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Background: In the biotechnology and applied microbiology sectors, artificial

intelligence (AI) has been extensively used in disease diagnostics, drug research

and development, functional genomics, biomarker recognition, and medical

imaging diagnostics. In our study, from 2000 to 2021, science publications

focusing on AI in biotechnology were reviewed, and quantitative, qualitative,

and modeling analyses were performed.

Methods: On 6 May 2022, the Web of Science Core Collection (WoSCC) was

screened for AI applications in biotechnology and applied microbiology;

3,529 studies were identified between 2000 and 2022, and analyzed. The

following information was collected: publication, country or region,

references, knowledgebase, institution, keywords, journal name, and

research hotspots, and examined using VOSviewer and CiteSpace V

bibliometric platforms.

Results: We showed that 128 countries published articles related to AI in

biotechnology and applied microbiology; the United States had the most

publications. In addition, 584 global institutions contributed to publications,

with the Chinese Academy of Science publishing the most. Reference clusters

from studies were categorized into ten headings: deep learning, prediction,

support vector machines (SVM), object detection, feature representation,

synthetic biology, amyloid, human microRNA precursors, systems biology,

and single cell RNA-Sequencing. Research frontier keywords were

represented by microRNA (2012–2020) and protein-protein interactions

(PPIs) (2012–2020).
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Conclusion: We systematically, objectively, and comprehensively analyzed AI-

related biotechnology and applied microbiology literature, and additionally,

identified current hot spots and future trends in this area. Our review provides

researchers with a comprehensive overview of the dynamic evolution of AI in

biotechnology and applied microbiology and identifies future key research

areas.

KEYWORDS
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Introduction

Since the beginning of the 21st century, the life sciences and

biotechnology and applied microbiology sectors have

exemplified mankind’s technological and revolutionary

evolution. In these sectors, among the top 10 scientific

breakthroughs published by science journals in recent decades,

more than half of research outputs were revolutionarily

innovative and breakthrough in nature. Emerging biological

sectors include, biomedicine, bio-based chemicals, bioenergy,

and genetically modified crop technology (Celikkanat Ozan

and Baran, 2013). These areas are cutting-edge, and next-

generation biotechnology industries are anticipated to develop

rapidly in the future (Lee, 2016). As the front end of these

biological industries and value chains, biotechnology and

applied microbiology research has adopted a leading position

in these industries. Therefore, exploring rapid developments and

hot trends in basic biotechnology and applied microbiology

research is pivotal in guiding biotechnology current

achievements and developing new, downstream bio-industry

markets.

AI represents advanced computer technology, and is a highly

complex system integrating mathematics, statistics, probability,

logic, ethics, and other disciplines. It primarily includes deep

learning, machine learning, convolution and recurrent neural

networks (CNN and RNN, respectively), full revolutionary

networks (FCNs), and other specific methods. AI is

extensively used in different industries, in particular

biotechnology and the life sciences. In recent years, several

major research developments have been achieved, including

the AI-mediated prediction of protein structure, which was

breakthrough of the year in 2021 (Baek et al., 2021). By

exploiting complex simulation algorithms, AI has

revolutionized disease diagnostics, drug research and

development, functional genomics, biomarker recognition, and

medical imaging diagnostics, and critically, has provided a vital

reference point for disease diagnostic, prediction, and treatment

strategies (Dlamini et al., 2020).

To facilitate AI research and progress in biotechnology and

applied microbiology, bibliometric analyses and reviews are

used to equip scientists with in-depth understandings of the

application, its ongoing evolution, and future prospects. From

a database search spanning 1 January 2000 to 31 December

2021, we used bibliometric methods to analyze scientific

papers on AI applications in biotechnology and applied

microbiology, including papers published in different

jurisdictions and by institutions. We examined journals

where AI biotechnological research studies were published,

investigated the “top 10 cited studies”, and enumerated how

many times popular studies were cited. We clustered the

reference network of cited studies, and investigated the

subject knowledge base. Research hotspots were identified

using burst keywords, which provided invaluable indicators

for future research. Our research remit was to provide

researchers with a macro understanding and micro analysis

of the AI biotechnological field. When compared with

traditional systematic reviews, we provided an intuitive,

timely, and logical framework to track biotechnological

developments and explore specific knowledge areas.

Methods

On 6 January 2022, we used the Web of Science Core

Collection (WoSCC) to download data (2000–2021), which

were independently verified by DX and ZZ. The following

search terms were used: (“deep learning” OR “machine

learning” OR “convolutional neural network*” OR CNN* OR

RNN OR “Recurrent neural network*” OR “Fully Convolutional

Network*” OR FCN*). The Web of Science category was

“Biotechnology Applied Microbiology”, and documents were

gathered. From studies, the following basic information was

gathered: authors, abstract, title, institution, journal, keywords,

country/region, and references. Studies indexed in the database

were included, whereas the following were excluded: 1) book

chapters, data papers, meeting abstracts and proceedings papers,

repeated articles, and editorials, and 2) unpublished studies with

limited data for analysis. In total, 79 duplicates were excluded. A

study overview (search process and analyses) is provided

(Figure 1).

We described publication traits, including country,

institute, journals, and keywords. The H-index is an

important indicator and was used to reflect the value of

scientific research (Eyre-Walker and Stoletzki, 2013). The
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FIGURE 1
A frame flow diagram. The diagram showed details selection criteria for ABAM publications fromWoSCC database and the steps of bibliometric
analysis.

FIGURE 2
Trends in the number of publications on ABAM from 2000 to 2021.
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Literature Metrology websites; http://bibliometric.com/,

VOSviewer (Leiden University, Leiden, Netherlands), and

CiteSpace V (Drexel University, Philadelphia, PA,

United States) were used to visualize collaborative networks

in institutes/countries/keywords/journals and co-occurrence

analyses. In CiteSpace, we conducted reference co-citation

analyses, constructed knowledge maps, and identified burst

keywords to generate new recurrent keywords (Chen, 2006).

Results

Article distribution by publication year

The literature retrieval showed that the research on AI in this

topic began in 2000. From 2000 to 2021, 3,529 papers were

published, and AI with Biotechnology and Applied Microbiology

(ABAM) related publication trends identified (Figure 2). Studies

FIGURE 3
The cooperation of countries/regions contributed to publications. (A) Country Collaboration map. (B)Most Cited Countries.
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in this area are increasing year on year, and suggest the

establishment of an important research trend.

Institutes, countries, and regions

We observed that 128 countries/regions published ABAM

studies: collaborations between countries (Figure 3) and the

top 10 countries (Table 1) are outlined. The United States

published the most studies (1308), then China (826),

Germany (258), and the United Kingdom (223). Some

countries, such as United States, China, Germany, and

United Kingdom, showed high centrality (marked by dark

blue), indicating that these countries likely played an

important role in research of this topic and made great

contributions.

We identified 584 institutes which contributed to ABAM

publications; the top 10 are outlined (Table 1). Institutional

collaborations are shown (Figure 4). The Chinese Academy of

Sciences recorded the most publications (85), followed by the

universities of Stanford (52), Shanghai Jiao Tong (46), and

Cambridge (37).

Figure 4 emphasizes the close and complex cooperative

relationship between different organizations. The VOSviewer

platform can be used to analyze the centrality of

organizations. The purple circle represents centrality, and the

TABLE 1 Top 10 countries/regions and relevant institutions.

Rank Countries/regions Count Total citations H-index Institutions Count H-index

1 United States 1308 31139 91 CHINESE ACAD SCI 85 26

2 China 826 10561 61 STANFORD UNIV 52 32

3 Germany 258 4783 44 SHANGHAI JIAO TONG UNIV 46 17

4 United Kingdom 223 6434 49 UNIV CAMBRIDGE 37 16

5 Canada 158 5040 37 CARNEGIE MELLON UNIV 36 16

6 Australia 128 2068 27 TSINGHUA UNIV 32 18

7 Italy 121 2022 28 UNIV ELECT SCI & TECHNOL CHINA 31 16

8 Japan 121 1327 30 HARVARD UNIV 31 30

9 South Korea 120 1547 25 TIANJIN UNIV 30 17

10 France 99 1875 29 UNIV WASHINGTON 30 17

TABLE 2 Top 10 cited references on artificial intelligence for biotechnology and applied microbiology.

Rank Source titles Title of reference Count Interpretation of findings

1 NATURE Deep learning. 203 This paper studied the back propagation algorithm of deep learning

2 J MACH LEARN RES Dropout: a simple way to prevent neural networks
from overfitting.

176 This study improved neural network performance in supervised
learning tasks

3 NAT BIOTECHNOL Predicting the sequence specificities of DNA-and
RNA-binding proteins by deep learning.

151 This study used deep learning techniques to identify sequence
specificities in DNA and RNA binding proteins

4 INT C LEARNING R Adam: A method for stochastic optimization. 132 In this paper, a stochastic gradient descent optimization algorithm,
based on the first derivative, was proposed for the first time. It was used
for large data, sparse data processing, and super parameter easy
adjustment.

5 J MACH LEARN RES Scikit-learn: Machine learning, in python. 126 This article introduced scikit learning, a python module that integrated
different contemporary machine learning algorithms

6 NAT METHODS Predicting effects of noncoding variants with deep
learning-based sequence model.

118 Based on deep learning, this study developed an algorithmic framework
to identify functional effects from noncoding mutations

7 ACM T INTEL
SYST TEC

LIBSVM: A library for support vector machines. 91 This study helped users apply support vector machine (SVM) to their
applications.

8 COMMUN ACM ImageNet classification with deep convolutional
neural networks.

90 In this study, a large-scale deep CNN was used to classify 1.2 million
high-resolution images

9 NATURE An integrated encyclopedia of DNA elements in the
human genome.

81 This study systematically mapped chromatin structure, transcription,
transcription factor association, and histone modification regions.

10 SIGKDD
EXPLORATIONS

The WEKA data mining software: an update. 79 The widely used, open source machine learning software Weka was
introduced in this paper and allowed researchers access the latest
technologies in machine learning.
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area of the circle is proportional to the centrality. The Chinese

Academy of Sciences and Stanford University are the most

prominent organizations, showing that they conducted more

research in this area.

Journals

In any research field, referential relationships between

academic journals often reflect knowledge exchange, where

FIGURE 4
The cooperation of institutions contributed to publications.

TABLE 3 Highly link strength of the top 20 occurrence keywords.

Rank Keyword Occurrence Total link
strength

Rank Keyword Occurrence Total link
strength

1 Machine learning 782 420 11 Prediction 44 52

2 Deep learning 318 183 12 Biomarkers 39 49

3 Classification 82 95 13 Algorithms 36 40

4 Convolutional neural
network

72 51 14 Bioinformatics 33 51

5 Artificial intelligence 60 61 15 Cancer 30 44

6 Random forest 57 58 16 Genomics 28 39

7 Support vector machine 56 41 17 Clustering 25 20

8 Feature selection 52 62 18 Data mining 25 29

9 Gene expression 50 61 19 Rna-seq 21 28

10 Neural networks 46 41 20 Natural language
processing

19 16
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citing studies are knowledge frontiers, and referenced studies the

knowledge basis. The top 10 references from studies (2000–2021)

(Table 2) and collaborations between related journals (Figure 5)

are outlined (Hall et al., 2009; Chang and Lin, 2011; Pedregosa

et al., 2011; The ENCODE Project Consortium, 2012; Kingma

and Ba, 2014; Srivastava et al., 2014; Alipanahi et al., 2015; LeCun

et al., 2015; Zhou and Troyanskaya, 2015; Krizhevsky et al.,

2017). Figure 5 shows that such journals as Bioinformatics, BMC

Bioinformatics, Nature, Nucleic Acids Research, and PLoS One

have higher centrality, and are the most popular journals for

publishing research on this topic. The cooperative relationship

between these journals is relatively balanced. This suggests that

the research on the topic has aroused the interest of mainstream

medicine and biology journals.

A dual-map overlay of journals (Figure 6) was used to show

citing and cited journals on the left and right, respectively, while

citation relationships were reflected by colored paths—these

analyses showed that studies published in Genetics/Molecular/

Biology journals were typically published in Biology/Molecular/

Immunology journals.

References

Reference analysis is a vital bibliometric indicator; frequently

cited studies typically and significantly influence their respective

research fields. Using this approach, co-cited document-based

clustering analyses generated connecting nodes and subfields for

ABAM analyses.

We generated a co-citation reference network to measure the

scientific relevance of related studies (Figure 7). Cluster setting

parameters: top N% = 0.5 and # years per slice = 1. The

Modularity Q score = 0.7135, which was > 0.5 and showed

the network was reasonably separated into loosely coupled

clusters. Weighted mean silhouette score = 0.9229, which

was > 0.5, therefore cluster homogeneity was acceptable.

FIGURE 5
The network map of cited journals contributed to publications.
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Index items, as cluster markers, were extracted from studies. The

largest cluster #0 was “deep learning” (Alipanahi et al., 2015),

cluster #1 “prediction” (Kourou et al., 2015), cluster #2 “support

vector machines (SVM)” (Furey et al., 2000), cluster #3 “object

detection” (Hung et al., 2020), cluster #4 “feature representation”

(Manavalan et al., 2019), cluster #5 “synthetic biology” (Wu et al.,

2016), cluster #6 “amyloid” (Charoenkwan et al., 2021), cluster #7

“human microRNA precursors” (Wang et al., 2011), cluster #8

“systems biology” (Zou et al., 2015b), and cluster #9 “scRNA-Seq

(single cell RNA-Sequencing)” (Arisdakessian et al., 2019).

FIGURE 6
The dual-map overlay of journals contributed to publications.

FIGURE 7
Reference co-citation map of publications on ABAM from 2000 to 2021.
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Keywords

Analysis of keywords can provide a summary of the topics of each

study and explore the hotpots and directions in this research area.

Keywords extracted fromABAM studies were processed, and the

top 20 are given in Table 3. Temporal hotspot trend shifts, on the

basis of the top 14 keywords with the strongest citation bursts, were

analyzed and included the following. The burst keywords in

2006–2011 were computational molecular biology (2006–2011),

Markov chain (2006–2011), and gene network (2009–2011). The

burst keywords in 2006–2014 were algorithm (2006–2014), sequence

analysis (2006–2014), and combinatorial optimization (2009–2014).

The burst keywords in 2003–2017 were microarray (2003–2017),

gene expression (2006–2017), statistics (2009–2017), data mining

(2012–2017), prediction (2012–2017), and random forest

(2012–2017). The current research hotspots are microRNA

(2012–2020) and protein–protein interaction (2012–2020) (Figure 8).

Discussion

General data

In this study, 3,529 ABAM papers, confirming to search

terms and inclusion/exclusion criteria, were published

between 2000 and 2021. The United States published most

studies (1308, 26.6%), with China second (826, 16.8%). China

had five of the top 10 institutions, with four in the

United States, and one in the United Kingdom. The journal

in which most publications were published was

Bioinformatics, which majorly contributed to ABAM

research. Additionally, the top 10 cited studies were

examined: the top study was cited 203 times and was

published by LeCun et al. in NATURE (LeCun et al., 2015).

The second rated study was cited 176 times and published by

Srivastava et al. in J MACH LEARN RES (Srivastava et al.,

2014).

Knowledge base

From previous studies, the application of deep learning

related technologies to microbiology and biotechnology has

been significant and generated many research achievements.

As indicated (Figure 6), when we clustered co-cited references,

key clustering nodes identified knowledge bases in this

research field: #0 “deep learning”, #1 “prediction”, #2

“SVM”, #3 “object detection”, #4 “feature representation”,

#5 “synthetic biology”, #6 “amyloid”, #7 “human

microRNA precursors”, #8 “systems biology”, and

FIGURE 8
The keywords with the strongest citation bursts of publications on ABAM from 2000 to 2021.
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#9 “scRNA-Seq”. Herein, we describe the knowledge bases

according to different clusters.

In #0 “deep learning”, a DeepBind software tool, based on

deep learning, was developed by Alipanahi et al. (2015), and

identified DNA and RNA binding protein sequence specificity.

The tool was used to develop regulatory process models in

biological systems and identify pathogenic variants. In other

work, Beck et al. (2020) generated a deep learning-based, pre-

trained, drug-target interaction model, Molecule Transformer-

Drug Target Interaction, which identified commercially available

drugs targeting SARS-CoV-2 proteins.

In #1 “prediction”, Tsubaki et al. (2019) studied end-to-end

representation learning of compounds and proteins, and developed

aCompound-Protein Interactions (CPI) prediction strategy for virtual

screening in drug discovery by combining protein convolution neural

networks (CNN) and compound graph neural networks. In other

work, Almagro Armenteros et al. (2017) developed a prediction

algorithm based on deep neural networks which relied only on

sequence information for protein subcellular localization.

In #2 “SVM”, Ozer et al. (2020) showed that SVM provided

solutions for high-throughput data analyses and

contextualization; the approach rapidly determined timelines

for invasive cancer diagnostics and treatment, and provided

solutions for biomedical, bioengineering, and clinical

applications. In other work, a SVM technology model

constructed by Zhang et al. (2018) used joint information

from multiple bone turnover markers, which improved

diagnostic efficiency for osteoporosis, almost in perfect

agreement with the dual-energy X-ray absorptiometry.

In #3 “object detection”, the approach by Zhang et al. (2020),

exploited a deep object detection technique and was used to study

contacts between protein secondary structure elements, and

predict tertiary structural protein topology. Einhäuser et al.

(2017) developed a foveal object detector to detect eye

movement, which significantly reduced metabolic costs and

computational complexity, and provided insights on visual

system evolution with eye movement.

In #4 “feature representation”, an effective feature

representation learning model ACPred-FL was developed

by Wei et al. (2018), and used to rapidly and accurately

identify new Anti-cancer peptides (ACPs)in many

candidate proteins and peptides. The learning method

developed by Peng et al. (2020) was based on feature

representation learning and deep neural network (DTI-

CNN), and was used to predict drug-target interactions and

reduce time and experimental costs. In other research, from

deep representation learning features with 107 dimensions, Lv

et al. (2020) devised a sub-Golgi protein localization

identification method, which exploited one feature type to

accurately predict sub-Golgi protein localization.

#5 “synthetic biology” is a logical extension of recombinant

technology or genetic engineering fields (Katz et al., 2018). Using

integrated synthetic biology, Nguyen et al. (2021) developed a

wearable face-mask, with a lyophilized CRISPR sensor, to non-

invasively detect SARS-CoV-2 at room temperature within

90 min. Cubillos-Ruiz et al. (2021) proposed that synthetic

biology could be used to program living cells with therapeutic

functions; their cell-based therapeutic design is currently

undergoing rapid development in medicine, and may provide

effective treatment solutions for human diseases.

In #6 “amyloid”, Charoenkwan et al. (2021) generated the first

scorecard-based predictor for the accurate analysis, prediction,

characterization, and identification of amyloid, on a large scale, to

generate functional information for therapeutic intervention

strategies. Cerebral amyloid-β (Aβ) is an Alzheimer’s disease

(AD) trait. Machine learning methods were used to identify

cognitive performance and demographic variables for noninvasive

testing of Aβ deposition, which can detect the effect of anti-amyloid

drugs in the non-dementia population (Ko et al., 2019).

In #7 “human microRNA precursors”, Zheng et al. (2020) used

CNN and RNN approaches to automatically extract complex RNA

sequence features to efficiently detect and predict human pre

microRNAs. Kamenetzky et al. (2016) identified a novel pre-

microRNA in the Echinococcus multilocularis genome using a

machine learning approach, which could help control and prevent

the global zoonotic infectious disease alveolar echinococcosis.

In #8 “systems biology”, Reel et al. (2021) integrated different

machine learning prediction algorithms to analyze different omics

data to identify new biomarkers for systems biology. In their

research, Weiskittel et al. (2021) outlined how systems biology

algorithms layer machine learning and biological components

could provide system-level analyses of single-cell omics data to

clarify complex biological mechanisms. The powerful combination

of systems biology, single cell omics, and machine learning could

promote further, beneficial biomedical research.

In #9 “scRNA-Seq”, in an unbiased manner in single cells,

scRNA-Seq assesses functions in individual cells and cell-to-cell

variability (Lin et al., 2020). Based on deep neural networks,

Arisdakessian et al. (2019) formulated an interpolation algorithm

Deepimpute based on DNN. Dropout layers and loss function

were used to learn data patterns and to deal with gaps in scRNA-

Seq data. He et al. (2020) developed DISC, a deep learning

imputation model with semi-supervised learning for single cell

transcriptomes. DISC can deduce gene expression and structures

obscured by dropouts, enhanced gene and cell structures,

recovered poor gene expression, and improved cell

identification. Using machine learning methods (deep

learning) combined with scRNA-Seq datasets, issues such as

reducing dimensions, missing values, denoizing sc data, and

explaining zero expansion, can be solved. Machine learning

methods can be exploited to comprehensively process scRNA-

Seq data, improve follow-up analyses in stem cells, identify cell

subsets, and support regenerative medicine and cell therapy

strategies (Yan et al., 2021).
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Research frontiers and hotspots

Typically, keywords are used to concentrate on

contemporary research concepts, while burst keywords

represent research frontiers and emerging trends. CiteSpace

was used to capture burst keywords, from which two research

frontiers were identified: microRNA (2012–2020) and

Protein-Protein Interaction (PPIs) (2012–2020).

Importantly, we hypothesize these keywords exemplify

future research frontiers.

MicroRNAs are noncoding single stranded RNAs that

regulate development and gene transcription. Predicting and

identifying connections between miRNAs and disease using

AI-related methods is highly significant for unraveling

pathogenic, preventative, prognostic, and pathological

mechanisms implicated in diseases.

Zou et al. (2015a) predicted correlations betweenmicroRNAs

and disease using two approaches: KATZ combined social

network analysis and machine learning, while CATAPULT

was a supervised machine learning method. Both were applied

to 242 known associations between microRNAs and disease, and

used 3-fold cross validation and leave-one-out cross-validation to

evaluate method performance.

Wen et al. (2018) used the deep learning-based approach

DeepMir Tar and extracted 750 features from a relatively large

data set at different levels to predict human miRNA target sites.

DeepMir Tar provided a new way to reveal miRNA biological

function, as well as gene therapy and drug discovery for human

diseases.

In large-scale RNA sequencing studies, Liu et al. developed a

computational model called MirTarget which predicted genome-

wide miRNA targets. Machine learning methods were used to

train miRNA targeting feature data with miRNA binding and

target down-regulation features, thus MirTarget showed better

performances when compared with other algorithms (Liu and

Wang, 2019).

Zheng et al. (2020) used CNN and RNN models to predict

human pre-miRNAs; sequences were combined with predicted

pre-miRNA secondary structures as input features to avoid

feature extraction and selection processes by hand. Models

were easily trained for handling training datasets; they

demonstrated low generalization errors and were satisfactory

for test datasets (Zheng et al., 2020).

Protein–protein interactions are very important in such cell

life activities as transcriptional regulation, signal transduction,

and drug signal transduction. Study of PPIs has become a

research hotspot in bioinformatics. However, it is time-

consuming and costly to identify PPIs using experimental

methods (Chen et al., 2019).

People are more inclined to use artificial intelligence methods,

like machine-learning, to automatically identify PPIs, which helps

understanding of the molecular roots of disease on one hand, and

provides new ideas for drug research and development on the other

hand. Also, this effectively reduces experimental costs (Yu et al.,

2021).

Based on a deep learning algorithm, Sun et al. (2017)

designed a stacked autoencoder and investigated sequence-

based PPIs predictions; the prediction accuracy of different

external datasets was 87.99%–99.21%. These high-throughput

methods increased our understanding of protein roles, disease

etiology, and therapy design.

Hashemifar et al. (2018) developed a Direct Physical Protein-

Protein Interactions (DPPI) deep learning framework, which

modeled and predicted PPIs from sequence information. By

adopting a deep, Siamese-like CNN which used high-quality

experimental PPI data, evolutionary information from a

predicted protein pair, and combined these data with random

projection and data enhancement, PPIs were successfully

predicted (Hashemifar et al., 2018).

Zeng et al. (2019) formulated DeepPPISP, a novel end-to-end

deep learning framework. To examine local contextual features,

authors used a sliding window to acquire neighbor features from

target amino acids. To analyze global sequence features, a text

CNN extracted features from protein sequences. To predict PPI

sites, local contextual and global sequence characteristics were

combined (Zeng et al., 2019).

Sequence-based deep learning technologies have been

successfully used to predict PPIs. However, Yang et al. (2020)

indicted these methods only focus on sequence information and

ignore structural information in PPI networks. Such information,

including degree, location, and adjacent nodes in graphs, are vital

for PPI predictions. Theses authors generated a graph-based deep

learning method for predicting PPIs, and demonstrated an

accuracy of 99.15%, which improved on existing sequence-

based methods (Yang et al., 2020).

In their method based on deep learning, Liu-Wei et al. (2021)

developed deepviral, which predicted PPIs between humans and

viruses. The method processed protein sequences and phenotypic

characteristics to reveal infectious disease mechanisms and elucidate

potential treatment methods (Liu-Wei et al., 2021).

Conclusion

We generated an objective, systematic, and comprehensive

bibliometric analysis of scientific studies associated with deep

learning, machine learning, CNN, RNN, and FCNs in ABAM.

Moreover, we identified the research basis, future trends, and

current hotspots in this field. Identified knowledge bases were:

deep learning, prediction, SVMs, object detection, feature

representation, synthetic biology, amyloid, human microRNA

precursors, systems biology, and scRNA-Seq. Furthermore,

microRNAs and PPIs were identified as future research

frontiers and trends.

We identified some study limitations; publications over an

extended period (2000–2021) were gathered, therefore, some

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Xu et al. 10.3389/fbioe.2022.998298

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.998298


studies were incomplete and may have introduced publication

bias into our research, potentially affecting analysis outcomes.
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