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Neuroblastoma is the most common pediatric extracranial solid tumor. The 5-year survival
rate for high-risk neuroblastoma is less than 50%, despite multimodal treatment.
Pyroptosis, an inflammatory type of programmed cell death, manifested pro-tumor and
anti-tumor roles in the adult tumor. Thus, we aimed to elucidate the function of pyroptosis
in neuroblastoma. We classified neuroblastoma patients into two clusters based on the
pyroptosis gene expression. We found high pyroptosis neuroblastoma manifested
favorable overall survival and more anti-tumor immune cell infiltration. Based on the
results of a stepwise Cox regression analysis, we built a four-gene predictive model
including NLRP3, CASP3, IL18, and GSDMB. The model showed excellent predictive
performance in internal and external validation. Our findings highlight that high pyroptosis
positively correlated with neuroblastoma outcomes and immune landscape, which may
pave the way for further studies on inducing pyroptosis therapy in high-risk neuroblastoma
treatment.
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INTRODUCTION

Neuroblastoma is a heterogeneous pediatric tumor, in which clinical behavior changes from
spontaneous regression to widespread metastasis (Maris, 2010; Huang and Weiss, 2013). Low-
risk neuroblastoma has 90%–95% survival rates for 5 years. However, despite intensive multimodal
therapy, the high-risk neuroblastoma has less than 50% survival rates for 5 years (Swift et al., 2018).
Thus, new therapy options for high-risk neuroblastoma are urgently needed.

Pyroptosis is an inflammatory type of programmed cell death, which requires gasdermin proteins
for plasma membrane perforation, often due to inflammatory caspase activation (Broz et al., 2020).
Recent evidence suggests pyroptosis performs dual roles on the adult tumor. On the one hand, based
on the theories of inflammation-cancer transformation and chronic inflammation-induced cell
carcinogenesis, pyroptosis, as an inflammatory process, forms a suitable microenvironment for
cervical and colorectal cancer growth. On the other hand, inducing pyroptosis activates an immune
response in the tumor microenvironment, turning up the heat on non-immunoreactive tumors such
as triple-negative breast cancer, and suppressing tumor proliferation (Xia et al., 2019;Wu et al., 2021;
Yu et al., 2021). Pyroptosis exert different function in different tumors. Neuroblastoma is
immunologically “cold” since lacking anti-tumor T-cell infiltration and a low mutation burden
(Wienke et al., 2021). However, the specific function of pyroptosis in neuroblastoma has been less
studied.
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Herein, we aim to elucidate the role of pyroptosis in
neuroblastoma. We investigate the correlation between
pyroptosis signature, overall neuroblastoma survival, and
immune microenvironment through comprehensive
bioinformatics analyses. It is hoped that this research will
contribute to a deeper understanding of pyroptosis in the
neuroblastoma immune landscape and treatment.

MATERIALS AND METHODS

Acquisition of Gene Expression and Clinical
Data
Neuroblastoma gene expression datasets and related clinical data
were downloaded from the Gene Expression Omnibus (GEO)
under accession number GSE49710 and ArrayExpress under
accession number E-MTAB-8248. The GSE49710 datasets
were used to construct the predictive model. The E-MTAB-
8248 datasets were used to validate the predictive model.

The count matrix of the fetal adrenal gland and fetal adrenal
medulla single-cell datasets were downloaded from the Shiny
App. The count matrix was processed and annotated following
the author protocol (Jansky et al., 2021).

Consensus Clustering
Pyroptosis-related genes were extracted from previous articles
(Shi et al., 2016; Xia et al., 2019; Liu X et al., 2021) and listed in
Supplementary Table S1. The expression data of pyroptosis-
related genes were extracted from the GSE49710 dataset. The data
were normalized by median value before clustering. The
“ConsensusClusterPlus” package was used to cluster samples
(Wilkerson and Hayes, 2010).

Differentially Expressed Gene Identification
and Integrated Analysis
Patients were stratified into different groups according to the
consensus cluster results. Probes were matched to the gene
symbols using the annotation files provided by the manufacturer.
The highest expression value was employed to represent the gene
expression level when a single gene matched multiple probes.
Differentially expressed genes (DEGs) were explored between
groups using the limma package (Ritchie et al., 2015). The DEG
cutoff were set as |log2 (fold-change) |>1 and adjusted p-value< 0.05.

Bioinformatic and Protein–Protein
Interaction Analysis of Differentially
Expressed Genes
GO enrichment and KEGG pathway analyses were used to
explore the potential biological processes (BP), cellular
components (CC), and molecular functions (MF) of DEGs in
the ClusterProfiler package (Yu et al., 2012). p < 0.05 was
considered statistically significant. Gene set enrichment
analysis (GSEA) was performed to elucidate the molecular
mechanisms of DEGs. |NES| > 1 and FDR < 0.05 were
considered statistically significant.

Tumor Immunity Analyses
Stromal, immune, and estimate scores were calculated by the
Estimation of STromal and Immune cells in MAlignant Tumor
tissues using the Expression data (ESTIMATE) algorithm in the
IOBR package (Yoshihara et al., 2013; Zeng et al., 2021). Eight
immune cells were scored by the Microenvironment Cell
Populations-Counter (MCP-counter) algorithm in the IOBR
package (Racle et al., 2017; Zeng et al., 2021). A proportion of
twenty-two immune cells were evaluated by the Cell Type
Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT) algorithm in the IOBR package
(Newman et al., 2015; Zeng et al., 2021).

Identification of Survival-Related
Pyroptosis Genes and Establishment of
Prognostic Gene Signature
Stepwise Cox regression analysis was used to identify overall
survival-related genes in the GSE49710 dataset. The pyroptosis-
related genes were considered statistically significant where p < 0.01
in the univariate Cox regression analysis and included in subsequent
analysis. Least absolute shrinkage and selection operator (LASSO)-
penalized cox regression analysis was performed to further reduce
the number of DEGs with the best predictive performance using 10-
fold cross-validation in the glmnet package (Friedman et al., 2010).
The multivariate Cox regression analysis was used to optimize the
DEGs under the minimum AIC value. A prognostic signature was
constructed based on the linear combination of the regression
coefficients (β) derived from the multivariate cox regression
model multiplied by its mRNA expression level. Patients were
divided into high-risk and low-risk groups based on the median
risk value. Kaplan–Meier analysis, the area under the curve (AUC) of
the receiver operating characteristic (ROC) curve, and Harrell’s
concordance index (C-index) were used to evaluate the
performance of the prognostic signature.

The E-MTAB-8248 dataset was used for the prognostic
signature validation. The risk score was calculated by the same
formula used for the GSE49710 dataset. The patients in the
E-MTAB-8248 cohort were divided into low-risk or high-risk
groups by the median risk score calculated from the GSE49710
dataset. These groups were then compared to validate the
prognostic model.

Identification of Independent Prognostic
Parameters of Neuroblastoma
In order to identify independent prognostic parameters, a
univariate Cox regression analysis was performed based on the
prognostic gene signature and clinic-pathological parameters,
including age, sex, INSS stage, and MYCN status. p < 0.05 was
considered statistically significant.

Predictive Nomogram Construction and
Validation
After testing collinearity, all independent prognostic parameters
were included in constructing a predictive nomogram to predict a

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8095872

Li et al. Pyroptosis Predicts Neuroblastoma Outcome

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


1-, 3-, and 5-year overall survival of neuroblastoma patients in the
GSE49710 dataset. The Kaplan–Meier analysis, the AUC of the
ROC curve, Harrell’s concordance index, and a calibration plot
were used to evaluate the performance of the prognostic
nomogram. The patients were divided into two groups based
on the median points of the nomogram. Survival curves for two
groups were plotted using the Kaplan–Meier analysis.

Statistical Analysis
Statistical analysis was performed in R. The overall survival
between subgroups was compared by the Kaplan–Meier
method. The Cox regression analysis was performed to
evaluate the overall survival-related parameters. The

Mann–Whitney test was used to compare immune cell
infiltration between subgroups. Unless otherwise stated, p <
0.05 was considered statistically significant.

RESULTS

Neuroblastoma Classification Based on
Pyroptosis-Related Genes
Figure 1 shows the flowchart of this research. A total of 27 of
33 pre-defined pyroptosis-related genes were found in the
GSE49710 dataset. We clustered 498 tumor samples by the
27 pyroptosis-related genes to explore the internal connection.

FIGURE 1 | Diagram illustrating the research design.
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By applying the clustering variable (k) from 2 to 6, we found k = 2
performance satisfying. Intragroup correlations were high, and
intergroup correlations were low. Based on the clustering results,
498 neuroblastoma samples were divided into two clusters, while
cluster 1 contains 318 samples and cluster 2 contains 180 samples
(Figure 2A). Two clusters exhibited considerable separation
(Figure 2B). Compared with cluster 2, cluster 1 showed a
higher pyroptosis-related gene expression (Figure 2C). To

quantify the expression level in two clusters, we calculated the
pyroptosis signature score by the ssGSEA algorithm (Zeng et al.,
2021). Cluster 1 showed a significantly higher pyro-score than
cluster 2 (Figure 2D). The Kaplan–Meier survival curves revealed
significantly favorable overall survival in cluster 1 (Figure 2E, p <
0.0001). Furthermore, we scored the cancer hallmark signature by
the ssGSEA algorithm to compare the tumor hallmark difference
between clusters. Compared with cluster 1, cluster 2 showed a

FIGURE 2 |Neuroblastoma classification based on pyroptosis-related genes. (A)Consensus clustering for 498 neuroblastomapatients in theGSE49710 dataset at k=
2. (B) t-distributed stochastic neighbor embedding (t-SNE) visualization of the two clusters. (C) Heatmap showing expression of the pyroptosis-related genes in the two
clusters. (D) Box plots of the distribution of the pyroptosis signature score calculated by the ssGSEA algorithm between cluster 1 and cluster 2. ****p < 0.0001, two-sided
unpairedWilcoxon test. (E) Kaplan–Meier curves for overall survival of the two clusters. The p-value was calculated by the log-rank test. (F)Heatmap showing scores of
the tumor hallmark calculated by the ssGSEA algorithm in the two clusters. Ten high hallmarks in cluster 2 are highlighted.
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FIGURE 3 |Neuroblastoma immunity analysis between clusters. (A–C) Box plots of the distribution of the immune score (A), stromal score (B), and estimate score
(C) calculated by the ESTIMATE algorithm between cluster 1 and cluster 2. ****p < 0.0001, two-sided unpaired Wilcoxon test. (D) Box plots of the distribution of the
scores calculated by the MCP-counter algorithm of immune cells between cluster 1 and cluster 2. ****p < 0.0001, two-sided unpaired Wilcoxon test. (E) Box plots of the
distribution of the cell proportions calculated by the CIBERSORT algorithm of immune cells between cluster 1 and cluster 2. Statistically different immune cells are
highlighted in blue. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, n.s., not significant, two-sided unpaired Wilcoxon test.
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higher score in cell cycle, DNA repair, and MYC target signature
(Figure 2F), indicating cell replication andMYC-related pathway
may play an important role in the neuroblastoma outcome.

Cluster Character Exploration
To explore tumor immunity difference between clusters, we first
evaluated the stromal cell and immune cell infiltration in tumor
tissues using the ESTIMATE algorithm. Compared with cluster 2,
cluster 1 showed significantly higher stromal, estimate, and
immune scores, indicating more immune-cell and stromal-cell
infiltration in cluster 1 (Figures 3A–C). To further elucidate the
tumor-infiltrating immune cells, the MCP-counter and
CIBERSORT algorithms were applied. Anti-tumor immune
cells, including cytotoxic lymphocytes, macrophage, and
natural killer cells, infiltrated higher in cluster 1 (Figures
3D,E), implying higher pyroptosis expression may induce
more anti-tumor immune cell infiltration and activate the
immune response in the tumor microenvironment.

To further identify the pyroptosis signature-related pathway,
we analyzed the differential expression genes (DEGs) between
two clusters, with the criteria set as |logFC|>1 and adjusted
p-value < 0.05. Compared with cluster 2, we identified 3876
upregulated and 11 downregulated genes in cluster 1
(Supplementary Figure S1A). Interestingly, the 11
downregulated genes contain the MYCN gene, which is
frequently used in clinical prognosis prediction
(Supplementary Figure S1A). GO, KEGG, and GSEA
pathway enrichment analyses were applied to discover the
functions of the DEGs. The DEGs were significantly enriched
in biological processes related to immune cell activation and
immune response, consistent with the regulating cell death and
inflammation character of pyroptosis. Enrichment analyses of the
cellular compartment were mainly on plasma membrane
complex and extracellular matrix, corresponding to the
immune-complex cellular location (Supplementary Figure
S1B). KEGG pathway analysis revealed that the DEGs
participated in cytokine receptor interaction, immune cell
cytotoxicity, cell adhesion molecules, and glucose metabolism
(Supplementary Figure S1C). Furthermore, the GSEA analysis
revealed NF-κB signaling pathway and antigen processing
involvement in the pyroptosis process (Supplementary
Figure S1D).

Identification of Survival-Related
Pyroptosis Signature Genes and
Establishment of Pyroptosis Four-Gene
Prognostic Signature
All 498 patients from the GSE49710 dataset with sufficient
survival information were included in subsequent survival
analyses. Supplementary Table S2 shows the clinical
information of these patients. Based on the univariate Cox
regression analysis, we identified 21 pyroptosis genes, which
were significantly associated with overall survival. The hazard
ratio of 21 genes was less than 1, indicating that pyroptosis
signature might serve as a protective factor in neuroblastoma
(Figure 4A). The Kaplan–Meier survival revealed significantly

favorable overall survival of all the 21 genes (Supplementary
Table S3). A prognostic signature comprising four genes,
including NLR family pyrin domain containing 3 (NLRP3),
caspase-3 (CASP3), interleukin 18 (IL18), gasdermin B
(GSDMB), was developed by LASSO-penalized Cox and
multivariate Cox analyses (Figures 4B–D). The risk score was
calculated by the following equation:

Risk score = [(−0.24719) × expression value of NLRP3] +
[(−0.25486) × expression value of CASP3] + [(−0.16392) ×
expression value of IL18] + [(−0.29864) × expression value of
GSDMB]

The median risk score (−10.67) was set as the cutoff value.
Patients from the GSE49710 dataset were stratified into two
groups. The Kaplan–Meier survival curves revealed
significantly favorable overall survival in the groups with lower
risk scores (Figures 4E–F, p < 0.0001). Time-dependent ROC and
C-index were applied to determine the prognostic values of the
four-gene model. The AUCs for 1-, 3-, and 5-year overall survival
predictions for the model were 0.812, 0.845, and 0.790,
respectively (Figure 4G). The C-index of the four-gene model
was 0.763 (95% CI: 0.720–0.806), indicating that the four-gene
signature performed well at predicting the overall survival of
neuroblastoma.

External Validation of the Four-Gene
Signature
E-MTAB-8248 dataset was used to validate the prediction
performance of the four-gene prognostic signature. The risk
score was calculated with the same formula for each patient.
Patients were divided into high- and low-risk groups according
to the median risk score (−10.67) calculated from the
GSE49710 dataset. Two groups exhibited considerable
separation through t-SNE analysis (Figure 5A). The
Kaplan–Meier survival curve revealed a significant
difference in overall survival between groups. High-risk
groups had markedly poorer outcomes than low-risk groups
(Figures 5B,C). Predictive power was then assessed by time-
dependent ROC and C-index. In the E-MTAB-8248 dataset,
the AUCs for 1-, 3-, and 5-year overall survival predictions for
the risk scores were 0.835, 0.805, and 0.781, respectively
(Figure 5D). The C-index of the risk score was 0.764 (95%
CI: 0.703–0.825). External validation indicated that the four-
gene signature performed well at predicting overall survival in
neuroblastoma patients.

Single Gene Survival Analysis of the
Four-Gene Signature
The GSE49710 and E-MTAB-8248 datasets were used to explore
each gene expression’s significance on overall survival. Patients
were divided into high-expression and low-expression groups
according to the median expression value of each gene. The high-
expression group of the four genes had markedly better outcomes
than the low-expression group in both datasets, indicating that all
four genes play a protection role in neuroblastoma
(Supplementary Figures S2A,B).
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FIGURE 4 | Construction of the predictive four-pyroptosis-gene signature. (A) Prognostic effect of 21 pyroptosis-related genes with p < 0.01 derived from
univariate Cox regression survival analyses for overall survival in the GSE49710 dataset. (B) The LASSO coefficient profile of 21 pyroptosis-related genes in the
GSE49710 dataset. (C) The 10-fold cross-validation for tuning predictor selection. (D) Prognostic effect of four-gene signature derived from a stepwise Cox regression
survival analysis for overall survival in the GSE49710 dataset. *p < 0.05, **p < 0.01. (E) Kaplan–Meier curves for overall survival of the two risk groups derived from
the four-gene signature in the GSE49710 dataset. The p-value was calculated by the log-rank test. (F) Distribution of the risk score, the associated survival data, and the
four-gene mRNA expression in the GSE49710 dataset. (G) ROC curves for 1-, 3-, and 5-year overall survival predictions for the four-gene signature in the GSE49710
dataset.
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FIGURE 5 | External validation of the four-pyroptosis-gene signature. (A) t-SNE visualization of the two risk groups derived from the four-gene signature in the
E-MTAB-8248 dataset. (B)Kaplan–Meier curves for overall survival of the two risk groups derived from the four-gene signature in the E-MTAB-8248 dataset. The p-value
was calculated by the log-rank test. (C) Distribution of the risk score, the associated survival data, and the four-gene mRNA expression in the E-MTAB-8248 dataset. (D)
Receiver operating characteristic (ROC) curves for 1-, 3-, and 5-year overall survival predictions for the four-gene signature in the E-MTAB-8248 dataset.
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FIGURE 6 | Clinical relevance and tumor immunity of the four-gene signature in the GSE49710 dataset. (A–D) Box plots of the distribution of the four-gene risk
score between different INSS stage groups (A), between the MYCN-amplified and non-MYCN-amplified groups (B), between the age >18 months and age <18months
groups (C), and between progression and non-progression groups (D). *p < 0.05, ***p < 0.001, ****p < 0.0001, two-sided unpairedWilcoxon test. (E–F)Box plots of the
distribution of the immune score (E) and stromal score (F) calculated by the ESTIMATE algorithm between the high- and low-risk groups. ****p < 0.0001, two-sided
unpaired Wilcoxon test. (G) Box plots of the distribution of the scores calculated by the MCP-counter algorithm of immune cells between the high-risk and low-risk
groups. ****p < 0.0001, two-sided unpaired Wilcoxon test. (H) Box plots of the distribution of the cell proportions calculated by the CIBERSORT algorithm of immune
cells between the high- and low-risk groups. Statistically different immune cells are highlighted in blue. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, n.s., not
significant, two-sided unpaired Wilcoxon test.
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Clinical Pathology and Tumor Immunity
Relevance of the Four-Gene Signature
Relationships between the four-gene signature and the clinical
characteristics of neuroblastoma, including the INSS
(International Neuroblastoma Staging System) stage, age,
MYCN status, and tumor progression, were analyzed in both
datasets. In terms of INSS stage, stage III and stage IV patients
had higher risk scores than stage I and stage II patients in both
datasets (Figure 6A; Supplementary Figure S3A). The four-gene
risk scores increased from stage 1 to stage 4 except for stage 4S.
Patients of MYCN amplification and age >18 months had
significantly higher four-gene risk scores in both datasets
(Figures 6B,C; Supplementary Figures S3B,C). The
GSE49710 dataset analysis revealed that patients with higher
four-gene risk scores tended to have tumor progression
(Figure 6D).

To explore tumor immunity relevance of the four-gene
signature, we first evaluated the stromal cell and immune cell
infiltration in tumor tissues using the ESTIMATE algorithm.
Compared with the high-risk group, the low-risk group showed
significantly higher stromal and immune scores in both datasets
(Figures 6E,F; Supplementary Figures S3D,E), indicating more
immune- and stromal-cell infiltration in the low-risk group. To
further elucidate the tumor-infiltrating immune cells, the MCP-
counter and CIBERSORT algorithms were applied. Anti-tumor
immune cells, including cytotoxic lymphocytes, macrophage, and
natural killer cells, infiltrated higher in the low-risk group
(Figures 6G,H; Supplementary Figures S3F,G).

Cellular Origin of the Four-Gene Signature
To explore the cellular origin of the four-pyroptosis-related genes,
we projected the four genes separately onto the single-cell datasets
of the fetal adrenal gland and fetal adrenal medulla by Jansky et al.
(2021). We found that the NLRP3 and IL18 are mainly expressed
in the immune cell, while the CASP3 and GSDMB are expressed
in the fetal adrenal medulla, stromal, and immune cells
(Supplementary Figures S4A). Further analysis found that
CASP3 is mainly expressed on the neuroblasts, while the
GSDMB is mainly expressed on the Schwann cell precursors
(SCPs) of the fetal adrenal medulla (Supplementary
Figures S4B).

Model Comparison Between the Four-Gene
Signature and the INSS Stage
INSS stage is one of the systems used for neuroblastoma staging,
which decides the risk group of neuroblastoma patients. To verify
the prediction power of the four-gene signature, we compared the
four-gene model with the INSS stage. The decision curve analysis
(DCA) for 1-, 3-, and 5-year overall survival predictions showed
better efficiency for the four-gene signature than the INSS stage
(Figures 7A–C). The area under the decision curve was 0.0022,
0.034, and 0.045 of the four-gene signature for 1, 3, and 5 years,
respectively. The area under the decision curve was 0.0012, 0.016,
and 0.028 of the INSS stage for 1, 3, and 5 years, respectively. The
ROC curve of the two models showed better prediction power for

the four-gene signature (Figures 7D–F). The four-gene signature
model showed a higher AUC value than the INSS stage model,
whether short-term or long-term (Figure 7G).

Evaluation of Prognostic Factors in
Neuroblastoma and Building Nomogram
Model
Four hundred ninety-three patients from the GSE49710 dataset,
whose complete clinical information was provided, including age,
sex, MYCN status, and INSS stage, were included in the analysis.
Stepwise Cox regression analysis was used to identify overall survival
related factors. The univariate Cox analysis revealed that the four-
gene risk score, age, INSS stage, and MYCN status significantly
correlated with overall survival (Figure 8A). Multivariate Cox
analysis revealed that the four-gene risk score, age, INSS stage,
and MYCN status were independent risk factors of overall survival
(Figure 8B). A prognostic nomogram model was constructed based
on the multivariate Cox regression results, predicting 1,- 3-, and 5-
year overall survival (Figure 8C). The patients were divided into two
groups by the scores of the nomogram. The Kaplan–Meier plot
effectively discriminated groups of various risks. Higher scores had
significantly poorer overall survival (Figures 8D,E, p < 0.0001). The
AUCs of the 1-, 3-, and 5-year overall survival predictions for the
nomogram model were 0.878, 0.913, and 0.893, respectively
(Figure 8F). The C-index of the nomogram model was 0.851
(95% CI; 0.824–0.878). Calibration plots of 1, 3, and 5 years
showed that the nomogram performed well at predicting overall
survival in neuroblastoma patients (Figures 8G–I).

DISCUSSION

In the present study, we give a close correlation between pyroptosis
signature, neuroblastoma immune landscape, and neuroblastoma
outcomes. The high pyroptosis neuroblastoma manifested
favorable overall survival, more CD8+ T cells, natural killer (NK)
cells, and memory T-cell infiltration. In the adult tumor, previous
studies found that pyroptotic tumor cells induce the activation of
cytotoxic T cells and dendritic cells by releasing immunostimulatory
cytokines (Shi et al., 2016; Wu et al., 2021). Less than 15% of breast
tumor cell pyroptosis could eliminate the entire 4T1 tumor graft by
activating cytotoxic T cells and CD4+ T helper cells (Wang et al.,
2020). We found that the anti-tumor immune response plays a
pivotal role in pyroptosis regulating neuroblastoma outcomes based
on functional enrichment analyses. The main pathways involved in
this process were antigen processing and NF-κB signaling pathway.
MYCN amplification, the de no oncogene driver that accounts for
20% of neuroblastoma, is observed in high-risk neuroblastoma and
poor patient survival (Otte et al., 2021). However, MYCN was
considered undruggable since lacking a targetable surface on its
DNA binding domain (Huang and Weiss, 2013; Liu Z et al.,
2021). Surprisingly, we found that high pyroptosis neuroblastoma
tends to have low expression ofMYCNand a low score ofmyc target-
related tumor hallmark. Further research on MYCN expression and
pyroptosis signaturemay unravel new treatment options for high-risk
neuroblastoma.
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Based on stepwise Cox regression analysis, we constructed a four-
gene signature containingNLRP3, CASP3, IL18, andGSDMB, which
showed better predictive performance than conventional biomarkers.
The four genes were protection factors in neuroblastoma since being
downregulated is associated with poor survival. The four genes are
distributed in all of the pyroptosis processes. The NLRP3 is an
intracellular sensor that detects stimulations, resulting in the
formation of the NLRP3 inflammasome (Swanson et al., 2019).
The CASP3, the constituent of the NLRP3 inflammasome, is the
activator that shears the gasdermin protein to induce pyroptosis
(Tsuchiya, 2021). The GSDMB, one of the gasdermin superfamily, is
the pyroptosis executor, which forms pores on the membrane (Li
et al., 2020). The IL18, one of the pro-inflammatory cytokines, is the
immune effector released from the pores formed by the gasdermin
protein (Broz et al., 2020). The lack of NLRP3 significantly reduced
lung cancer metastasis and improved melanoma survival rate while
promoting colorectal cancer metastasis and hepatocellular carcinoma
progression (Hamarsheh and Zeiser, 2020). Thus, NLRP3 plays

different roles in various types of cancer. We found that high
expression of NLRP3 was associated with a favorable outcome of
neuroblastoma, which corresponds to the NLRP3 reducing the
neuroblastoma SH-Y5Y cell line tumorsphere size (Tezcan et al.,
2021). As the central caspases, CASP3 regulates apoptosis membrane
blebbing and pyroptosis activation, controlling cell death fate
(Tsuchiya, 2021). Higher levels of activated caspase-3 were
correlated with increased tumor recurrence or death in the adult
tumor (Huang et al., 2011). However, we found that high expression
of caspase-3 was associated with a favorable outcome of
neuroblastoma. The mechanism of caspase-3 regulation in
neuroblastoma needs further research. GSDMB is the most
divergent in the gasdermin superfamily, which is not present in
the mouse and rat. GSDMB expression was increased in many
cancers, such as breast, cervical, and hepatic cancer, in which high
expression was linked to poor prognosis (Li et al., 2020). The role of
GSDMB in neuroblastoma has been less studied. Contrary to the
adult tumor, we found that higher GSDMB expression

FIGURE 7 |Model comparison between the four-gene signature and the INSS stage. (A–C) Decision-curve analysis (DCA) curves depicting the standardized net
benefit of the four-gene signature and the INSS stage model for 1 (A), 3 (B), and 5 years (C) in the GSE49710 dataset. (D–F) ROC curves of the four-gene signature and
the INSS stagemodel for 1- (D), 3- (E), and 5-year (F) overall survival predictions in the GSE49710 dataset. (G) The area under the curve (AUC) of the four-gene signature
and the INSS stage model.
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FIGURE 8 | Construction and validation of the nomogram model. (A) Prognostic effect of MYCN status, INSS stage, age, four-gene risk score, and sex derived
from univariate Cox regression survival analysis for overall survival in the GSE49710 dataset. ****p < 0.0001, n.s., not significant. (B) Prognostic effect of MYCN status,
INSS stage, age, and four-gene risk score derived from multivariate Cox regression survival analysis for overall survival in the GSE49710 dataset. (C) The nomogram
model for 1-, 3-, and 5-year overall survival probability predictions in the GSE49710 dataset. (D) Kaplan–Meier curves for overall survival of the two score groups
derived from the nomogrammodel in the GSE49710 dataset. The p-value was calculated by the log-rank test. (E)Distribution of the nomogram score and the associated
survival data in the GSE49710 dataset. (F) ROC curves for 1-, 3-, and 5-year overall survival predictions for the nomogram model in the GSE49710 dataset. (G–I)
Calibration plots of 1, 3, and 5 years for internal validation of the nomogram model. The y-axis represents the actual overall survival, while the x-axis represents the
predicted overall survival.
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neuroblastoma manifested prolonged overall survival. Multiple
neuroblastoma prognosis signatures have been made through
various methods (Garcia et al., 2012; Zhong et al., 2018; Brady
et al., 2020). These signatures showed excellent predictive
performance of neuroblastoma outcomes while less correlated
with the neuroblastoma immune landscape. The pyroptosis
signature classified neuroblastoma patients with a significant
difference in immune cell infiltration, providing new therapy
options in neuroblastoma immunotherapy. We build a visualized
scoring nomogram based on the pyroptosis signature and clinical-
pathology characteristics. Through the nomogram, physicians can
predict the overall survival andmake treatment recommendations for
each patient. Patients in the high-risk group should be given more
attention and intensive treatment, while excessive treatment should
be avoided for low-risk group patients.

Immunotherapy is a hotspot in cancer therapy. Since lacking
anti-tumor T-cell infiltration and low mutation burden, the
neuroblastoma is being immunologically “cold” (Wienke et al.,
2021). The immune checkpoint blockade antibodies targeting
CTLA4, PD-1, and PD-L1 have not influenced the clinical
outcomes of neuroblastoma (Wienke et al., 2021). Dinutuximab,
the GD2 antibody, was the FDA-approved immunotherapy for
high-risk neuroblastoma. Dinutuximab significantly improved 2-
year event-free survival but less contributed to the 5-year overall
survival of the high-risk neuroblastoma (Mora, 2016). The biggest
issue of dinutuximab could not induce immunological memory,
which prevents high-risk neuroblastoma relapse (Szanto et al.,
2020). Therefore, converting the immunosuppressive
neuroblastoma into an immunostimulating environment and
inducing immunological memory may be promising strategies.
Pyroptosis, an inflammatory regulated cell death, showed excellent
tumor elimination when combined with PD-1 antibody in the
immunologically “cold” breast tumor grafts (Wang et al., 2020). A
recent study found that pyroptosis turns bladder tumors from the
“cold” to “hot” immune environment (Chen et al., 2021). In
neuroblastoma, we found that high pyroptosis neuroblastoma
tends to have more CD8+ T-cell, natural killer (NK) cell, and
memory CD4+ T-cell infiltration, and favorable outcomes. The
presence of natural killer cells in TME is associated with an
improved prognosis of neuroblastoma. NK cells mediate cellular
cytotoxicity, which is amechanism of anti-GD2 for neuroblastoma,
and a combination of anti-GD2 antibodies with adoptively
transferred NK cells significantly improves neuroblastoma
survival (Barry et al., 2019). Higher CD8+ T-cell abundance
correlated with favorable prognosis and long-term survival of
neuroblastoma (Mina et al., 2016). Memory T cells have been
associated with favorable clinical outcomes in several solid tumors
(Craig et al., 2020). Thus, compared with the low pyroptosis
neuroblastoma, high pyroptosis neuroblastoma manifested the
immunogenic “hot,” which means more anti-tumor immune
cell infiltration. However, previous studies found that the anti-
tumor immune cells in neuroblastoma showed low immune
reactivity (Wienke et al., 2021). The reactivity of the anti-tumor
immune cell induced by pyroptosis needs further research.

Our study found that the pyroptosis signature correlated with
anti-tumor immune cell infiltration and neuroblastoma outcomes.
However, several limitations exist in our research. First, pyroptosis

showed both pro-tumor and anti-tumor effects in adult tumors;
whether pyroptosis has a pro-tumor role and to what extent
activates pyroptosis to induce tumor-killing without promoting
tumor growth in neuroblastoma need to be studied further. Second,
excerpting the anti-tumor immune cell infiltration, we also found
the immunosuppressive Tregs infiltrated in the high pyroptosis
neuroblastoma, and the balance between the anti-tumor immune
cells and the immunosuppressive immune cells in neuroblastoma
remains the further study. Third, our results are based on the
bioinformatics analysis, which needs further experimental
validation of the gene expression pattern.

CONCLUSION

In conclusion, ourfinding highlighted that the high pyroptosis signature
is positively correlated with anti-tumor immune cell infiltration and
neuroblastoma patient outcomes. To the best of our knowledge, our
study is the first bioinformatics analysis of the pyroptosis signature in
neuroblastoma. Our findings pave the way for further studies on
inducing pyroptosis therapy in high-risk neuroblastoma treatment.
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