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Abstract

Background Fascial dehiscence (FD) and incisional hernia (IH) pose considerable risks to patients who undergo

abdominal surgery, and many preventive strategies have been applied to reduce this risk. An accurate predictive

model could aid identification of high-risk patients, who could be targeted for particular care. This study aims to

systematically review existing FD and IH prediction models.

Methods Prediction models were identified using pre-specified search terms on SCOPUS, PubMed, and Web of

Science. Eligible studies included those conducted in adult patients who underwent any kind of abdominal surgery,

and reported model performance. Data from the eligible studies were extracted, and the risk of bias (RoB) was

assessed using the PROBAST tool. Pooling of C-statistics was performed using a random-effect meta-analysis.

[Registration: PROSPERO (CRD42021282463)].

Results Twelve studies were eligible for review; five were FD prediction model studies. Most included studies had

high RoB, especially in the analysis domain. The C-statistics of the FD and IH prediction models ranged from 0.69 to

0.92, but most have yet to be externally validated. Pooled C-statistics (95% CI) were 0.80 (0.74, 0.86) and 0.81 (0.75,

0.86) for the FD (external-validation) and IH prediction model, respectively. Some predictive factors such as body

mass index, smoking, emergency operation, and surgical site infection were associated with FD or IH occurrence and

were included in multiple models.

Conclusions Several models have been developed as an aid for FD and IH prediction, mostly with modest perfor-

mance and lacking independent validation. New models for specific patient groups may offer clinical utility.
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Abbreviations

BMI Body mass index

CI Confidence interval

COPD Chronic obstructive pulmonary disease

C-statistic Concordance statistic

FD Fascial dehiscence

GRADE Grade of recommendation, assessment,

development, and evaluation

IH Incisional hernia

ML Machine learning

O/E Observed/expected

OR Odds ratio

RoB Risk of bias

ROC Receiver operating characteristic

SSI Surgical site infection

VAMC Veteran affairs medical centre

Introduction

Abdominal surgery is one of the most common operations

worldwide. Although surgical techniques and perioperative

care have improved dramatically, wound complications

including fascial dehiscence (FD) and incisional hernia

(IH) still occur. FD occurs in about 0.24–5.8% of post-

laparotomy patients and carries an increased risk of mor-

tality (approximating 25%) [1]. The incidence of IH ranges

from 5 to 20%, increasing up to 30% in high-risk patients

[2] and after FD occurrence [3]. As such, a significant

amount of healthcare resources could be saved if the

incidence of FD and IH occurrence could be reduced [4].

Perioperative risk optimization (such as prevention of

wound infection [1, 5, 6], preoperative smoking cessation

[7, 8], and bodyweight reduction [6]) is essential for FD

and IH prevention. In addition, mesh techniques have

recently been improved for FD and IH prophylaxis [9–11].

Hence, the risk associated with these adverse events can be

reduced through an intensive prevention strategy but tar-

geting these enhanced methods to those at highest risk

would be more cost effective than using them routinely for

all patients. An accurate risk prediction model for FD and

IH would help identify patients at greater risk of FD and IH

occurrence and therefore provide more selective allocation

of prevention interventions.

This systematic review was therefore conducted to

identify FD and IH risk prediction models available in the

literature. Evidence was summarized in terms of risk fac-

tors, statistical models used, model performance, and

associated risk of bias. Model performance was described

by study phases including derivation, internal-validation,

and external-validation.

Material and methods

A review protocol was developed following the

PRISMA2020 guideline [12] (Online Appendix 1) and

registered in PROSPERO (CRD42021282463).

Study identification and selection

SCOPUS, Medline (via PubMed), and Web of Science

databases were used for study identification from inception

to September 28th, 2021. Search terms were constructed

using keywords as follows: incisional hernia, dehiscence,

prediction model, receiver operating characteristic (ROC)

curve, concordance statistic (C-statistic), sensitivity,

specificity, derivation, and validation. Synonyms of these

terms were also considered (Online Resource Table S1).

Studies published in any language were eligible if they met

the following criteria: developed or validated a risk pre-

diction model of FD or IH in adult patients who underwent

abdominal surgery, included more than one risk factor in

the risk prediction model, and reported their model’s per-

formance (i.e., C-statistic, sensitivity, specificity, predic-

tive values, and observed/expected (O/E) outcome ratio).

Studies were excluded if their aim was to examine FD or

IH prediction in open abdomen, ventral hernia treatment,

and parastomal hernia. Two reviewers (ATa and TT)

independently selected the eligible studies. Disagreements

were resolved by the third reviewer (ST).

Data extraction and risk of bias assessment

Study level data were extracted by two reviewers (ATa and

TT) including study design (i.e., cohort or case–control),

the number of patients and events of interests, and patients’

demographics and characteristics. In addition, the study

phase (i.e., derivation or validation), type and number of

risk factor, type of statistical model, and model selection

were also extracted.

Furthermore, model performance reported as C-statistic

along with 95% confidence interval (CI), sensitivity,

specificity, and predictive values were extracted. If the

95% CI of a C-statistic was not reported, it was calculated

using the equation proposed by Hanley and McNeil [13].

The calibration performance (assesses how close the pre-

dicted and the actual values are, measuring by the Hosmer–

Lemeshow goodness-of-fit chi-square test or the O/E ratio,

or both), was retrieved if data were available.

The individual study risk of bias (RoB) was assessed

using the PROBAST tool [14]. This tool consists of four

components including participants, predictors, outcome,

and analysis domains. There are two to nine signal ques-

tions for each domain with a total of 20 questions. Each
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study was finally classified as high RoB if at least one

domain was rated as high risk, low RoB if all domains were

rated as low risk, and unclear if the result of assessment

was unclear. Two reviewers (ATa and ST) independently

performed RoB assessment, and any disagreement was

resolved by consensus.

Meta-analysis

C-statistics, along with standard errors (SE), were descri-

bed. The SEs were estimated from reported 95% CIs or the

equation proposed by Hanley and McNeil [13]. These

C-statistics were then pooled across studies where data

were available using a random-effect model if hetero-

geneity was present. Heterogeneity was assessed by the I2-

statistic; I2[ 25% indicated the presence of heterogeneity.

All analyses were stratified by type of prediction models

(FD and IH) and study phases and displayed with Forest

plots where data were available. Meta-regression, sensi-

tivity analysis, and publication bias assessment were

planned but could not be performed because of the limited

number of included studies. STATA version 17 (StataCorp,

Texas, USA) was used for all analyses. Certainty of the

evidence was rated according to the Grade of Recom-

mendation, Assessment, Development, and Evaluation

(GRADE) guideline [15, 16].

Results

Twelve out of 2, 948 studies [17–28], comprising 209, 104

patients, were eligible including 5 FD [17, 18, 20, 21, 28]

(3 derivation/internal-validation and 2 external-validation)

and 7 IH [19, 22–27] (all derivation/internal-validation)

studies (Fig. 1). No study that appeared to meet inclusion

criteria was later excluded. The mean age ranged from 45.3

to 66.8 years; percentage male was 26.6–93.9% (Table 1).

Only 4/12 studies reported body mass index (BMI) which

ranged from 28.2 to 56.8 kg/m2. Ten out of 12 eligible

studies were cohort designs with follow up time from 6 to

57 months.

RoBs were assessed for all studies using the PROBAST,

except one [25] due to a full-text unavailability. Most

included studies were judged as high RoB, particularly in

the domain of participants and data analysis, see Online

Resource Table S2.

FD Prediction

For the 5 FD prediction models, 3 and 2 studies were

derivation plus internal-validation and external-validation

phases, respectively. Three risk prediction models were

derived by groups from the Veteran Affairs Medical Centre

(VAMC) [17], Rotterdam [18], and Virginia [28] using the

data of 17, 044, 1, 452, and 69, 969 patients; these models

were also internally validated in 17, 763, 686, and 23, 055

patients, respectively (Table 1).

The VAMC [17] model was constructed using logistic

regression with backward stepwise elimination, and

included 12 out of 22 initial risk factors, see Table 2. The

model was internally validated using a split-data approach,

and also externally validated by Kenig et al. [21]. Dis-

crimination performance C-statistics (95% CI) in the

derivation, internal-validation, and external-validation

[17, 21] phases were 0.73 (0.71, 0.75), 0.74 (0.71, 0.76)

[17], and 0.84 (0.78, 0.90) [21], respectively, see Fig. 2.

Calibration performance was assessed using Hosmer–

Lemeshow goodness-of-fit, which yielded p-values of 0.61,

0.82, and 0.46 in the derivation, internal-validation [17],

and external-validation phase [21], respectively.

The Rotterdam model [18] was also constructed using

logistic regression with backward elimination, and the final

model included 10 risk factors (Table 2). The C-statistic

from the derivation phase was not reported but it was 0.91

(0.81, 1.00) for the internal-validation (split-data

approach), see Fig. 2. Hosmer–Lemeshow goodness-of-fit

indicated that the model was well calibrated (p-value =

0.79). The Rotterdam model’s discrimination performance

was lower in the external-validation studies, with

C-statistics (95% CI) of 0.79 (0.65, 0.93) [20] and 0.76

(0.68, 0.84) [21] relative to 0.91 in the internal-validation

phase. None of the studies provided calibration coefficients

as an O/E ratio. The VAMC and Rotterdam risk score

equations are provided in Online Resource Table S3.

The Virginia study group [28] recently developed a FD

prediction model by applying machine learning (ML)

approach using a decision-tree with extreme gradient

boosting technique. Of 29 predictive factors, 15 were

selected and kept in the ML model. Interestingly, this

approach included laboratory data (i.e., serum sodium,

creatinine, and hematocrit level) as potential predictive

factors, see Table 2. Discrimination C-statistics (95% CI)

were 0.69 (0.67, 0.71) and 0.69 (0.66, 0.72) in training and

internal-validation sets, respectively [28] (Fig. 2). The

model had good calibration but has yet to be externally

validated.

C-statistics were pooled across studies stratified by

study phases (see Fig. 2), which yielded pooled C-statistics

(95% CI) of 0.71 (0.67, 0.75), 0.77 (0.65, 0.90), and 0.80

(0.74, 0.86) for derivation, internal-validation, and exter-

nal-validation phases, respectively. This indicated that

these prediction models performed better in the internal-

and external-validation phases, although they were not

significant. However, heterogeneity was very high with the

corresponding degree of heterogeneity I2s of 85.5%,

97.2%, and 34.6%, respectively.
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Fig. 1 PRISMA flow of study selection
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IH prediction

Seven risk prediction models were developed for IH

occurrence after general abdominal surgery

[19, 22, 24, 27], bariatric surgery [23], colectomy [25], and

hysterectomy [26]. These models were derived from the

data of 428 to 30, 865 patients, followed up for more than

12 months, with maximum mean follow-up time of

57.9 months (Table 1).

Veljkovic et al. [19] developed an IH prediction model

in midline laparotomy patients using logistic regression.

The model was constructed from four predictors including

BMI, suture length to incision length ratio, time to suture

removal, and surgical site infection (SSI), see Table 2.

Excellent discrimination performance was indicated from

the C-statistic (95% CI) of 0.92 (0.88, 0.96), see Fig. 3.

Calibration performance was reported as good but no

statistic was reported.

HERNIAscore [22] is a well-known IH prediction model

derived using Cox regression. It includes four predictive

factors (i.e., BMI, chronic obstructive pulmonary disease

(COPD), laparotomy, and hand-assisted laparoscopy) after

model selection using backward elimination (see Table 2).

No C-statistic was reported from the derivation phase but it

was 0.77 (0.68, 0.86) from the split-sample internal-vali-

dation [22] (Fig. 3). The study did not state whether cali-

bration performance was assessed.

Five IH prediction models [23–27] were developed by

the same group from the University of Pennsylvania Health

System. Four out of five models were derived from Cox

regression with bootstrapping for model validation.

C-statistics ranged from 0.70 to 0.85 [23–26] (Fig. 3). A

recent model by this study group, named Penn hernia risk

calculator [27], was deployed as a free mobile application.

The model included 16 predictive factors, of which emer-

gency laparotomy was weighted as the strongest risk factor

(Table 2). C-statistic (95% CI) was 0.83 (0.81, 0.85) in the

overall cohort (Fig. 3), or 0.84 and 0.82 in the derivation

and split-sample internal-validation cohorts, respectively.

Excellent calibration performance was claimed although no

statistic was reported. This application allows users to

estimate the risk of IH occurrence specific to different

types of operation, including bariatric, colorectal, gastric,

gynecological, hepatobiliary, transplant, vascular, and

urological surgery. None of the IH prediction studies

reported sensitivity, specificity, predictive values, and O/E

ratio. IH risk score equations are shown in Online Resource

Table S3.

C-statistics (95% CI) of the IH prediction models were

pooled stratified by type of surgery (see Fig. 3) which

yielded a pooled C- statistic of 0.81 (0.75, 0.86) for overall

abdominal surgery with high heterogeneity I2 of 96.2%. In

addition, a pooled C-statistic (95% CI) was 0.83 (0.76,T
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Table 2 Included predictive factors in each prediction model

Predictor variable Study

Fascial dehiscence Incisional hernia

Webster,

2003

Ramshorst,

2010

Cole,

2021

Veljkovic,

2010

Goodenough,

2015

Basta,

2016

Fischer,

2016

Lanni,

2016a
Tecce,

2017

Basta,

2019

Pre-operative factor

Age ⁄# ⁄ ⁄# ⁄#

Sex ⁄ ⁄

Ethnicity ⁄ ⁄ ⁄

BMI ⁄ ⁄# ⁄# ⁄# ⁄# ⁄# ⁄# ⁄#

ASA status ⁄

2 ? Elixhauser

Comorbidity

⁄

Chronic obstructive

pulmonary disease

⁄ ⁄ ⁄ ⁄ ⁄

Smoking ⁄ ⁄ ⁄ ⁄

Coughing ⁄

Cerebrovascular

accident

⁄

Ascites ⁄ ⁄

Jaundice ⁄

Anemia ⁄ ⁄

Hypertension ⁄

Cancer ⁄ ⁄

Chemotherapy ⁄ ⁄

Malnutrition ⁄ ⁄

Chronic liver disease ⁄

Alcohol abuse ⁄

Antiplatelet/

anticoagulant

⁄

Steroid ⁄

Prior hernia ⁄

History of abdominal

surgery

⁄ ⁄

Intra-operative factor

Emergency operation ⁄ ⁄ ⁄ ⁄

Open surgery ⁄ ⁄ ⁄ ⁄

Midline incision ⁄

Hand-assisted

laparoscopy

⁄

Organ of surgery ⁄ ⁄

Concurrent fistula/

ostomy

⁄ ⁄

Concurrent

gastrointestinal

procedure

⁄

Emergent vascular

procedure

⁄

Laparoscopic

hysterectomy
⁄

Small bowel obstruction ⁄

Gynecologic pathology ⁄ ⁄

Acute inflammation ⁄ ⁄
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0.89) in mixed-abdominal surgery whereas there was only

one each for Bariatric, colectomy, and hysterectomy.

Discussion

Risk prediction models for FD or IH occurrence were

systematically reviewed in this study. Three models were

derived for FD considering a total of 26 risk factors, with

discriminative performance (i.e., C-statistics) ranging from

0.69 to 0.73 for derivation, 0.69 to 0.74 for internal-vali-

dation, and 0.76 to 0.84 for external-validations. For IH

prediction, a total of 32 risk factors were used in seven

models, with discriminative C-statistics ranging from 0.70

to 0.92 for derivation, and 0.77 to 0.82 for internal-vali-

dation. Pooled C-statistics of the FD models were 0.77 and

0.80 in internal- and external-validation phases, and 0.81

for IH in derivation-internal-validation phase but these

were highly heterogeneous leading to uncertainty, i.e., fair

to excellent performance for both FD and IH models.

The Rotterdam model [18] and HERNIAscore [22] were

derived based on relatively small cohorts (1, 452 and 428

patients, respectively), whereas newer models were

developed from larger cohorts that utilized electronic

medical records and a registered database [24, 27, 28]. As a

general rule, more precision was observed from the large

cohorts than small cohorts (Figs. 2 and 3). All FD and IH

risk prediction models had high RoB according to the

PROBAST criteria, especially within the analysis domain.

Altogether, certainty of the evidence was rated as very low

as per the GRADE approach [16].

Predictive factors commonly included in the FD models

were emergency operation, COPD, and SSI [17, 18, 28]; the

latter was consistently the strongest risk factor, with an odds

ratio (OR) of 5.54 [17] to 6.43 [18]. For IH occurrence, BMI

[19, 22–27] was the most commonly included factor, fol-

lowed by surgical approach (i.e., laparotomy or laparoscopy)

[22, 23, 25, 27], history of smoking [24, 26, 27], and ethnicity

[24, 25, 27]. In the Penn hernia risk calculator, emergency

operation was the most important risk factor, with an OR

(95% CI) of 4.65 (3.90, 5.55) [27].

Table 2 continued

Predictor variable Study

Fascial dehiscence Incisional hernia

Webster,

2003

Ramshorst,

2010

Cole,

2021

Veljkovic,

2010

Goodenough,

2015

Basta,

2016

Fischer,

2016

Lanni,

2016a
Tecce,

2017

Basta,

2019

Operative time ⁄# ⁄

Suture length: Incision

length

⁄#

Surgeon’s experience ⁄

Wound class ⁄ ⁄

Post-operative factor

Reoperation ⁄

Time to stitch removal ⁄#

SSI ⁄ ⁄ ⁄ ⁄

Wound complication ⁄

Pneumonia ⁄

Failure to wean ⁄

Any complication ⁄

Laboratory factor

Sodium ⁄

Creatinine ⁄

Hematocrit ⁄

ASA: American society of anesthesiologists, BMI: body mass index, SSI: Surgical site infection
#Used in categorized form
aFull-text not available – not all predictors reported
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A prognostic prediction model could play a prominent

role in determining whether to target additional intra-op-

erative strategies and resources to reduce the risk of

adverse outcomes in specific patient groups. There is

existing evidence that procedures such as small-bite fascia

closure [29] and prophylactic mesh placement [9, 11, 30]

related to abdominal wall closure can reduce the risk of FD

and IH occurrence following abdominal operations; how-

ever, mesh procedures require expertise, are time-con-

suming, and represent additional cost. Therefore, models

based solely on factors available during the pre- or intra-

operative phase could help target these additional resour-

ces, in contrast to prediction models [17–19, 28] dependent

on postoperative predictive factors which would not be

helpful.

Minimally invasive surgery is currently the preferred

approach; this is supported by the fact that many models

identified open surgery as an IH risk factor [22, 23, 25, 27].

However, the open procedure is still valuable in emergency

situations, inevitably making emergency surgery a greater

risk for FD [17, 18, 28] and IH [27]. This group of patients

should benefit from prophylactic mesh placement.

Although prophylactic mesh did not increase SSI risk in the

recent clinical trial [31], most surgeons are still reluctant to

use mesh in an emergency setting for fear of an SSI. If an

emergency patient with a substantially high risk of FD and

IH occurrence were identifiable using a risk prediction rule,

it may guide the surgeon to determine which patients might

benefit most from the use of prophylactic mesh despite the

risk of SSI. Nevertheless, none of the prediction models

were developed explicitly for emergency patients.

Other preoperative risk factors used in many models

[22–27] are worth further consideration including obesity

and smoking. Weight reduction and smoking cessation

preoperatively should be encouraged to diminish the risk of

IH. In addition, measures to reduce the risk of SSI should

also reduce the risk of FD [17, 18, 28] including glycemic

control [32], intra-operative normothermia [33], and

Webster, 2003

Cole, 2021

Webster, 2003

Ramshorst, 2010

Cole, 2021

Días, 2014

Kenig, 2014

Kenig, 2014

Derivation

Internal−validation

External−validation

Heterogeneity: τ2 = 0.00, I2 = 85.48%, H2 = 6.89

Heterogeneity: τ2 = 0.01, I2 = 97.23%, H2 = 36.11

Heterogeneity: τ2 = 0.00, I2 = 34.59%, H2 = 1.53

Study

VAMC

ML

VAMC

Rotterdam

ML

Rotterdam

Rotterdam

VAMC

Prediction model

.6 .7 .8 .9 1

with 95% CI
C−statistic

0.73 [

0.69 [

0.74 [

0.91 [

0.69 [

0.79 [

0.76 [

0.84 [

0.71 [

0.77 [

0.80 [

0.71,

0.67,

0.71,

0.82,

0.66,

0.65,

0.68,

0.78,

0.67,

0.65,

0.74,

0.75]

0.71]

0.76]

1.00]

0.72]

0.93]

0.84]

0.90]

0.75]

0.90]

0.86]

Random−effects REML model

Fig. 2 C-statistics of fascial

dehiscence prediction models,

where a higher C-statistic means

a better discrimination

performance. Dash line

indicates the overall pooled

C-statistic value. (VAMC

Veteran Affairs Medical Centre,

ML Machine Learning, REML

restricted maximum likelihood)
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antibiotic prophylaxis. Timing of antibiotic administration

is crucial to ensure that the effective concentration of the

antibiotic is achieved in tissues by the incision time [34].

Moreover, multiple doses of antibiotics should be delivered

during the long procedure to maintain maximum protective

effect [35]. While an individual’s risk estimation using

prediction models requires complex calculation and might

not be applied routinely, not adhering to basic principles,

including small-bite closure, should be condemned.

Prediction models were mostly constructed using con-

ventional statistical techniques such as logistic and Cox

regression. Many risk factors were simultaneously con-

sidered in the equations to increase predictive performance;

however, there are a number of caveats in using these

models. Too many risk factors relative to the number of

events and/or a total sample size can cause model over-

fitting, with a consequent loss of generalizability. A com-

mon rule of thumb is that one needs 10–30 events per risk

factor to reduce overfitting with logistic regression. In

Veljkovic, 2010

Goodenough, 2015

Fischer, 2016

Basta, 2019

Basta, 2016

Lanni, 2016

Tecce, 2017

Mixed abdominal surgery

Bariatric surgery

Colectomy

Hysterectomy

Overall

Heterogeneity: τ2 = 0.00, I2 = 94.89%, H2 = 19.57

Heterogeneity: τ2 = 0.00, I2 = 96.23%, H2 = 26.54

Study

Derivation

Internal−validation

Derivation

Mixed derivation and internal−validation

Derivation

Derivation

Derivation

Study phase

.7 .8 .9 1

with 95% CI
C−statistic

0.92 [

0.77 [

0.77 [

0.83 [

0.85 [

0.70 [

0.82 [

0.83 [

0.81 [

0.88,

0.68,

0.74,

0.81,

0.78,

0.69,

0.76,

0.76,

0.75,

0.96

0.86

0.80

0.85

0.92

0.71

0.88

0.89

0.86

Random−effects REML model

Fig. 3 C-statistics of incisional hernia prediction models, where a higher C-statistic means a better discrimination performance. Dash line

indicates the overall pooled C-statistic value. (REML restricted maximum likelihood)
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addition, nonlinear relationships and interaction between

risk predictors should also be considered in model devel-

opment to improve model performance; it is well known

that conventional statistical models may be limited in

dealing with these issues, particularly in the presence of

high-dimensional interactions. Unlike conventional statis-

tical methods, ML methods can easily address these issues

in addition to multi-collinearity between risk factors.

Nevertheless, the black box nature of ML methods makes

clinical interpretation more difficult. In our review, only

one ML-based model was identified.

Overall, the predictive performance for most models was

still too low to be adopted into clinical practice. In general, a

predictive model should have an AUC of at least 0.8 or

preferably 0.85 to be sufficiently precise and accurate to

justify its use in clinical practice, with subsequent validation

in an independent population. When discrimination perfor-

mance (i.e., C-statistic) was considered, less precise models

should be used with caution. The model with a higher

C-statistic and precision, e.g., Penn hernia risk calculator

[27], may be a good model for external validation.

This review has some strengths. Eligible studies were

systematically identified and selected. The RoB was

assessed using the most appropriate and validated [36] tool

(i.e., PROBAST) designed explicitly for prediction models.

However, limitations cannot be avoided. Most publications

included in this review were judged as having a high risk of

bias. In addition, high heterogeneity was observed from the

pooling of FD and IH prediction model performance (i.e.,

C-statistics), thus uncertainty of this performance was

present. Due to the limited number of studies/models

available, neither subgroup analysis by type of incision

(open versus laparoscopy) nor type of abdominal surgery

(bariatric surgery, colectomy, and hysterectomy) could be

done. We did not initially propose to assess risk of bias

using the PROBAST in the PROSPERO; applying it after

critical appraisal of included studies might lead to bias the

results.

In conclusion, several models have been developed for

FD and IH risk predictions but most of them had high risk of

bias. Their performances are highly heterogeneous, which

vary from fair to excellent for both models. Further studies

are required to externally validate these models before

applying them in a routine clinical practice. In addition, these

models may need to be updated with additional important

risk factors and tailored to specific patient populations, such

as emergency abdominal operations.
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