monella can evade optimal antibiotic treatment by binding to schistosomes using fimbral pro-

teins (FimH) present on its surface [65], and that effective treatment of schistosomiasis results

in the release of Salmonella, causing septicaemia [66]. These findings need validation in PSAC

to allow the implementation of appropriate interventions.

Diagnosis of infection

One operational model being proposed for the treatment of schistosomiasis in PSAC is that

diagnosis is made before treatment, unlike the mass drug administration (MDA) approach

where SAC are treated without diagnosis [67]. This means that in the “diagnose and treat”

model, accurate point of care (POC) diagnostics are key to guide the targeted treatment.

Direct parasitological methods (Kato–Katz and urine filtration) are recommended by the

WHO [68] and are convenient, specific, rapid, cheap, and suitable for field applications in

PSAC [69, 70]. Nonetheless, in addition to the already known limitations of low sensitivity of

the parasitological methods in SAC and adults, these methods have the added operational chal-

lenge of obtaining adequate urine and stool samples in PSAC [71], particularly the collection

of replicate samples on different days to improve sensitivity [72].

Various other methods have been developed in the laboratory to address the issues of sensi-

tivity and are at different stages of translation into field tools. Immunological detection of

schistosome-specific antibodies in sera has been shown to be more sensitive in diagnosing

infection in PSAC than parasitological methods [12]. The non-invasive detection of worm

antigens in urine, i.e., circulating anodic antigen (CAA) [73, 74] and circulating cathodic anti-

gen (CCA) [75] have also been evaluated in PSAC. These have been shown to be a reliable tool
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in diagnosing S. mansoni [76] but less so in S. haematobium diagnosis [77]. Issues of cost,

which pose challenges in low resource settings where schistosomiasis is endemic [78, 79],

would also need to be overcome. Molecular techniques detecting parasite DNA in urine have

shown promise in PSAC [80, 81], although the absence of POC versions of these tests means

they require expertise and specialised equipment [82]. Compared to CCA and parasitology,

polymerase chain reaction (PCR) was most effective in detecting low intensity S. mansoni and

S. haematobium infections [83, 84]. The use of cell-free parasite DNA present in urine and

saliva [85] in PCR techniques can ease sampling difficulties in PSAC and detect early infections

[86]. MicroRNAs have been characterised in animal models of S. japonicum [87] and S. man-
soni [88]. Despite conflicting reports on the utility of miR–223 as a biomarker for helminth

infections [88, 89], microRNAs have great diagnostic potential in PSAC and require further

exploration. However reliable these diagnostics turn out to be at the lab bench, their true utility

will be tested in the field.

Morbidity markers for schistosomiasis

The majority of morbidity biomarkers associated with schistosomiasis are non-specific, relat-

ing to physiological, biochemical, and immunological changes. As such, their interpretation in

the light of coinfections and comorbidities is complex. Recent years have seen studies con-

ducted in PSAC to evaluate the utility of morbidity markers described in SAC. These have

included evaluation of the classic urine markers, haematuria and proteinuria in S. haemato-
bium infection (e.g., in Nigeria [90] and Zimbabwe [91]), and the urine albumin-creatinine

ratio (UACR) in Zimbabwe [91]. Faecal occult blood (FOB), the presence of cryptic blood in

stool, results when S. mansoni eggs perforate the intestinal mucosa and cause a small release of

blood into the bowel [92, 93], along with calprotectin released by granulocytes in response to

the accompanying inflammation [94]. FOB and calprotectin have been evaluated in PSAC in

Uganda [92, 95]. In these studies, FOB and calprotectin correlated positively with S. mansoni
infection pre- and post-treatment although there may be exceptions.

The challenge with these non-specific markers particularly is to determine how schistoso-

miasis influences them; this is a difficult task because even determining the fraction attribut-

able to schistosome infection does not indicate causation. Equally important is the lack of

specific information on what they mean in terms of the child’s overall current and future

health. There is the need for a knowledge base addressing these two issues if these morbidity

markers are to form part of the diagnostic tool kit to inform the “diagnose and treat” approach

for PSAC.

Schistosome treatment in PSAC

Following the recommendation to treat PSAC infected with schistosomes, there is a need for a

drug formulation that is suitable for PSAC. PZQ is the drug of choice for treating schistosomi-

asis at a recommended dose of 40–60 mg/kg body weight. In ill-resourced endemic areas, a

height–dose pole has been developed as a surrogate to weight scales for operational purposes

[96]. Modifications were made to extend the original dose pole used for SAC and adults to

include PSAC [97, 98]. PZQ is currently administered to PSAC as crushed tablets with juice or

bread [4, 10]. Followed by an endorsement from the WHO [99], a recent randomised dose-

ranging trial reports that a single 40 mg/kg dose of PZQ can be used for treatment in PSAC

[100]. Although PZQ is confirmed safe and efficacious [101], there is little information on its

pharmacokinetics in PSAC [102, 103], and this is compounded by variability in bioavailability,

influenced by brand [104, 105].
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PSAC tolerate PZQ well with few reports of adverse effects: normally abdominal pain, vom-

iting, fatigue, and diarrhoea that resolve within 24 hours [98, 100, 101]. Contrary to sugges-

tions of a higher efficacy dose (>40 mg/kg) in PSAC [106], a recent study reported on the

efficacy and safety of escalating doses (20 mg/kg, 40 mg/kg, and 60 mg/kg) of PZQ in PSAC

and SAC [100]. PZQ showed a flat dose-response curve in PSAC compared to that in SAC and

the current 40 mg/kg remains the best option in PSAC [99]. In PSAC, PZQ can be adminis-

tered with other antihelminthics (e.g., Albendazole) as a deworming package. There are cur-

rently no drug–drug interaction studies that have been conducted on these drugs in PSAC

[107]. PZQ is metabolised by the cytochrome P450 enzymes as shown in experimental studies

[108, 109]. With growing evidence of genetic diversity for cytochrome P450 variants in schisto-

some-endemic regions in Africa [110], there are implications for PZQ metabolism and treat-

ment efficacy which remain to be elucidated in PSAC.

Paediatric PZQ formulation

Operationally, the large size and bitter taste of the existing tablet are associated with adminis-

tration difficulties in PSAC [100, 111]. To address these issues, the Paediatric Praziquantel

Consortium has produced a paediatric PZQ tablet meeting a previously suggested target prod-

uct profile (TPP) [4, 112]. This formulation—a smaller, orally dispersible tablet with a masked

taste—has successfully undergone phase I clinical trials and phase II trials are currently under-

way (http://www.pediatricpraziquantelconsortium.org/).

Accessing PSAC for schistosome treatment and control

Preventive chemotherapy programmes targeting SAC are conducted via MDA with antihel-

minthics (usually PZQ and Albendazole) administered in the school setting. PSAC do not go

to school (although some may be in early child development centres) and the “diagnose and

treat” recommendation makes it difficult to treat them outside a health setting. One strategy is

to access PSAC through the Expanded Programme on Immunization (EPI) in primary health

centres [4], and our studies in Zimbabwe confirm the feasibility of accessing PSAC at health

centres [101]. However, in some health systems, the EPIs may already be “crowded,” imple-

menting other interventions at the same time; hence, alternative access strategies are required.

A report from a recent meeting [67] included the approach of empowering health workers to

identify clinical cases (i.e., non-specific signs of suspected cases) of schistosomiasis in PSAC

and treating them, as a potential means of accessing PSAC. This approach has both advantages

and disadvantages; the main disadvantage is the potential of treating non-specific clinical

symptoms due to infections/diseases other than schistosomiasis.

Conclusion

There is now a global move to elevate research on paediatric schistosomiasis and to promote

control, not only for child health but also to move towards eliminating schistosomiasis. The

control of paediatric schistosomiasis will only be prioritised in countries with limited health

budgets when (i) there is compelling evidence on the burden of infection and disease on child

health and development, (ii) there are cost-effective intervention tools, and (iii) engagement at

stakeholder and end-user levels. The research community can contribute to all three aspects,

and bridging the knowledge gaps highlighted in this review will make a significant contribu-

tion to the control of schistosomiasis in PSAC.
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Key learning points

• Preschool-aged children (PSAC) carry significant infection and morbidity to schisto-

somiasis. There is a treatment gap in mass drug administration, and studies mapping

the level of infection and morbidity in this group. Infection and disease quantification

is critical to inform planning and deployment of schistosome treatment in PSAC.

• Existing and new morbidity markers, along with improved multiple diagnostic tools,

are useful for targeted disease identification and treatment in PSAC. The utility of

these along with a proper strategy is important. There is a need for better-defined dis-

ease markers for this age group.

• Treatment with Praziquantel is safe and efficacious. Owing to existing challenges with

the current formulation, there is a need for a paediatric formulation, a better dosing

system, a better treatment strategy, and innovative ways of accessing PSAC for

treatment.

• Most PSAC will experience infection early, and there is a need to characterise and

quantify the consequences of these early infections in terms of impact on the overall

health of children.

• PSAC are capable of mounting an adaptive immune response to schistosome infec-

tions, and a single treatment can illicit this response. Exploring the applicability of this

in resistance to reinfection and morbidity is important.
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