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Statins were reported to lower the Coenzyme Q10 (CoQ10) content upon their inhibition
of HMG-CoA reductase enzyme and both are known to possess neuroprotective
potentials; therefore, the aim is to assess the possible use of CoQ10 as an adds-on
therapy to rosuvastatin to improve its effect using global I/R model. Rats were allocated
into sham, I/R, rosuvastatin (10 mg/kg), CoQ10 (10 mg/kg) and their combination.
Drugs were administered orally for 7 days before I/R. Pretreatment with rosuvastatin
and/or CoQ10 inhibited the hippocampal content of malondialdehyde, nitric oxide, and
boosted glutathione and superoxide dismutase. They also opposed the upregulation
of gp91phox

, and p47phox subunits of NADPH oxidase. Meanwhile, both agents
reduced content/expression of TNF-α, iNOS, NF-κBp65, ICAM-1, and MPO. Besides,
all regimens abated cytochrome c, caspase-3 and Bax, but increased Bcl-2 in favor of
cell survival. On the molecular level, they increased p-Akt and its downstream target
p-FOXO3A, with the inhibition of the nuclear content of FOXO3A to downregulate the
expression of Bim, a pro-apoptotic gene. Additionally, both treatments downregulate
the JNK3/c-Jun signaling pathway. The effect of the combination regimen overrides
that of either treatment alone. These effects were reflected on the alleviation of the
hippocampal damage in CA1 region inflicted by I/R. Together, these findings accentuate
the neuroprotective potentials of both treatments against global I/R by virtue of their
rigorous multi-pronged actions, including suppression of hippocampal oxidative stress,
inflammation, and apoptosis with the involvement of the Akt/FOXO3A/Bim and JNK3/c-
Jun/Bax signaling pathways. The study also nominates CoQ10 as an adds-on therapy
with statins.

Keywords: CA1, caspase-3, MPO, neuroprotection, oxidative stress, statins

INTRODUCTION

Transient global cerebral ischemia is a clinical devastating predicament arising during cardiac
arrest, rescindable severe hypotension, and neonatal asphyxia (Cui et al., 2016). This insult induces
a selective and delayed neuronal death (DND) of hippocampal cornu ammonis 1 (CA1) neurons
within 3–7 days after its occurrence (Colbourne et al., 1999).
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The mechanisms underlying ischemia reperfusion (I/R)-
induced neuronal death implicate a complex interplay of myriad
pathways, including excitotoxicity, formation of reactive oxygen
species (ROS), release of inflammatory mediators, calcium
overload, and upregulation of apoptotic genes (Wang et al., 2016).
Oxidative stress (OS) has been involved in the progression of
I/R-induced brain injury, where an arsenal of ROS are generated
by malfunctioning mitochondria, infiltrated neutrophils, and
activated microglia (Lalkovičová and Danielisová, 2016).

Mounting evidence indicates that overproduction of ROS
via microglial NADPH oxidase (NOX), as well as reactive
nitrogen species (RNS), play a critical role in DND following
I/R injury (Wang et al., 2006). NOX comprises six subunits;
membrane-bound (gp91phox and p22phox), cytosolic subunits
(p40phox, p47phox, and p67phox), and low-molecular weight
GTPase Rac (Rastogi et al., 2016). Previous studies reported
that administration of apocynin, a well-known NOX inhibitor,
attenuated microglial activation and neuronal death (Qin et al.,
2017).

Apart from OS, activation of microglia and astrocyte is also
associated with enhancement of inflammatory reactions with
increased neuronal expression of the redox-sensitive nuclear
factor kappa B (NF-κB). This transcription factor empowers the
generation of proinflammatory enzymes and cytokines, including
tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase
(iNOS), and intracellular adhesion molecule-1 (ICAM-1) (Zhang
et al., 2016). These events amplify the inflammatory cascade and
trigger the recruitment of neutrophils, thereby exacerbating the
ischemic insult (Cheng and Lee, 2016; Sapkota et al., 2017).

On the molecular level, constellation of signaling pathways
intersects to augment neuronal damage following ischemic
insult. One of the signaling cue that has a crucial impact on
endorsing cell survival after I/R is the phosphatidylinositol 3-
kinase (PI3K)/protein kinase B (Akt) signaling pathway (Qu et al.,
2015). Activated PI3K phosphorylates its downstream target Akt
to abate cell death through the phosphorylation/inactivation
of its downstream substrates, viz, pro-apoptotic proteins B-cell
lymphoma 2 (Bcl-2)- associated death protein (BAD), c-Jun
N-terminal kinase (JNK), and class O members of the forkhead
transcription factor family (FOXOs) (Liu et al., 2010; Zhao et al.,
2016).

The FOXO family consists of various members including
FOXO1A, FOXO3A, and FOXO4 (Fukunaga and Shioda, 2010).
Among them, FOXO3A has been recognized to regulate neuronal
apoptosis by inducing the killer protein Bcl-2 interacting
mediator of cell death (Bim) and Fas ligand (Shioda et al.,
2007). Previous studies showed that suppression of Akt activity
results in dephosphorylation of FOXO3A leading to its nuclear
translocation and the enhancement of Bim expression. The latter
triggers cytochrome c release from the mitochondria, caspase-3
activation, and eventually persuading apoptosis (Li et al., 2015).

Aside from their destructive role, ROS/RNS initiate apoptotic
signaling pathways, such as JNK3 (Hu et al., 2012), which is
an important subclass of the mitogen-activated protein kinase
family (Meloni et al., 2014). Activated JNK3 aggravates ischemia-
induced apoptotic signaling by promoting the expression/activity
of crucial proteins involved in apoptosis, such as c-Jun, Bcl-2

associated X protein (Bax), and caspase-3 (Hetz et al., 2005; Shao
et al., 2016). Hence, inhibition of JNK3 shows a neuroprotective
effects against several models of cerebral I/R injury (Ge et al.,
2017; Luo et al., 2017).

Today the pharmacological actions of statins, competitive
inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-
CoA) reductase, including rosuvastatin (RUS), have been
extended far beyond their reputed therapeutic use as anti-
hyperlipidemic, where they afford substantial effects in
incidences linked to I/R comprising the brain (Prinz et al.,
2008). Previously, the neuroprotective effect of RUS has been
attested against spinal cord I/R injury (Yavuz et al., 2013),
subarachnoid hemorrhage (Uekawa et al., 2014), and traumatic
brain injury (Kahveci et al., 2014). The protective effect of RUS
relies on the modulation of several signal transduction pathways,
such as NF-κB, PI3K/Akt, and JNK (De las Heras et al., 2013;
Chang et al., 2015; Liu et al., 2017).

On the other hand, Coenzyme Q10 (CoQ10), is a naturally
occurring fat-soluble vitamin like ubiquinone, contained in most
cellular membranes including the mitochondria (James et al.,
2004). CoQ10 regulates mitochondrial oxidative phosphorylation
and consequently ATP production. Additionally, CoQ10 acts as a
potent antioxidant either by scavenging ROS, hence, preventing
the initiation and dissemination of membrane oxidation, and/or
via restoring cellular antioxidants, such as α-tocopherol and
ascorbic acid (Chen et al., 2017). Moreover, CoQ10 exhibits
estimated beneficial effects against experimental cerebral I/R
injury (Abd-El-Fattah et al., 2010), diabetes mellitus (Amin
et al., 2014), as well as myocardial injury (Mustafa et al.,
2017).

Notwithstanding their applications as anti-lipidemic agents,
statins have been reported to deplete/or lower the circulating
levels of CoQ10 (Mohammadi-Bardbori et al., 2015), since,
the cholesterol biosynthesis pathway, which is repressed by
these agents is shared by other molecules including CoQ10
(Martin et al., 2011). Deficiency of CoQ10 results in suppression
of mitochondrial activity with increased ROS generation and
inflammation (Spindler et al., 2009).

Additionally, decreased CoQ10 levels are believed to be a
pathological feature of the increased OS in neurodegenerative
diseases (Yang et al., 2016), and diabetes (Sourris et al., 2012).
Further, studies by Horecky et al. (2011) and Belousova et al.
(2016), reported that cerebral I/R reduces brain mitochondrial
and plasma levels of CoQ9 and CoQ10, events that are attributed
to their consumption via ROS generation. Interestingly, these
studies also reported that oral supplementation of CoQ10
remarkably blunted the I/R-induced brain injury (Horecky
et al., 2011; Belousova et al., 2016). To this end, CoQ10
seems to be an attention-grabbing component that merits
supplementation in patients at high risk of stroke and treated with
statins.

As far as our team knows, no studies have been performed on
the effects of combined treatment with RUS and CoQ10 against
cerebral I/R injury. Therefore, the present study was performed
to investigate the possible beneficial use of CoQ10 as an adds-
on therapy to RUS in a rat model of transient global ischemia.
In addition, the study divulged some of the possible signaling
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pathways involved in the neuroprotective mechanisms of RUS
and CoQ10.

MATERIALS AND METHODS

Animals
Adult male Wistar rats, aged 10 weeks and weighing 260–
280 g, were used in the current study. The animals were housed
under adjusted laboratory conditions (temperature of 24± 1◦C),
humidity (55 ± 5%), and a 12/12 h dark/light cycle. Animals
were left for 1 week to accommodate before any experimental
procedures and they had free access to standard rat diet chow and
tap water.

The present study followed the recommendations of the Guide
for the Care and Use of Laboratory Animals published by the
US National Institute of Health (NIH, 1996). The protocol was
approved by the Research Ethical Committee of the Faculty of
Pharmacy, Cairo University (Cairo, Egypt; Permit Number: PT
2110). Surgical procedures and euthanasia were carried out under
thiopental anesthesia and sincere efforts were exerted to reduce
the suffering of animals.

Drugs and Chemicals
CoQ10 was obtained from Sigma−Aldrich (St. Louis, MO,
United States), whereas rosuvastatin (RUS) and CoQ10
solubilizing agents that include [Labrasol, Labrafil (M1944 CS),
and Capryol 90] were generously gifted from the Global Napi for
Pharmaceutical industry (Cairo, Egypt) and Gattefosse (Lyon,
France), respectively.

Preparation of Solubilized CoQ10
CoQ10 has poor water solubility and bioavailability, hence, after
careful consideration and consulting, CoQ10 self-emulsifying
drug delivery system (SEDD) formulation was prepared by
dissolving an amount of CoQ10 (6% w/v) in a mixture of Labrasol
(surfactant, 61.1%), Labrafil M1944 CS (oil, 23.5%), and Capryol
90 (co-surfactant, 9.4%) at 60◦C in an isothermal water bath.
The final mixture was continuously stirred with magnetic bar
until a clear solution was obtained; the usefulness of the SEDDs
over the commercially available formulations was confirmed
previously (Balakrishnan et al., 2009). The surfactants used in
these formulations are known to enhance the bioavailability via
improving drug dissolution and increasing intestinal epithelial
permeability. In addition, the long-chain oil, Labrafil M1944 CS
has been reported to improve lymphatic absorption (Caliph et al.,
2000).

Since no significant difference was detected between sham and
I/R groups receiving saline, the RUS vehicle, and those receiving
the CoQ10 solubilizing agents, after performing a preliminary
study, therefore, the results of the current study were compared
to the sham and I/R control groups receiving the saline.

Rat Model of Transient Global Cerebral
I/R
Transient global cerebral ischemia was induced according to the
method annotated previously (Collino et al., 2006). In short,

rats were anesthetized with thiopental sodium (30 mg/kg, i.p.),
a ventral midline incision was made to expose both common
carotid arteries (CCAs). After careful isolation from vagus nerve
and surrounding tissues, ischemia was initiated by bilateral
ligation of the CCAs by the mean of non-traumatic aneurysmal
clips. After 60 min of the occlusion, the clips were gently removed
to assist reperfusion for 24 h or 5 days. Rectal temperature was
adjusted at 37◦C via an overhead heating lamp. The incision was
then stitched using silk suture and sprayed by a local anesthetic
and antibiotic. A dose of meloxicam (1 mg/kg, S.C) (Basrai et al.,
2016) was used to relief animal pain. Sham-operated animals were
treated identically, except that CCAs were not occluded.

Experimental Design and Treatment
Protocol
In this study, a final of 90 rats were assigned into three sets, each
set comprised five groups (n= 6); in all sets the first group served
as the sham-operated control and the second one was the I/R
control group (in this group dead animals were 2-3/9). In groups
3, 4, and 5 rats were pretreated with RUS (10 mg/kg; Ma et al.,
2013), CoQ10 (10 mg/kg; Kalayci et al., 2011), and RUS+CoQ10,
respectively. All treatment regimens were administered p.o., for
7 days and I/R was induced on day 8.

Tissue Collection and Preparation
One day after reperfusion, animals in the first two sets were
sacrificed by an overdose of thiopental, and the brains were
immediately harvested and the two hippocampi were dissected
on ice cold plates. In the 1st set, the two hippocampi/rat were
used for the determination of redox biomarkers and ELISA
measurements. In the 2nd set, one hippocampus/rat/group (30
hippocampi) was used for parameters analyzed by Western blot
technique, whereas the second half was submerged overnight
in RNA later solution for the subsequent quantification
of hippocampal gene expression using quantitative real-time
polymerase chain reaction (qPCR).

On the other hand, animals in the third set were sacrificed
5 days post I/R, and used for histological assessment of
hippocampal DND. In this set, animals were subjected to
transcardiac perfusion using paraformaldehyde in phosphate
buffer saline (4%) solution then the brains were rapidly removed
and immersed in 10% formaldehyde to be embedded in paraffin.
After processing, the coronal sections (4–5 µm thick) at the
level of dorsal hippocampus were selected and processed for
hematoxylin and eosin (H&E) staining.

Histological Analysis
The degree of hippocampal injury was assessed by counting
the number of viable neurons in the hippocampal CA1 area
(x400) using computerized image-analyzer (Leica Qwin 500,
Cambridge, United Kingdom). Neurons exhibiting visible nuclei,
clear nucleoplasm, and distinctive nucleolus were counted.
The mean number of CA1 neurons per mm was calculated in two
successive sections/hippocampus/rat (6 rats/group). To avoid
bias, histological assessment was performed by an investigator
who was unaware of the condition of each specimen.
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Biochemical Analysis
Estimation of Oxidative Biomarkers and Cellular
Defense
Hippocampal tissue was homogenized in 10 volumes of chilled
phosphate buffer (pH 7.4) in a glass manual homogenizer.
The homogenate was centrifuged at 10,000 × g for 20 min at
4◦C. The resulting supernatant was used for the estimation of
the following parameters using the corresponding assay kit as
shown in parenthesis: malondialdehyde (MDA) (Bio-diagnostic,
Egypt), reduced glutathione (GSH) (Cell Biolabs, San Diego,
CA, United States, Cat. # STA-312), and superoxide dismutase
(SOD) activity (Trevigen, Gaithersburg, Germany, Cat. # 7500-
100-K). The above stated biomarkers were processed according
to manufacturers’ procedures.

Estimation of Inflammatory Cytokines and Apoptotic
Markers
The parameter, its corresponding kit, and its source are displayed
as follows: TNF-α (Ray Biotech, Norcross, GA, United States, Cat.
# ELR-TNFalpha-001C), rat ICAM-1 (EIAab, Wuhan, China,
Cat. # E0048r), total nitric oxide (NOx) (Assay Designs, Ann
Arbor, MI, United States, Cat. No. 917-010), and caspase-3
activity (ApoTarget, Invitrogen, Carlsbad, CA, United States,
Cat. # KHZ002). The aforementioned biomarkers were assessed
according to the designated manufacturers’ instructions.

Western Blot Analysis
Briefly, the nuclear, cytoplasmic, and mitochondrial proteins
of the hippocampus were extracted by NE-PER Nuclear and
Cytoplasmic Extraction Kit (Thermo Scientific Co., Hanover
Park, IL, United States) and Mitochondrial Fractionation
Kit (Abcam, United States) conferring to manufacturer’s
guidelines. Protein concentration in the hippocampus lysate
was estimated using BCA protein assay kit (Bio-Rad, Hercules,
CA, United States). Protein samples (30–50 µg per lane) were
separated by SDS-PAGE then transferred into nitrocellulose
membrane. The membranes were blocked with 5% (w/v) non-
fat dry milk in Tris buffered saline-Tween 20 (0.025 M Tris;
0.15 M NaCl; 0.05% Tween 20; pH 7.4) and incubated with
primary antibodies overnight at 4◦C. The following primary
antibodies [mouse monoclonal antibodies against Akt (1:1000),
p-Akt (Ser473,1:1000), Bcl-2 (1:200), JNK3 (1:1000), p-JNK3
(1:1000), and p-c-Jun (1:200) were purchased from Santa Cruz
Biotechnology (Dallas, TX, United States), whereas antibodies
against Bax (1:100), Bim (Rabbit ployclonal, 1:1000), c-Jun
(Mouse monoclonal, 1:2000), cytochrome c (Mouse monoclonal,
1:200), FOXO3A (Rabbit polyclonal, 1:1000), p-FOXO3A (Rabbit
polyclonal, 1000), MPO (Rabbit polyclonal, 1:200), NF-κB p6
(Rabbit polyclonal, 1:1000), iNOS (Rabbit polyclonal, 1:200),
and β-actin (Mouse monoclonal 1:1000) were procured from
Thermo Scientific Co. (Hanover Park, IL, United States). The
next day, the membranes were washed and incubated with
secondary antibodies (Thermo Scientific Co., Hanover Park,
IL, United States) for 1 h at 25◦C. The optical densities of
the expressed proteins were analyzed by ChemiDocTM imaging
system using Image LabTM software version 5.1 (Bio-Rad
Laboratories Inc., Hercules, CA, United States). The results

were expressed as arbitrary units after normalization for β-actin
protein expression.

Real-time Quantitative Polymerase Chain Reaction
(RT)-PCR
Hippocampal p47phox and gp91phox gene expression were
determined using qt-PCR analysis. Total RNA was extracted
using RNA easy (Mini Kit, QIAGEN, United States) in
accordance with the manufacturer’s instructions. cDNA was
synthesized from extracted RNA using Reverse Transcriptase
Kit (RT Kit, Thermo Scientific, United States). To evaluate
the expression of target genes, RT-PCR was performed
using StepOnePlusTM (Applied Biosystem, Foster City, CA,
United States) with SYBR Green PCR Master Mix (Applied
Biosystems, Foster City, CA, United States) in a 25-µl
reaction with 900 nM primers possessing the following
sequences: β-actin sense :5′-CCTTCCTGGGCATGGAGTCCT-
3′; antisense :5′-GGAGCAATGATCTTGATCTTC-3′, p47phox

sense: 5′-GTC GTGGAGAAGAGCGAGAG-3′; antisense:
5′-CGC TTTGATGGTTACATACGG-3′, and gp91phox sense
primer 5′-CCG TATTGTGGGAGACTGGA-3′; antisense: 5′-
CTTGAGAATGGAGGCAAAGG-3′. Amplification conditions
were: 2 min at 50◦, 10 min at 95◦ and 40 cycles of denaturation for
15 s and annealing/extension at 60◦ for 10 min. Data from real-
time analysis were calculated using the v1·7 sequence detection
software from PE Biosystems (Foster City, CA, United States).
Relative expression of examined gene mRNA was estimated
using the comparative Ct method. All values were normalized to
β-actin which was used as the control housekeeping gene.

Statistical Analysis
Values were expressed as mean of six rats ± SEM, and statistical
analyses were performed using one-way analysis of variances
(ANOVA) followed by Tukey’s post hoc Multiple Comparisons
among treatment means. The analysis was performed using
GraphPad Prism software (version 5.0; GraphPad Software, Inc.,
San Diego, CA, United States). Differences were considered
significant at p< 0.05.

RESULTS

Effect of RUS and/or CoQ10 on
I/R-Induced Hippocampal Structure
Damage
Photomicrographs of (B, b) I/R sections showed morphological
aberrations described as a selective and widespread neuronal
degeneration in the CA1 area of the hippocampus, 5 days
after 60 min ischemia compared to the (A, a) normal sham
operated group. Various neurons with eosinophilic shrunken
cytoplasm and pyknotic nuclei [black arrow] were observed.
Pre-ischemic administration of (C, c) RUS, notably hindered
these alterations, in comparison to the I/R group. Similarly, (D,
d) pre-administration of CoQ10 hampered the injurious insult
on CA1 neurons, and a better effect was detected in the (E,
e) RUS + CoQ10 treated group. Validating the results of the
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histological findings (Figure 1, lower), showed a reduction in the
number of viable neurons in the CA1 subfield of the ischemic
group, compared to the sham one; however, RUS-treated group
depicted a substantial restoration in the number of salvaged
neurons at the same area of interest. These impacts were closely
similar to those afforded by CoQ10. Meanwhile, combining
RUS with CoQ10 achieved maximal benefits as evidenced by
the remarkable enhancement of the mean number of rescued
neurons per mm in the same affected area compared to either
RUS or CoQ10.

Effect of RUS and/or CoQ10 on Oxidative
Stress Parameters after I/R Insult
I/R markedly increased OS (Figure 2), as indicated by the
high contents of MDA and NO in parallel with a decline in
the defense molecules GSH and SOD, when compared to the
sham group. Pre-ischemic administration of RUS significantly
protected against OS, by lowering MDA, NO and replenishing
GSH and SOD. In the same context, RT-PCR examination
revealed a marked upregulation of mRNA expression of NOX
subunits, gp91phox and p47phox in the I/R group, effects that were
markedly mitigated by RUS and CoQ10 pre-administration. It is
worth mentioning that the combination effect maintained these
parameters at their normal values.

Effect of RUS and/or CoQ10 on
Inflammatory Mediators after I/R Insult
As depicted in Figure 3, I/R caused a surge of inflammatory
mediators, manifested by a notable increase in the hippocampal
content/activity of TNF-α, ICAM-1, and MPO compared to
the sham group. Additionally, Western blot analysis revealed
an extensive hippocampal expression of NF-κB p65, iNOS, and
MPO in rats exposed to I/R (Figure 4). These events were
significantly abrogated by the pre-ischemic administration of
RUS and CoQ10, with their combination mediating responses
that surpassed either treatment alone.

Effect of RUS and/or CoQ10 on Akt,
FOXO3A, and Bim Signaling
Transduction after I/R Insult
Compared to sham animals, Figure 5 revealed that global
ischemia abated the protein expression of p-Akt and
p-FOXO3A, while it increased that of the translocated
nuclear FOXO3A to augment Bim. Pretreatment regimens
averted the I/R-induced dephosphorylation of Akt and
FOXO3A and lessened the protein expression of Bim and
nuclear FOXO3A. These effects were more pronounced in the
combination group when compared to individual treatment
groups.

Effect of RUS and/or CoQ10 on JNK3
and c-Jun Signaling Pathway after I/R
Insult
Western blot analysis divulged that I/R promoted JNK3
signaling cascade (Figure 6) evidenced by the enhanced

FIGURE 1 | Descriptive images of H&E staining (top) displaying the
neuroprotective effect of Rosuvastatin and/or CoQ10 on hippocampal CA1
area. (A,a) Sham group, (B,b) I/R, (C,c) I/R+RUS, (D,d) I/R+CoQ10, and
(E,e) I/R+RUS+CoQ10. Histological examinations were achieved 5 days
following 60 min ischemia. Arrows point to damaged neurons (x400). Lower
panel indicates the mean number of salvaged neurons per mm in the CA1
subfield. Rosuvastatin (RUS; 10 mg/kg), CoQ10 (10 mg/kg), and their
combination were administered p.o. for 7 days before ischemic insult. Values
are presented as mean (n = 6) ± SEM. Statistical analysis was carried out
using one-way ANOVA followed by Tukey’s post hoc multiple comparison test.
As compared with (#) sham-operated, (∗) I/R, (†) RUS, (‡) CoQ10, and (§)
combination pretreated groups (P < 0.05).

phosphorylation of JNK3 and c-Jun without affecting
the corresponding total protein content, compared to
the control group. These changes were halted by the
three treatments intervention. Again, the combination
group showed the best effects compared to each drug
alone.
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FIGURE 2 | Modulatory effects of Rosuvastatin and/or CoQ10 on (A) MDA, (B) NO, (C) GSH, (D) SOD, and (E) mRNA expression of gp91phox and (F) p47phox

subunits. Measurements were achieved 24 h following 60 min ischemia. Rosuvastatin (RUS; 10 mg/kg), CoQ10 (10 mg/kg), and their combination were
administered p.o. for 7 days before ischemic insult. Values are presented as mean (n = 6) ± SEM. Statistical analysis was carried out using one-way ANOVA followed
by Tukey’s post hoc multiple comparison test. As compared with (#) sham-operated, (∗) I/R, (†) RUS, (‡) CoQ10, and (§) combination pretreated groups (P < 0.05).

Effect of RUS and/or CoQ10 on
Apoptotic Biomarkers after I/R Insult
As shown in Figure 7, transient global cerebral ischemia triggered
apoptotic-killing machinery in hippocampal tissues as manifested
by the elevation of cytochrome c, pro-apoptotic Bax, and caspase-
3 activity, along with a reduction in the anti-apoptotic Bcl-2
contents, when compared to the sham group. All treatments used
offset these alterations in favor of cell survival, with the superior
effect mediated by the combination regimen.

The original western blot images for Figures 4–7 are supplied
as Supplementary Material entitled (Supplementary Figures 1–4).

DISCUSSION

The current investigation sheds light on the neuroprotective
potentials of RUS in a rat model of I/R-induced brain injury.
These favorable outcomes were mediated via the suppression
of oxidative/nitrosative stress and inflammation, chiefly through
the inhibition of NF-κBp65. Our results are extended to reveal
its anti-apoptotic action that can be linked to the modulation
of Akt/FOXO3A/Bim and JNK/c-Jun/Bax signaling pathways.
Interestingly, the beneficial effects of RUS were analogous to
those exerted by CoQ10 (Figure 8).
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FIGURE 3 | Rosuvastatin and/or CoQ10 attenuate inflammatory markers,
(A) TNF-α, (B) ICAM-1, and (C) MPO activity. Measurements were achieved
24 h following 60 min ischemia. Rosuvastatin (RUS; 10 mg/kg), CoQ10
(10 mg/kg), and their combination were administered p.o. for 7 days before
ischemic insult. Values are presented as mean (n = 6) ± SEM. Statistical
analysis was carried out using one-way ANOVA followed by Tukey’s multiple
comparison test. As compared with (#) sham-operated, (∗) I/R, (†) RUS, and
(‡) CoQ10, and (§) combination pretreated groups (P < 0.05).

Although RUS and CoQ10 confer their neuroprotection
against various neurodegenerative models, yet the current study
is the first to address the effect of RUS in a global ischemia

model and to provide new machineries that may emphasize its
neuroprotective effects. The study also supports the usefulness of
using CoQ10 as an adds-on supplement with statin drugs.

The contribution of OS in the pathogenesis of ischemia-
induced hippocampal injury has been explored by numerous
studies (Chen et al., 2014; Ma et al., 2017). Data of the
current work revealed the antioxidant and free radical scavenging
capacities of RUS; the statin reduced hippocampal MDA and
elevated the content/activity of defense molecules, GSH and SOD.
These findings are in agreement with the reported effect of RUS
against diabetes-induced testicular damage (Heeba and Hamza,
2015) and spinal cord I/R (Die et al., 2010; Ucak et al., 2011).
As a possible mechanism, RUS downregulated the expression of
p47phox and gp91phox, subunits of NOX, which is a source of ROS
production; this finding concurs with that in a previous study
testing RUS against focal cerebral ischemia (Ma et al., 2013). In
the same context (Qin et al., 2017) reported that pharmacological
inhibition of NOX or genetic deletion of gp91phox or p47phox,
improved neuronal survival following reoxygenation to endorse
the role of this system in I/R insult. Thus, inhibiting NOX
may represent an important mechanism that underlies the RUS
neuroprotective effect against oxidative damage during global
cerebral I/R injury.

Similarly, the current results support the known anti-oxidant
capacity of CoQ10 to reduce OS in hippocampal tissue, as
manifested herein by the replenishment of the endogenous
antioxidants, viz., GSH and SOD, and leveling MDA off,
besides the suppression of NOX subunits, results that are in
harmony with that in different models (Sohet et al., 2009;
Tsai et al., 2011). Nevertheless, combining both agents showed
the best antioxidant/free radical scavenging effects keeping the
aforementioned parameters within the normal level.

Moreover, RUS and CoQ10 alone or in combination opposed
the I/R-induced upregulation of hippocampal iNOS expression
and elevation of NO to support previous findings (Choi et al.,
2012; Park et al., 2012). Earlier reports indicated that I/R
activates microglial cells containing iNOS and gp91phox (Jin et al.,
2010). Once activated, microglia generate surplus levels of NO
that undermines hippocampal CA1 neuronal viability via its
conjugation with superoxide anion and the formation of the
potent free radical peroxynitrite (Yenari et al., 2010). Indeed, the
ability of RUS and CoQ10 to mitigate NO, as well as iNOS, besides
the expression of NOX subunits can be linked to the inhibition of
the nuclear translocation of NF-κBp65, hence, linking OS with
the inflammatory pathways (Gauss et al., 2007).

In the current work, RUS verified its anti-inflammatory
effect, which was documented previously (Uekawa et al.,
2014), by inhibiting content/activity of TNF-α, ICAM-1, and
MPO, a surrogate marker of neutrophils infiltration to support
earlier findings in different models (Mayanagi et al., 2008;
Kahveci et al., 2014). These impacts can be attributed to the
observed downregulation of the transcription factor NF-κB,
which has been reported to upregulate the pro-inflammatory
cytokine TNF-α (de Oliveira Ferreira et al., 2016). The latter
is known to trigger leucocyte recruitment via increasing the
expression ICAM-1 following ischemic insult (Hou et al., 2010).
Our study also illustrated the ability of CoQ10 to suppress the
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FIGURE 4 | Rosuvastatin and/or CoQ10 downregulate the hippocampal protein expression of activated NF-κBp65, iNOS, and MPO in rats subjected to transient
ischemia. Representative Western blots and optical densities of (A) NF-κBp65, (B) iNOS, and (C) MPO. Measurements were achieved 24 h following 60 min
ischemia. Rosuvastatin (RUS; 10 mg/kg), CoQ10 (10 mg/kg), and their combination were administered p.o. for 7 days before ischemic insult. Values are presented
as mean (n = 6) ± SEM. Statistical analysis was carried out using one-way ANOVA followed by Tukey’s post hoc multiple comparison test. As compared with (#)
sham-operated, (∗) I/R, (†) RUS, and (‡) CoQ10, and (§) combination pretreated groups (P < 0.05).

aforementioned inflammatory events triggered by cerebral I/R
(Shi et al., 2011; Simão et al., 2012).

These results matched with former studies indicating the
anti-inflammatory character achieved by CoQ10 in experimental
models of hepatic (Fouad and Jresat, 2012), renal (Fouad et al.,
2011), myocardial (Mustafa et al., 2017), and cartilage injury
induced by intra-articular injection of monosodium iodoacetate
(Lee et al., 2013). Hence, the anti-inflammatory effects of RUS and
CoQ10 can signify partly their neuroprotective capacity, since
immense evidence elucidates that neuronal death following I/R
is linked with an inflammatory response, including infiltration of
neutrophils and the release of inflammatory mediators (Shi et al.,
2011; Simão et al., 2012).

These facts tone with our observations in which, I/R provoked
a state of inflammation proved by an activation of NF-κBp65,
which in turn increased hippocampal TNF-α to enhance the
protein expression of ICAM-1. The latter was convoyed with
the activation and protein expression of MPO, proved herein.
Invasion of neutrophils triggers OS via the release of ROS,
RNS, as well as hypochlorous acid, a powerful cytotoxic oxidant
generated by MPO (Bao et al., 2004).

At the molecular level, the studied signal transductions
revealed that I/R significantly leveled off the protein expression
of p-Akt (active) and p-FOXO3A (inactive). The latter was
associated with the translocation of the free active FOXO3A
to the nucleus, as evidenced by its increased nuclear protein
expression, to increase that of the pro-apoptotic protein Bim.
These findings coincide with previous works (Fukunaga et al.,
2005; Zhan et al., 2010), where increased oxidative/nitrosative
stresses diminish p-Akt expression (Crack and Taylor, 2005) by
activating its inhibitor, to inhibit its phosphorylation (Liu et al.,
2010).

On the other hand, RUS asserted its protective effect
by opposing the I/R-induced dephosphorylation of Akt and
FOXO3A, inhibiting its translocation to the nucleus, and
thereby hindering the expression of its down-stream target
molecule Bim. This pro-apoptotic molecule is a chief mediator
of neuronal apoptosis in neonatal ischemia/hypoxia models
(Shioda et al., 2007; Li et al., 2015). Enhancement of Akt
phosphorylation has been reported to prevent neuronal apoptosis
via the downregulation of FOXO3A/Bim axis in response to
hypoxic/ischemic brain injury (Li et al., 2009; Miyawaki et al.,
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FIGURE 5 | Rosuvastatin and/or CoQ10 upregulate the hippocampal protein expression of p-Akt and p-FOXO3A with the decline of FOXO3A nuclear translocation
and Bim. Representative Western blots and optical densities of (A) p-Akt, (B) p-FOXO3A, (C) nuclear FOXO3A, and (D) Bim in rats subjected to transient ischemia.
Measurements were achieved 24 h following 60 min ischemia. Rosuvastatin (RUS; 10 mg/kg), CoQ10 (10 mg/kg), and their combination were administered p.o. for
7 days before ischemic insult. Values are presented as mean (n = 6) ± SEM. Statistical analysis was carried out using one-way ANOVA followed by Tukey’s post hoc
multiple comparison test. As compared with (#) sham-operated, (∗) I/R, (†) RUS, and (‡) CoQ10, and (§) combination pretreated groups (P < 0.05).

2009). RUS effect coincides with the results of the in vitro
study of Zhang et al. (2013), who indicated that RUS protects
the adipose-derived mesenchymal stem cells transplanted into
infarcted murine hearts against hypoxia/serum deprivation
injury via the modulation of PI3K/Akt/FOXO3A/Bim signaling
pathway.

Although there are no previous studies interpreting the
effect of CoQ10 on p-FOXO3A, we can assume that CoQ10
induced p-FOXO3A could be attributed to the increased

phosphorylation of Akt along with the antioxidant capacity of
CoQ10, proven herein and supported by the study of Song
et al. (2015). These authors found that administration of GSH
attenuate cerebral infarct volume in rats exposed to focal
ischemia, improved the survival of brain endothelial cells, and
reduced FOXO3A nuclear translocation by promoting PI3K/Akt
pathway.

Besides, rebuilding the I/R-induced perturbation of Akt as
a survival pathway, RUS and CoQ10 extended their activity to
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FIGURE 6 | Rosuvastatin and/or CoQ10 mitigate the hippocampal protein expression of p-JNK3 and p-c-Jun. Representative Western blots and optical densities of
(A) p-JNK3 and (B) p-c-Jun in rats subjected to transient ischemia. Measurements were achieved 24 h following 60 min ischemia. Rosuvastatin (RUS; 10 mg/kg),
CoQ10 (10 mg/kg), and their combination were administered p.o. for 7 days before ischemic insult. Values are presented as mean (n = 6) ± SEM. Statistical analysis
was carried out using one-way ANOVA followed by Tukey’s post hoc multiple comparison test. As compared with (#) sham-operated, (∗) I/R, (†) RUS, and (‡) CoQ10,
and (§) combination pretreated groups (P < 0.05).

entail the pro-death signal pathway JNK, as well. The current
data revealed that I/R significantly induced phosphorylation of
JNK3 and c-Jun in hippocampal tissue, which are in coherence
with previous investigations (Heurteaux et al., 1993; Pei et al.,
2016). These events were markedly abrogated by the three regime
interventions, which underlie the modulation of JNK signaling
pathway as a putative tool for neuroprotection against I/R injury.
These results are consistent with the reported inhibitory effect
of RUS on p-JNK expression in a rat model of cyclosporine-
induced nephropathy (Nam et al., 2013) and the ability of CoQ10
to attenuate angiotensin II-induced upregulation of p-JNK in
human umbilical vein endothelial cells (Tsuneki et al., 2013).

The attenuation of hippocampal p-JNK3 could be ascribed
to the observed suppression of oxidative/nitrosative stress, since
NO derived from iNOS has been reported to enhance JNK3
phosphorylation via S-nitrosylation triggering, thus, neuronal
cell death. Moreover, administration of AMT, a selective inhibitor
of iNOS, ameliorated I/R-induced hippocampal neuronal death
through the suppression of p-JNK (Pei et al., 2008). Hence, RUS
and CoQ10 by inhibiting iNOS, as represented in this work, can

clarify the decreased p-JNK3. Previous studies defend our data,
in which RUS (Die et al., 2010) and CoQ10 (Aboul-Fotouh, 2013;
Ulla et al., 2017) inhibited the level of NO and expression of iNOS
in various animal models, indicating that both treatments could
protect neuronal death through their antioxidant properties with
the subsequent inhibition of JNK signaling cue.

Furthermore, another explanation can be led by the
upregulation of p-Akt, where Shao et al. (2016) reported that
administration of LY294002, a PI3K inhibitor, reversed the
hippocampal protective effect of atorvastatin, another HMG-
CoA reductase suppressor, through the inhibition of p-Akt and
the upregulation of p-JNK3, suggesting the inverse correlation
between the two molecules.

In agreement with a recent study (Pei et al., 2016), I/R insult
provoked selective neuronal degeneration in the hippocampal
CA1 area. This was confirmed by the decrease in the number
of salvaged neurons, as compared to the non-ischemic group
and can be explained partly by the activation of apoptotic
machinery evidenced herein by upregulation of cytochrome c,
Bax, and caspase-3 with the decline of Bcl-2 levels. These data
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FIGURE 7 | Rosuvastatin and/or CoQ10 abate hippocampal cytochrome c, Bax, and caspase-3 activity with the enhancement of Bcl2 levels. Representative
Western blots and optical densities of (A) Cytochrome c, (B) Bax, (C) Bcl2, and (D) caspase-3 activity in rats subjected to transient ischemia. Measurements were
achieved 24 h following 60 min ischemia. Rosuvastatin (RUS; 10 mg/kg), CoQ10 (10 mg/kg), and their combination were administered p.o. for 7 days before
ischemic insult. Values are presented as mean (n = 6) ± SEM. Statistical analysis was carried out using one-way ANOVA followed by Tukey’s post hoc multiple
comparison test. As compared with (#) sham-operated, (∗) I/R, (†) RUS, (‡) CoQ10, and (§) combination pretreated groups (P < 0.05).

matched previous studies (Endo et al., 2006a; Abd El-Aal et al.,
2013; Yin et al., 2013). The present study affirmed the anti-
apoptotic characters of RUS and CoQ10 designated herein by the
dampening of hippocampal death, pro-apoptotic markers, and
the enhancement of Bcl-2 expression. Indeed, the effects exerted
by the combination regimen superseded that mediated by either
agent when used alone.

These results are in line with previous reports describing
the anti-apoptotic capacity of RUS against apoptosis in contrast
media-induced renal injury (Deng et al., 2015), cardiac
arrest-induced hippocampal injury (Qiu et al., 2017), and spinal
cord-induced neuronal death (Die et al., 2010). These observation
are also in harmony with studies that clarified the anti-apoptotic

potential of CoQ10 in different in vivo (Lee et al., 2014), and
in vitro (Jing et al., 2015; Chen et al., 2017) studies.

The attenuation of hippocampal apoptosis can be accredited to
the observed suppression of lipid peroxidation and inflammation,
since excessive exposure of hippocampal tissues to ROS and TNF-
α has been reported to enhance neuronal apoptosis. Additionally,
the rescued Akt cascade to revive the hippocampal CA1neurons
can be another explanation for the notable neuroprotection, since
increased p-Akt phosphorylates and inactivates the transcription
factor FOXO3A, hence attenuating its nuclear translocation
to alleviate apoptosis driven by Bim-mediating signaling
pathway (Shioda et al., 2007). Moreover, p-Akt suppresses the
mitochondrial release of cytochrome c (Hirai et al., 2004) and
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FIGURE 8 | A proposed framework illustrating the versatile impacts of RUS and CoQ10 against I/R-induced hippocampal injury.

increases the anti-apoptotic Bcl-2 (Qi et al., 2015; Zhu et al.,
2016). The latter also participates in reducing cytochrome c (Zhao
et al., 2003) and alleviates oxidative damage caused by ROS
overexpression (Niture and Jaiswal, 2012) as another mechanism
for saving neurons from degeneration. Additionally, activation
of Akt efficiently tapers ROS generation by overexpressing SOD
(Endo et al., 2006b). All these events are verified in the present
work.

However, these findings are just the tip of the iceberg;
the ability of RUS/CoQ10 to suppress ROS/RNS may be
responsible for neuronal salvage, since these radicals are known
to enhance neuronal apoptosis (Gong et al., 2015). These free
radicals also activate JNK3 signaling pathway to trigger the
expression/activation of pro-apoptotic genes, such as c-Jun, Bim,
Bax, which trigger the release of cytochrome c and the activation
of caspase-3 leading to cell apoptosis (Gao et al., 2005; Pei et al.,
2016).

CONCLUSION

The present study has verified the neuroprotective potentials
of RUS against cerebral global I/R injury by virtue of its
versatile actions including suppression of hippocampal OS,
inflammation, and apoptosis with the involvement of NF-
κBp65/TNF-α/gp91phox and p47phox, Akt/FOXO3a/Bim, and

JNK3/c-Jun/Bax signaling cues. These impacts were analogous
to those of CoQ10, whereas, its combination with rosuvastatin
exerted effects that surpassed either treatment alone. The study
also appoints CoQ10 as an adds-on therapy with statins.
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