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Abstract: Increasingly detrimental effects of fine particulate matter (PM) have been observed in
Northeast Asia owing to its rapid economic development. Previous studies have found that dust,
combustion, and chemical reactions are the major sources of PM; nevertheless, the spatial config-
uration of land use and land cover, which is of most interest to planners and landscape architects,
also influences the PM levels. Here, we attempted to unveil the relationship between PM and
different types of land use cover (i.e., developed, agricultural, woody, grass, and barren lands) in
122 municipalities of Korea. Landscape ecology metrics were applied to measure the spatial configu-
ration of land use pattern and spatial lag models by taking into account the transboundary nature
of air pollution, allowing us to conclude the following regarding PM levels: (1) the size of land
cover type matters, but their spatial configuration also determines the variations in PM levels; (2) the
contiguity and proximity of landcover patches are important; (3) the patterns of grasslands (e.g.,
simple, compact, and cluster (with large patches) patterns) and woodlands (e.g., complex, contiguous,
and cluster (with large patches) patterns) considered desirable for minimizing PM are dissimilar in
terms of contiguity.

Keywords: fine particulate matter; urban form; land cover; landscape ecology; Korea

1. Introduction

Concerns about particulate matter (PM)—in particular, PM10 and PM2.5 in this study—
have been growing globally since it was found to have detrimental effects on well-being; PM
can increase mortality as well as the incidence of cardiovascular and respiratory diseases [1].
Poor visibility and numerous hazes, associated with the presence of PM, often reduce
agricultural productivity [2] and weaken the aviation and tourism industries [3]. Since
the detrimental effects of PM were first unveiled through different types of research, local
governments have been putting increasing efforts into improving the air quality. In this
context, the extremely high PM concentrations in Northeast Asia are the cause of concern so
that most countries in this region have established individual air quality standards for PM
in ambient air and have actively run air quality monitoring and management activities for
the control of PM (WHO, 2006). In Korea, for example, the Clean Air Conservation Act was
wholly amended in 2007, and the Special Act on Metropolitan Air Quality Improvement
was enacted in 2004 [4]. The series of legal enactments were a result of the increasing
concerns about low air quality levels—which were the worst among the countries of the
Organization for Economic Cooperation and Development (OECD) in 2018 [5]—which
pose a health threat to people living in one of the world’s most densely populated countries.
On top of some factors internal to each country, the rapid growth of industry and the
resulting severe air pollution in Northeast Asia (e.g., Mongolia, China, and North Korea)
have been drawing global attention.

Many previous studies have focused on the causes of PM growth. The results indicated
a direct impact of suspension from the soil, resuspension from industrial dust and vehicles,
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and fossil fuel combustion [6]; moreover, meteorological conditions have been found to
have a moderating effect [7,8]. The impacts of urban form and land cover on PM have
been of particular interest to planners and landscape architects, given that land use plans
and open-space planning seem to help in reducing or accelerating PM exposure. Previous
studies have mostly provided information on the number of land cover patches in terms of
percentage or acreage as well as on the number of certain types of patches. To fill existing
knowledge gaps, we explored the influence of the spatial configuration of different land
cover types on PM10 and PM2.5 atmospheric concentrations in 122 municipalities of Korea.
The outcomes of this study are expected to serve as a useful guide for the integration of
land use and atmospheric environment planning.

2. PM, Urban Form, and Landscape Ecology

“PM” refers to a mixture of solid pollutants (e.g., salts, organic compounds, dust, and
metals) and liquid droplets. PM can be divided into PM10 or PM2.5 based on having a
particle diameter [9] of ≤10 µm (“inhalable fine particles”) or ≤2.5 µm (“fine particles”),
respectively. Since PM is small enough to penetrate the respiratory system, it has been
attributed as the cause of chronic respiratory diseases, cardiovascular diseases, premature
mortality, and adult diabetes, as well as some minor symptoms (e.g., cough, dyspnea, and
wheezing) [10]. PM10 includes both natural (originating from the soil, dust, ash, metal
oxides, pollen, or plant parts) and anthropogenic components; meanwhile, PM2.5 is domi-
nated by sulfate, nitrate, ammonium, metal (e.g., Pb, Cd, V, Ni, Cu, and Zn), and NH+

4 [11]
compounds, which mainly originate from anthropogenic activities. Well-known, significant
sources of PM10 are suspensions from soils disturbed by farming or mining as well as
resuspensions of industrial dust from streets and roads by vehicles [10]. PM2.5, on the
other hand, is mainly generated from the combustion of coal, oil, gasoline, transformation
products of NOx and SO2, or from smelters and steel mills [6]. PM concentrations are
profoundly enhanced or mediated by meteorological conditions such as precipitation, high
humidity, and wind speed [7,8]. The effect of temperature is still controversial, although
few studies have shown its connection to seasonal and temporal variations in PM (e.g.,
positive in winter and negative in summer) [12,13].

The number of studies showing an association between urban form—often measured
by “land cover and land use” (LCLU)—and PM has been growing. Since the major
sources of PM are closely related to human activities (e.g., construction sites, roads, power
plants, and automobiles), the association between developed areas and PM has received
considerable scholarly attention. First, PM concentrations are likely to increase as cities
increase in size [14]; second, population density [15] is positively correlated to PM levels;
third, the higher the traffic volume and the lower the distance of the measurement location
from roads, the higher the detected PM level [16]. Notably, urban sprawl is seen as a
primary reason for traffic volume increase: developed areas tend to show higher PM
concentrations [17]; in particular, an area including several energy-related industries,
manufacturing industrial establishments, and combustion facilities have been identified
as a primary source of PM [15,18]. The contribution of agricultural lands to PM has also
been highlighted: increases in agricultural emission have been found to be closely related
to growth in food production and population [19,20]; furthermore, it has been claimed
that the burning of crop residues is a leading source of PM [21]. The role of vegetation
in reducing air pollutants and in air purification has been examined for a long time. As
Riondato, et al. [22] declared, vegetated areas can filter pollutants and effectively reduce
PM concentrations. This is in accord with other studies which, in particular, examined leaf
characteristics (e.g., cuticle chemical composition [23] and the wax layer [24]), tree canopy
size, plant health condition [25], groove and trichome distribution [26], PM deposition
velocity, the ground surface fraction of vegetation [27], and tree and shrub density [28].
Finally, barren deserts, in particular when subjected to high-speed wind capable of blowing
dust and sand, can act as sources of PM [29]. Although these previous studies have adopted
different sorts of statistical methods to observe and estimate the impact of certain types
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of LCLU on PM levels (e.g., longer-term trend monitoring, kriging, linear mixed-effects,
or random forest), the land use regression (LUR) model remains the most popular for
long-term predictions of PM concentrations. The LUR model considers land use attributes
and other factors correlated to air pollution [30]; however, the distance from the emission
source and the proportion of specific land uses have been examined the most.

Via the prism of landscape ecology, it has been possible to observe the spatial patterns
of LCLU and their impact on PM since landscape ecology metrics quantitatively measure
different sorts of landscape structures (i.e., patches under the same LCLU type) [31],
and relevant software (e.g., FRAGSTATS) are readily available [32]. Thus, landscape
ecology metrics have been frequently used to examine the association between land use
patterns and local flooding [31], neighborhood satisfaction [33], streamflows [34], and
walkability [35]. The association between land cover as measured by means of landscape
ecology metrics and PM has been investigated, but often only by referring to urban green
space [36,37], aggregated urban patches [38], and developed areas [39]. Moreover, in
previous studies on this topic, most of the analyzed areas were located in China, followed
by Iran, Germany, and Poland. As Bergin, et al. [40] stated, determining the association
between land cover and PM at different geographic scales and in different contexts would
broaden our understanding of the linkage between pollutants and human activities (which
are reflected on LCLU). Thus, the identification of PM uniquely found in Korea could
help generalize previous observations and determine the phenomena occurring locally
due to specific air pollution characteristics. Considering the transboundary nature of air
pollution, the application of spatial autoregressive models for LUR (which is a simple
linear regression) or pairwise correlation in the majority of previous studies appears both
theoretically and practically adequate.

3. Materials and Methods

The study area covered 122 out of 165 municipalities in Korea (Figure 1), which formed
the dataset for our analyses. In this study, we mainly explored the average PM10 and PM2.5
levels over four months from December 2018 to March 2019. These months were selected
because PM concentrations are highest during the winter season, and the results of targeted
analyses would allow the placement of strong management policies by the government.

Land cover data with 30 m resolution were retrieved in 2019 by the Ministry of Envi-
ronment to identify developed lands, agricultural lands, woodlands, grassland, and barren
lands. To identify the spatial configuration of each land cover type, landscape ecology
metrics measures to represent the area (total area), shape (large patch index), size of the
largest patch (largest patch index), proximity (mean proximity), connectivity (mean conti-
guity), and diversity of each type of land cover (Shannon’s diversity index) were calculated
using ArcMap 10.4.1 and FRAGSTATS v4.2.1 (see Table 1 for the detailed measurements of
each metric). Data on possible correlated factors (relative to the year 2019) were collected
based on the previous literature. These included data on population [19], manufacturing
employees and companies [15], the total number of cars [41], road length [42], the number
of businesses generating >100,000 tons of pollutants per year [18], and meteorological data
(i.e., temperature, humidity, rainfall, temperature, and wind speed) [12]. Wind direction
data were excluded since the values retrieved from monitoring stations located in different
parts of the same municipality differed considerably. Instead, the longitude and latitude of
each municipality were taken into account to investigate the influence of polluted air from
adjacent countries such as China or North Korea [43]. The data were retrieved from Statics
Korea, the Traffic Accident Analysis System, the Korea Meteorological Administration, and
the 2019 Air Emission Source Survey. Spatial lag models (SLM) were used for the analyses
(for the choice of SLM, please see Appendix A).
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Figure 1. PM10 and PM2.5 distributions during the 2019 peak season.

Table 1. Variables and Measurements.

Variable Measurement

Total Area The total land area of certain patch types within the studied unit
(10,000 m2)

Edge Density (ED) ED = E
A

E = sum of edges in the landscape (A)

Largest Patch Index % of landscape comprised in the single largest patch

Mean Contiguity

Mean value of the contiguity index of patches within the landscape:

Contig =

(
[(∑z

r=1 cijr)/aij]−1
v−1

)
cijr = contiguity value for pixel r in patch ij,
aij = area of patch ij in terms of cell number,
v = sum of values in a 3-by-3 cell template

Mean Proximity
PX =

n
∑

i=1

Si
zi

Si = area, zi = edge to edge distance from patch i to its nearest neighbor
patch within the buffer

Shannon’s Diversity
Index (SHDI)

H′ = −
c
∑

i=1
pi ln(pi)

c = number of classes in the landscape, pi = proportion of area in class i

Urbanization Urbanization composite score calculated by considering the population,
manufacturing employees and companies, cars, and road length

Emission Source Total number of businesses generating >100,000 tons of pollutants
per year

Wind Speed Average wind speed during the peak season (m/s)

Temperature Average temperature (December–March) (◦C)

Precipitation Average precipitation (December–March) (mm)
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The patch densities, shapes, and fractal dimensions, as well as the proportion of each
land cover, were excluded from the analyses due to multicollinearity. A correlation was
considered “high” for r > 0.8 (p < 0.05). The standard values were set slightly high since
the landscape ecology metrics measured slightly different aspects of patches so that the
correlation coefficients typically showed high values. We did not create a composite index
based on these variables because it would not have provided any significant meaning, and
the configuration of land cover was the major point of interest in this study. Meanwhile, the
composite score of urbanization achieved by factor analysis that includes population, the
total number of cars, employers, companies, and the total length of roads were used to avoid
simultaneous consideration of many individual variables. The latitude and longitude of
municipalities, emission sources, urbanization, wind speed, and temperature–precipitation
(i.e., the composite score of temperature and precipitation obtained by factor analysis)
were included in the final models. For better comparison, the variables were maintained
constant across different land cover models.

4. Results
4.1. Descriptive Statistics

As shown in Figure 1, high concentrations of PM10 and PM2.5 were detected in inland
areas, while coastal cities in the east and south showed lower PM levels. In particu-
lar, high–high clusters—a statistically significant cluster of relatively high values of PM
levels compared to surrounding areas—and hot spots—identifying a group with high
value within the study area—were identified in the Chungcheong and Southern Gyeonggi
provinces, which include 314 industrial parks as of 2020 and are closely located in Seoul
metropolitan area. The Chungcheong province has a basin shape since it is surrounded
by mountain ranges. Most of the South and East Coast areas showed low concentrations
of PM10 and PM2.5; in particular, low–low clusters and cold spots were observed in the
South Coast area, which includes Gyeonsangnam, Jeollanam, Busan, and Ulsan, for a total
of 227 industrial parks. Major metropolitan areas, including Seoul, which were expected to
show high concentrations of PM, were not a part of high–high clusters. Clusters of PM10
and PM2.5 showed similar patterns, but the shape of the PM2.5 high–high cluster seemed
narrower, while the PM10 high–high cluster was found to stretch toward the west shore and
included four municipalities located at the border with North Korea. An outlier, low–high
cluster—an area with relatively low PM levels compared to surrounded cities—that was
observed in Gapyeong-gun showed relatively low PM10 concentrations when compared
with the surrounding areas. These low concentrations might be due to the uniqueness of
the area, which is characterized by a high proportion of woodland, a low number of emis-
sion sources (i.e., only one industrial complex), and is surrounded by high mountains. By
contrast, other border areas (e.g., Paju and Yangju) showed high PM10 concentrations due
to their higher number of industrial parks and to the ongoing construction of a new town.

As shown in Table 2, the total woodland area represented most of the land cover
in S. Korea, followed by agricultural land, developed land, grassland, and barren lands.
Notably, woodland covered an area ten times larger than that of developed land. On
average, the edge density (ED) of agricultural land was the highest (56.87), while that
of barren land was the lowest (13.33); agricultural land was characterized mainly by
very fine and scattered spatial patterns. The large patch index (LPI) that refers to the
proportion of the single largest patch in the area suggested that the largest patches were
represented by woodland (comprising on average 33.62% of each studied municipality).
The mean contiguity and the proximity ranged between 0.05–0.29 and 0.76–333,784.80,
respectively. Woodland showed the highest mean contiguity and proximity, which implied
that woodland was more likely to be connected, complex, and clustered by large patches.
The average value of the Shannon diversity index (SHDI) was 0.53, implying the presence
of diverse land cover types; populous cities tended to have more diverse land covers
(r = 0.26, p = 0.00). Notably, one municipality had about 31 emission sources, which
generated >100,000 tons of pollutants per year on average. Overall, the mean wind speed,
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temperature, and precipitation over the four winter months were 1.93 m/s, 2.03 ◦C, and
25.47 mm, respectively.

Table 2. Descriptive Statistics.

Variables Mean SD Min Max

Total Area

Developed 3987.27 4902.77 66.15 35,116.47

Agricultural 12,939.91 9182.47 69.21 45,156.42

Woody 40,687.93 30,598.34 438.39 162,833.00

Grass 2020.31 2287.46 72.18 17,133.48

Barren 1077.41 974.26 17.19 8054.91

Edge Density

Developed 23.93 17.05 1.71 77.22

Agricultural 56.87 21.74 5.67 98.29

Woody 46.15 12.2 20.04 80.68

Grass 27.59 17.02 2.03 100.88

Barren 13.33 10.48 2.55 71.92

Largest
Patch Index

Developed 4.21 9.24 0.05 55.52

Agricultural 5.89 8.61 0.08 51.28

Woody 33.62 24.7 0.93 91.82

Grass 0.26 0.55 0.00 4.66

Barren 0.22 0.31 0.01 1.67

Mean
Contiguity

Developed 0.16 0.03 0.10 0.24

Agricultural 0.2 0.01 0.15 0.23

Woody 0.21 0.03 0.16 0.29

Grass 0.12 0.03 0.05 0.23

Barren 0.15 0.02 0.08 0.21

Mean
Proximity

Developed 1129.84 6802.14 4.06 73,983.01

Agricultural 2922.12 6905.97 8.76 50,311.91

Woody 38,609.95 64,603.39 73.2 333,784.80

Grass 10.05 44.77 0.76 481.01

Barren 6.48 6.75 0.95 41.07

Shannon’s Diversity Index 0.53 0.16 0.15 0.87

Urbanization −0.00 1.00 −0.55 7.97

Emission Source 30.89 42.27 0.00 210.00

Wind Speed 1.93 0.79 0.55 4.60

Temperature 2.03 2.10 −2.55 6.80

Precipitation 25.47 9.29 12.81 75.88

4.2. SLM Results

The separate land cover model illustrated that LCLU and its spatial patterns impacted
the PM10 and PM2.5 levels (Table 3). As expected, the spatial autoregressive parameter (Rho)
was highly significant across the models, and the explanatory power of each model was
69–73% and 70–73%, respectively. The adjusted R2 values of PM10 and PM2.5 SLM obtained
by considering only the control variables (i.e., base model) were 65% and 68%, respectively.
This implies that other than the land cover, the control variables (i.e., longitude, latitude,
urbanization, emission sources, wind speed, temperature, and precipitation) were the major
driving factors of the observed PM levels. The results of the PM10 base model indicated
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that longitude (coef. = −0.02, p = 0.09), emission sources (coef. = 1.73, p = 0.03), and wind
speed (coef. = −6.00, p = 0.00) were all statistically significant factors at the 0.5 significance
level. Meanwhile, the results of the PM2.5 base model indicated longitude (coef. = −0.01,
p = 0.07), emission sources (coef. = 1.27, p = 0.06), wind speed (coef. = −4.13, p = 0.01), and
temperature (coef. = −0.98, p = 0.09) were significant factors.

The results of the SLM for each land cover type were interpreted at the 0.1 significance
level and intuitively read, as shown in Figure 2. The mean contiguity value increased in
the case of contiguous patches and complex shapes. A higher value of proximity indicated
that the patch was surrounded by many larger patches, which would be close to each other
(i.e., low isolation). In the case of a single, large patch, the mean proximity value would be
lower. Notably, higher Shannon’s index values identified a higher number of patch types
and evenness among those patch types at the same time. The effects of different land covers
on PM10 and PM2.5 were quite distinct. Overall, emission sources, wind speed, and tempera-
ture showed significant associations with the PM levels. Latitude was negatively associated
(or approached significance) in the PM2.5 model. In the developed area model, contiguity
(coef.pm10 = 62.31, coef.pm2.5 = 32.08) and SHDI (coef.pm10 = 9.47, coef.pm2.5 = 4.62) showed
positive influences on the PM10 and PM2.5 levels. The larger the agricultural land, the
lower was the PM10 and PM2.5 levels (coef.pm10 = −0.22, coef.pm2.5 = −0.18). The ED was
also found to contribute positively to the PM10 levels (coef.pm10 = 0.12) and approached sig-
nificance in the PM2.5 model. By contrast, the high values of contiguity (coef.pm10 = −81.81,
coef.pm2.5 = −36.77) and proximity (coef.pm10 = −2.12, coef.pm2.5 = −1.16) associated with
woodlands contributed to the decrease in PM10 and PM2.5 levels. In the grassland model,
an increase in the mean contiguity would lead to significant growth of both types of PM
(coef.pm10 = 61.65, coef.pm2.5 = 92.01), while an increase in the mean proximity would
lead to a reduction in both types of PM (coef.pm10 = −2.92, coef.pm2.5 = −2.75). SHDI was
found to be a significant factor and have a positive effect on PM only in developed and
barren lands.

Figure 2. An intuitive interpretation of landscape ecology metrics (colored pattern refers to different land cover types
of interest).



Int. J. Environ. Res. Public Health 2021, 18, 9428 8 of 13

Table 3. Results of the SLM.

Variables
Developed Land Agricultural Land Woodland Grassland Barren Land

PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5

Total Area
Coef. 589.70 † 137.34 † −0.22 ** −0.18 ** −0.00 0.00 45.60 † −174.88 † −61.26 † −291.94 †

Std.Err. 0.99 0.82 0.00 0.00 0.00 0.00 0.80 0.65 1.02 0.83

ED
Coef. −0.00 0.03 0.12 ** 0.06 0.01 −0.00 1.68 † 0.46 † 0.61 † −0.15 †

Std.Err. 0.06 0.05 0.05 0.04 0.04 0.04 1.51 1.20 1.40 1.14

Largest
Patch Index

Coef. - - - - - - 0.70 † 0.52 † 0.70 † 0.54 †

Std.Err. - - - - - - 0.80 0.63 0.84 0.68

Mean Contiguity Coef. 62.31 ** 32.08 * −8.62 −7.64 −81.81 ** −36.77 ** 61.65 * 92.01 ** 48.21 5.34
Std.Err. 23.92 19.57 34.37 28.27 22.36 19.09 35.06 27.93 29.45 23.95

Mean Proximity † Coef. −0.16 −0.61 0.71 0.72 −2.12 ** −1.16 ** −2.92 ** −2.75 ** −1.65 −1.33
Std.Err. 0.55 0.45 0.56 0.46 0.64 0.55 1.41 1.13 1.35 1.09

SHDI
Coef. 9.47 ** 4.62 3.53 1.08 −1.06 −0.70 6.00 1.21 8.72 ** 5.67 *

Std.Err. 3.57 2.88 3.94 3.21 4.17 3.56 3.66 2.90 4.05 3.26

Longitude Coef. −0.00 0.00 0.01 0.00 −0.00 0.00 0.00 −0.00 0.00 0.00
Std.Err. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Latitude
Coef. 0.00 −0.01 −0.00 −0.01 * −0.00 −0.01 * −0.00 −0.02 ** −0.00 −0.01

Std.Err. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Urbanization † Coef. −3.08 −0.56 1.66 0.93 −0.76 −0.78 −1.18 −1.02 −2.20 −1.00
Std.Err. 1.91 1.59 1.86 1.53 1.39 1.20 1.44 1.16 1.48 1.22

Emission
Coef. 1.31 ** 1.08 ** 0.72 0.67 1.62 ** 1.21 ** 1.46 ** 1.35 ** 1.56 ** 1.18 **

Std.Err. 0.60 0.50 0.62 0.51 0.55 0.47 0.62 0.49 0.64 0.52

Wind Speed † Coef. −6.62 ** −4.40 ** −5.81 ** −3.88 ** −6.12 ** −4.16 ** −5.11 ** −3.06 ** −5.53 ** −3.25 **
Std.Err. 1.63 1.31 1.59 1.29 1.54 1.31 1.61 1.27 1.65 1.33

Temperature † Coef. −1.23 ** −1.27 ** −1.37 ** −1.36 ** −1.28 ** −1.33 ** −1.78 ** −1.69 ** −1.40 ** −1.40 **
Std.Err. 0.52 0.42 0.52 0.42 0.52 0.43 0.54 0.42 0.55 0.43

Precipitation † Coef. −2.97 0.96 −2.04 0.86 −1.34 1.47 −0.25 1.82 −1.08 2.18
Std.Err. 2.59 2.05 2.48 1.99 2.35 1.95 2.51 1.95 2.58 2.05

Constant
Coef. 19.39 0.25 31.93 8.08 77.05 29.29 27.26 5.88 20.60 2.77

Std.Err. 16.24 11.16 17.88 12.30 19.07 14.06 16.01 10.60 16.13 10.99

Rho 0.42 ** 0.74 ** 0.42 ** 0.70 ** 0.40 ** 0.71 ** 0.33 ** 0.62 ** 0.46 ** 0.74 **

N 122 122 122 122 122 122 122 122 122 122

Adjusted R2 0.70 0.70 0.70 0.70 0.73 0.71 0.69 0.73 0.69 0.70

† refers to a log-transformed variable; ** refers to p < 0.05 and * to p < 0.1.



Int. J. Environ. Res. Public Health 2021, 18, 9428 9 of 13

5. Discussion

Interest in the mediation of PM levels has been growing due to the detrimental effects
on public health and the environment observed [36]. Apart from environmental scientists,
scholars and practitioners in the fields of planning, design, and landscape architecture
have also attempted to examine how the built environment could mediate PM levels, e.g.,
through the modification of street morphology, the control of building height, vehicle
traffic, and coal-mining power plants, and the adaptation to green infrastructure [44]. The
results of this study can also be of use to planners and landscape architects interested in
the importance of the spatial configuration of urban form and can guide the formulation of
air pollution management-related enforcements and principles.

The results of the SLM indicate that the PM influences neighboring municipalities: the
diffusion effect of PM between adjoining neighbors was empirically tested. However, the
interpretation of the term “adjoining” should be cautiously interpreted. In this study, the
distance band of 100 km was applied to detect the spatial autocorrelation because the first
peak distance of the spatial autocorrelation was observed around this distance for both PM.
When considering that the average (east-west) width and (south-north) length of Korea
are 300 and 1000 km, respectively, it can be assumed that an increase in PM of a particular
city within the country would directly lead to a similar increase in many of its surrounding
cities. The analysis of hot spots and cluster outliers also indicated that the levels of PM
were highly clustered and exchange influences in general. As already mentioned by Bergin,
West, Keating and Russell [40] and others (Bae et al., 2020; Kim et al., 2017), these results
imply that PM can be transported across regions. This finding could also be explained by
the secondary formation of PM within the same air mass areas (Choi et al., 2021). Future
study is encouraged to consider these two main driving factors of PM (long-range transport
and/or secondary formation of PM) in the SLM model. In particular, future studies could
investigate how results can vary by adopting different spatial weight matrices; in other
words, using different distance bands.

Our results indicated that the size of some types of land cover mattered, but not
always, and that this was less important than contiguity and proximity. The total area
is well known for being one of the most important and useful pieces of information for
determining the dominance of certain land cover types; however, only the amount of
agricultural land seemed to influence the PM10 and PM2.5 levels. Developed lands with
high contiguity generally showed higher PM levels, as opposed to woodlands: when
woodland areas had complex, contiguous, and less-isolated shapes, they were associated
with lower PM levels. This is possibly due to a relatively high land roughness related to
the contiguous edges of the forest, such as the fortress form, which would help capture
airborne pollutants more efficiently [45]. It is also well known that a high density of leaves
and canopy could block and rub the particles and that the sedimentation process would
be accelerated in forests [28]. On the contrary, different types of urban structures with
different sizes, heights, and shapes in developed areas—where land cover data cannot
be directly measured through satellite images—may decrease the ventilation ability [39]
and act as wind barriers [36]. To combine previous studies and current findings, creating
multiple rows of green buffers (by planting street trees) would mediate the PM levels in
such instances.

Large and coarse patches of agricultural land (e.g., rice paddies, fields, greenhouses,
and orchards) are needed to decrease current PM. A decrease in the number of activities,
urban structures, or emission sources in rural communities would cause a considerable
lowering of the PM and allow a much freer airflow compared to what occurs in highly
developed areas [46]; also, crops and fruit trees may absorb some PM. However, this does
not necessarily infer that creating a large and coarse agricultural land by clearcutting forests
reduces the PM level. The results should be interpreted carefully in relation to other areas
of use. This could be a specific phenomenon that occurred in Korea since agriculture is
not the main industry of S. Korea, and industrial farming is rarely observed. Rather, the
products of farming activities (e.g., soil dust, soot, and grain dust from soil preparation,
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harvest operations, or crop residue burning) are less well managed by small-scale farmers
who possess less appropriate machinery and maintain a process that is associated with
air pollution. In particular, crop residue burning and agricultural byproducts have been
claimed to be among the major sources of reparable PM [47]. For this reason, the Korean
government has carried out special crackdowns on illegal incineration in rural areas during
the winter and early spring seasons. Probably other countries such as India, Mongolia, or
China would take some lessons from this action.

When grassland patches have simple and compact shapes and are clustered with large
patches, PM tends to be relatively low. No previous studies have observed the spatial
patterns of grasslands and their impact on PM, but it can be assumed that grassland has to
be over a certain size to be effective: grasslands have a lower capacity to capture a large
number of particles compared to dense forests with broad-leaved trees [48]. Sediment,
however, would encounter fewer obstacles in an open lawn than in a forest so that wind
would easily transport the particles to a new location [49]. This suggests that having a
single large open green space would be beneficial. Future studies may describe, in detail,
the effect of different types of vegetation (e.g., trees, grassland, parks, and open space).
However, this distinction needs to be determined carefully and be subsequently supported
by empirical research.

As expected, weather conditions and location can all play critical roles in determining
the PM levels. In particular, a place characterized by relatively slow winds and low
temperatures is likely to show higher PM concentrations due to a low dispersion of particles
and heat. Different from our hypothesis, urbanization did not show any statistically
significant impact on PM level. Apparently, the number of old and heavy-duty cars
would be more influential than the total number of cars. Urbanized areas would have
more manufacturing jobs and companies, but most have fewer air-polluting industries
than compared with rural communities. Alternatively, this might be explained by the
fact that sufficient monitoring and management systems may exist in large urbanized
cities. In fact, in Seoul (i.e., the largest city in Korea), the PM values slightly exceeded the
country’s mean, and the other top five largest cities of the country had below-average PM
levels. Emission sources are both positive and significant factors, and densely developed
cities have relatively fewer major emission sources. Notably, the Seoul Metropolitan Area
Readjustment Planning Act controlled the total built area for remodeling and construction
of factories within the Seoul metropolitan area (inhabited by 20 million people), and the
total allowed amount of land is renewed every three years. That is why hot spots of
PM were detected in the central inland area—that is relatively less urbanized—close to
the Seoul metropolitan area with more flexibility to build new factories. Meanwhile, the
high–high cluster of PM10 and the relatively high concentration of industrial parks near
the west border with North Korea reflects the efforts of the government to prepare for a
future unification of South and North Korea. Industrial parks between Seoul (S. Korea)
and Kaesong (N. Korea) were planned and built in the 1990s and 2000s jointly with the
Special Economic Zone of North Korea and have been run by Korea. The construction
of the city of Paju new town, completed in 2009, contributed to the transformation of
historically agricultural land into developed land. The possible transport of PM from
North Korea should also not be ignored; considering the proximity of North Korea to the
northern municipalities of Korea and the large emission of air pollutants by unit energy
consumption (mainly of biomass and coal) in North Korea, air pollutants emitted from the
latter country might influence the air quality in neighboring areas [43]. Future studies may
hence investigate the impacts of North Korea and LCLU on PM levels in Korea.

6. Conclusions

This study illustrates the importance of the spatial configuration of different land-use
types in mediating or accelerating the increase in PM levels. In particular, it is recommended
that planners and landscape architects take these findings into account when preparing land
use plans and green space plans. A mere enlargement of vegetated areas or agricultural
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lands cannot be considered a remedy for air pollution in cities; rather, existing small patches
of agricultural land should be carefully monitored. Moreover, the design of woodland
and grassland areas should be carefully implemented, and strip development should be
hindered. Moreover, the balance between different land-use types should be carefully
considered. Despite meaningful lessons for planners and landscape architects or related
fields, there are several tasks that future studies can discuss further. We recommend that
future studies take a microscopic perspective and not remain at city-level analysis as was
the case with our study. As found in the previous literature, the proximity of PM emission
sources, the characteristics of land cover in terms of development (e.g., high, medium, or
low), and microclimate are important features to consider for determining PM levels. While
30 m medium-resolution land cover data could capture the total ground and dominant
features—however, they could miss details at a level that is not fine enough to distinguish
individual objects, or that misses small patches surrounded by the dominant features: for
example, street trees in a predominantly developed area. Therefore, future studies could
use high-resolution imageries and locational datasets to take a microscopic perspective and
should not remain at the city-level analysis as in our study. Even though the winter peak
months were taken as an observation window, corresponding to when the PM concentration
has been the worst in S. Korea, different time frames would be applicable to other countries
based on their own geographical, meteorological, and contextual conditions.
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Appendix A. Model Choice

The ordinary least squares (OLS) method and the geographically weighted regression
(GWR) were initially applied; GWR was used to test the presence of possible spatial nonsta-
tionary effects across the study areas. Subsequent significance tests for the nonstationarity
of the parameter estimates (p < 0.05) favored the results of the OLS method over those of
the GWR. After applying the OLS method, spatial autocorrelations were verified between
the residuals. The Lagrange multiplier (LM) test suggested the use of spatial lag models
(SLM) over spatial error models. Moreover, the distance band of the spatial weight matrix
was set as 100 km since the incremental spatial autocorrelation indicates that clustering
peaked around 100 km in both PM10 and PM2.5. Afterward, the SLM models were applied
separately for different land cover types.
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