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Abstract

Translation elongation is regulated by a series of complicated mechanisms in both prokary-

otes and eukaryotes. Although recent advance in ribosome profiling techniques has enabled

one to capture the genome-wide ribosome footprints along transcripts at codon resolution,

the regulatory codes of elongation dynamics are still not fully understood. Most of the exist-

ing computational approaches for modeling translation elongation from ribosome profiling

data mainly focus on local contextual patterns, while ignoring the continuity of the elongation

process and relations between ribosome densities of remote codons. Modeling the transla-

tion elongation process in full-length coding sequence (CDS) level has not been studied to

the best of our knowledge. In this paper, we developed a deep learning based approach

with a multi-input and multi-output framework, named RiboMIMO, for modeling the ribosome

density distributions of full-length mRNA CDS regions. Through considering the underlying

correlations in translation efficiency among neighboring and remote codons and extracting

hidden features from the input full-length coding sequence, RiboMIMO can greatly outper-

form the state-of-the-art baseline approaches and accurately predict the ribosome density

distributions along the whole mRNA CDS regions. In addition, RiboMIMO explores the con-

tributions of individual input codons to the predictions of output ribosome densities, which

thus can help reveal important biological factors influencing the translation elongation pro-

cess. The analyses, based on our interpretable metric named codon impact score, not only

identified several patterns consistent with the previously-published literatures, but also for

the first time (to the best of our knowledge) revealed that the codons located at a long dis-

tance from the ribosomal A site may also have an association on the translation elongation

rate. This finding of long-range impact on translation elongation velocity may shed new light

on the regulatory mechanisms of protein synthesis. Overall, these results indicated that

RiboMIMO can provide a useful tool for studying the regulation of translation elongation in

the range of full-length CDS.

Author summary

Translation elongation is a process in which amino acids are linked into proteins by ribo-

somes in cells. Translation elongation rates along the mRNAs are not constant, and are
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regulated by a series of mechanisms, such as codon rarity and mRNA stability. In this

study, we modeled the translation elongation process at a full-length coding sequence

level and developed a deep learning based approach to predict the translation elongation

rates from mRNA sequences, through extracting the regulatory codes of elongation rates

from the contextual sequences. The analyses, based on our interpretable metric named

codon impact score, for the first time (to the best of our knowledge), revealed that in addi-

tion to the neighboring codons of the ribosomal A sites, the remote codons may also have

an important impact on the translation elongation rates. This new finding may stimulate

additional experiments and shed light on the regulatory mechanisms of protein synthesis.

Introduction

Translation elongation plays an essential role in protein synthesis, in which the nucleotide trip-

lets on message RNAs (mRNAs) are deciphered by ribosomes into peptides [1]. During elon-

gation, transfer RNAs (tRNAs) carrying the corresponding amino acids are recruited to the

ribosomal A site and the amino acid with correct codon-anticodon complementarity is

appended to the end of nascent peptide until the whole polypeptide is produced. Single amino

acid can be encoded by multiple synonymous codons, and the elongation rates on these synon-

ymous codons are generally not evenly distributed [2]. Rare codons are more likely to reduce

the elongation rates, sometimes even causing pausing (also termed ribosome stalling), which is

generally associated with mRNA degradation, low protein expression or protein misfolding

[3–5].

Ribosome profiling techniques have provided great opportunities for revealing the transla-

tion elongation dynamics by sequencing the reads of ribosome protected fragments (RPFs)

captured during elongation at codon resolution [6, 7]. The normalized RPF counts can directly

reflect the ribosome density distribution along the coding sequence (CDS), where higher den-

sities generally correspond to slow elongation rates and vise versa [8]. In order to capture the

contextual determinants of elongation rates, several computational methods have been pro-

posed to model the translation elongation dynamics from mRNA sequences. O’Connor et al.

introduced a ribosome density normalization method, named RUST, to measure the positional

effects of individual codons on the elongation rates at the A site [9]. Liu et al. used a sparse

regression model with kernel smoothing, named riboShape, to capture the codon-level contri-

butions to the translation speeds at multiple scales of wavelet decomposition components [10].

Zhang et al. proposed a deep learning based method, named ROSE, to predict the ribosome

stalling sites from mRNA sequences [11]. Tunney et al. developed another deep learning based

model, named iXnos, to reconstruct the ribosome density distributions from local sequence

contexts near the A site codons [12].

Despite the above efforts into modeling the ribosome density distributions, most of them

only focus on the local contexts of A site codons and ignore the potential influence of the

whole CDS. As the elongation process is continuous, it is natural to model the translation elon-

gation at full-length CDS level. In addition, it remains largely unclear whether remote codons

can also affect the ribosome elongation rate of the codon at the ribosomal A site. Thus, model-

ing the translation elongation process at full-length CDS level can capture the (possibly exist-

ing) long-range associations between remote codons resided in the transcript. In this paper,

we proposed a deep learning based model with a multi-input and multi-output strategy,

named RiboMIMO, to model the translation elongation rates of full-length transcripts. Ribo-

MIMO adopts a sequence-to-sequence manner for the first time (to the best of our knowledge)
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to model and predict the ribosome density distributions, and greatly outperforms the state-of-

the-art baseline methods.

RiboMIMO takes the full-length CDS as input, which can be of arbitrary length ranging

from a few hundred to several thousand codons. This multi-input design ensures our model to

capture any possible influence on the elongation rate from any codon position. Also, Ribo-

MIMO predicts the ribosome density distributions of all codons within a CDS sequence simul-

taneously. This multi-output setting guarantees that the relations between ribosome densities

of adjacent codons can be effectively captured from the ribosome profiling data. Therefore,

RiboMIMO has the ability to capture long-range determinants of ribosome densities. Further-

more, RiboMIMO optimizes dual-task losses to improve the prediction performance. In addi-

tion to a basic regression task, RiboMIMO introduces an additional classification task for

predicting the discretized ribosome density distribution of individual codons, which can also

help improve the ribosome density prediction task. We also define a new metric, named the

codon impact score (CIS) based on the RiboMIMO framework, for measuring the influence of

a codon to the predicted ribosome density of another codon at any position. The impact map

of CIS shows strong consistence with the existing studies in the literature, and the new findings

of long-range influence of ribosome densities may shed light on the regulatory mechanisms of

translation elongation.

Materials and methods

Data preprocessing and problem formulation

We trained and evaluated our model on four ribosome profiling datasets collected from

Escherichia coli (one from GEO: GSE72899, denoted as Mohammad16, two from GEO:

GSE119104, denoted as Mohammad19-1 and Mohammad19-2, respectively) [13, 14] and Sac-
charomyces cerevisiae (GEO: GSE53268, denoted as Subtelny14)) [15]. For the Subtelny14

dataset, we first downloaded the raw ribosome profiling data (GSM1289257) from the GEO

database and then aligned the reads to yeast transcriptome following the same protocol as

described in [15]. Specifically, the raw reads obtained from the GEO database were trimmed to

remove the adapter sequences. Then the reads mapped to the ribosomal RNAs (rRNAs) or

non-coding RNAs (ncRNAs) of the yeast genome were removed using bowtie2 [16]. The

remaining clean reads were then aligned to the yeast transcriptome using hisat2 [17]. The ribo-

some densities of A sites were then obtained from the aligned data. For the Mohammad16

dataset, the aligned ribosome density data were directly downloaded from the GWIPS-viz [18]

database and then averaged over three replicates. For the Mohammad19 datasets, the raw

reads (GSM3358140 and GSM3358142) were downloaded from the GEO database, and the

ribosome densities were obtained using the source code provided by the original authors. The

source code and all the processed data can be found in our GitHub repository (https://github.

com/tiantz17/RiboMIMO).

In this paper, we use light symbols (e.g., x) to denote scalar variables, bold symbols (e.g., x)

to denote vector or tensor variables and curlicue symbols (e.g., C) to denote sets. Let

xg ¼ ðxg;1; � � � ; xg;ng Þ denote an mRNA sequence of gene g with a length of ng codons, where

xg;i 2 C stands for one of 64 codon types, and C stands for the set of all codon types. The aver-

age count of ribosome footprint reads over biological replicates for the codon at position i of

gene g from the ribosome profiling data is represented as rg;i 2 R. Then the sequencing cover-

age of gene g is defined as cg ¼
Png

i¼1 Iðrg;i > 0:5Þ=ng , where Ið�Þ stands for the indicator func-

tion. The averaged ribosome density of gene g, denoted by �rg , is defined as the average number
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of ribosome footprint reads in the transcript, that is,

�rg ¼
Png

i¼1 rg;i � Iðrg;i > 0:5Þ
Png

i¼1 Iðrg;i > 0:5Þ
: ð1Þ

Note that here we used only positions with non-zero read counts in gene g to calculate cg
and �rg mainly for the purpose of reducing the potential bias introduced by zero reads, which

are regarded as unobserved data rather than zero densities. Here, we used a threshold of 0.5 to

filter out zero counts, which was also adopted in [19].

In order to maintain the high quality of the samples and remove the poorly sequenced tran-

scripts, here we followed the same strategy as in [20] and only kept those genes with sequenc-

ing coverage cg higher than 60%. Note that one gene with high sequencing coverage generally

corresponds to a high averaged ribosome density (S1 Fig). Thus, using sequence coverage

alone as a filtering criterion is sufficient for selecting the high-quality data. The statistics of the

datasets used in this paper can be found in S1 Table.

Next, we normalized the counts of ribosome footprint reads by the averaged ribosome den-

sity of the same gene, and obtained the ribosome density distribution dg ¼ ðdg;1; . . . ; dg;ng
Þ of

gene g (shown in Fig 1A), that is,

dg;i ¼ rg;i=�rg ; i ¼ 1; � � � ; ng : ð2Þ

Our dataset D ¼ fðxg ; dgÞ; g 2 Gg consists of the mRNA sequence xg 2 Cng of each gene g
as well as its corresponding ribosome density distribution dg 2 R

ng , where G stands for the set

of genes. Here, xg starts with the start codon (i.e., xg,1 = ATG) and ends with one of the three

stop codons (i.e., xg;ng 2 fTAA;TAG;TGAg). Our goal is to predict the ribosome density dis-

tribution dg given an input mRNA sequence xg.

The RiboMIMO framework

The name “MIMO” in our RiboMIMO approach refers to the multi-input and multi-output

framework for modeling ribosome density distributions, which is a specially designed charac-

teristic for our task. The RiboMIMO architecture is shown in Fig 1B, which can be divided

into three modules. First, the input mRNA sequence of a gene is fed into the encoding module

and converted into machine readable codes. Then, in the feature embedding module, a deep

neural network learns a context-aware feature representation for each codon based on the

global information of the full-length CDS sequence. Finally, the learned feature representa-

tions are taken as input to a dual-task module, which includes a classification task and a regres-

sion task by a parameter-sharing single-layer neural network, to predict the ribosome density

distributions.

There are three advantages of our RiboMIMO method over existing prediction methods.

First, unlike most of previous methods [9, 12], which only consider short sequence fragments

(i.e., about 10–12 codons, roughly the length of ribosome footprints), RiboMIMO takes the

full-length CDS as input. Through this way, RiboMIMO learns the contextual-aware feature

representation for each codon based on the global information of the entire CDS sequence,

which can thus greatly enhance the expressiveness of codon features. Second, RiboMIMO

regards the ribosome density distribution of a whole gene as a training sample rather than the

single ribosome density at a certain position. By regarding multiple outputs (i.e., ribosome

densities of all the codons within a CDS sequence) as a whole, RiboMIMO considers the corre-

lations between ribosome densities of adjacent codons. This multi-output setting is closer to

PLOS COMPUTATIONAL BIOLOGY Full-length ribosome density prediction by a multi-input and multi-output model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008842 March 26, 2021 4 / 25

https://doi.org/10.1371/journal.pcbi.1008842


the real situation compared with the single-output setting, because the latter generally implic-

itly assumes that the ribosome densities at two distinct positions are independently distributed,

regardless of their distance or adjacency. Finally, the multi-input and multi-output setting

enables RiboMIMO to model the contribution of any codon in a CDS sequence to the pre-

dicted ribosome density of any other codon from ribosome profiling data. Based on this

modeling capacity of RiboMIMO, we also define a new metric called codon impact score (CIS)

to analyze and interpret the influencing patterns between any two codons within a transcript

(Fig 1C).

More detailed descriptions of our RiboMIMO framework can be found in the following

sections. For the purpose of simplicity and clarity, we will ignore the subscript g in the remain-

ing part of this paper.

Sequence encoding

Codons are triplets of nucleotides (e.g., ATG) with 64 combinations consisting of A, C, G and

T. Here, we use the one-hot encoding scheme to encode the codon features of mRNA

sequences. More specifically, we use zðcodonÞi 2 f0; 1g
64

to denote the one-hot encoding of

codon xi. However, the one-hot encoding scheme is not able to capture the editing distances

Fig 1. Overview of the RiboMIMO pipeline. (A). Schematic illustration of the input ribosome profiling data. The ribosome protected fragments were

first sequenced and then aligned to the genome. Next, the ribosome densities are obtained after eliminating the bias of mRNA abundance levels. After

that, the ribosome densities are categorized into three classes, including “fast”, “slow” and “pausing”. Both the ribosome densities dg and the

corresponding discretized labels d̂ g are used as the output targets of our model while the CDS sequence xg is used as the input. (B). The RiboMIMO

architecture, which includes encoding, feature embedding and dual-task modules. The feature embedding module employs a deep neural network to

learn a context-aware feature representation for each codon based on a message propagation mechanism along the input full-length CDS sequence

through a bi-directional gated recurrent unit (Bi-GRU) network, followed by a fully connected network. The dual-task module consists of two sub-

modules, one is a basic regression task by a parameter-sharing single-layer neural network, while the other is a classification task by another parameter-

sharing single-layer neural network. (C). The codon impact score (CIS) introduced by our RiboMIMO framework for measuring the contribution of a

codon feature to the predicted ribosome density of the A site of another codon position within the CDS, or specific impact of any codon pair to the

elongation rate of the transcript. (D). The positional notation for regions of a CDS sequence relative to the ribosomal A site. The region of ribosome

footprints near the A site is denoted as “center”, with a length of 10 codons ranging from −5 to + 4 positions, where the index of the A site is 0. The rest

of the CDS sequence is separated into “left” and “right” regions, which range from the start codon to −6 position at 50 end, and + 5 position to the stop

codon at 30 end, respectively.

https://doi.org/10.1371/journal.pcbi.1008842.g001
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among codons. For example, the editing distance between AGA and AGG is closer than that

between AGA and TCG, which unfortunately cannot be represented by the one-hot encodings

of codons. In addition, the relations between codons and the corresponding encoded amino

acids are not considered in one-hot encoding of codons. Although the information of nucleo-

tides and amino acids can be implicitly represented by codon encodings, it can not guarantee

that these correspondences can be captured from the data. To address these issues, we intro-

duce an additional nucleotide encoding zðntÞi 2 f0; 1g
4�3

and an amino acid encoding

zðaaÞi 2 f0; 1g
21

. The nucleotide encoding is obtained by concatenating three one-hot encodings

of four nucleotide types (i.e., A, T, C and G), while the amino acid encoding is derived through

one-hot encodings of 20 amino acids and stop codons. Overall, the final encoding of codon xi
is represented by

zi ¼ ½z
ðcodonÞ
i ; zðntÞi ; zðaaÞi � 2 R97; ð3Þ

where [�] stands for the concatenation operator.

Context-aware codon feature representation by deep neural networks

After the encoding module, the feature representations of codons are further embedded

through a deep neural network module, which consists of a message propagation network for

information gathering and distributing, and a fully connected network for further feature

extraction.

Our model aims to capture the contextual patterns that are crucial for regulating the ribo-

some elongation rates. To achieve this goal, RiboMIMO first employs a two-layer bi-direc-

tional gated recurrent unit (Bi-GRU) network [21] to perform message propagation in both

forward and backward directions along the input sequence. GRUs can memorize and extract

useful information from previous inputs, and then update the current state, which allows the

influence of any contextual determinants to be successfully delivered to distant locations along

the sequence. The bi-directional setting further enhances the modeling of such influence.

Unlike previous models [9, 12], which mainly focus on local contexts near the ribosome A site

and ignore the possible influence from remote codons, here, our model takes the full-CDS

sequence as input and learns a context-aware feature representation of the whole transcript for

each codon. Under the RiboMIMO framework, each codon can contribute to the hidden states

of GRUs through feature updating and influence the feature representations of other codons

by message passing. More specifically, for a single forward directional GRU, the hidden state

hðforwardÞi of codon at position i is updated as the summation of the hidden state of its previous

codon hðforwardÞi� 1
and the output of new gate ni, weighted by a update gate ui. Here, the output of

new gate ni is the combination of current input zi after a linear layer and the previous hidden

state hðforwardÞi� 1
, whose contribution is determined by a reset gate ri, followed by a hyperbolic tan-

gent activation function. That is,

hðforwardÞi ¼ ui � h
ðforwardÞ
i� 1

þ ð1 � uiÞ � ni; ð4Þ

ni ¼ tanhðWzn � zi þ ri � ðWhn � h
ðforwardÞ
i� 1

ÞÞ; ð5Þ

ri ¼ sðWzr � zi þWhr � h
ðforwardÞ
i� 1

Þ; ð6Þ

ui ¼ sðWzu � zi þWhu � h
ðforwardÞ
i� 1

Þ; ð7Þ
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where � stands for the Hadamard product, tanh stands for the hyperbolic tangent function and

σ stands for the sigmoid function. Here we ignore the bias terms of the linear layers for clarity.

The hidden states of the backward direction can be obtained in the similar way.

The hidden states of the Bi-GRU network are the concatenations of both forward and back-

ward states, that is,

hð1Þi ¼ ½h
ðforwardÞ
i ; hðbackwardÞi �: ð8Þ

In addition, we use two layers of Bi-GRUs, in which the hidden state of the first recurrent

layer hð1Þ ¼ ðhð1Þ
1
; . . . ; hð1Þn Þ is the input to the second layer. That is,

hð2Þ ¼ Bi-GRUðhð1ÞÞ: ð9Þ

Here, the hidden states h(2) learned by the Bi-GRUs generally contain feature information

from codons elsewhere, and need to be converted into feature representations within a com-

mon space for the down-stream tasks. This is realized by a parameter-sharing single-layer fully

connected neural network with a rectified linear unit (ReLU) activation function. That is, the

final context-aware feature representation of the codon at position i in our framework is

defined as

hi ¼ ReLUðW fc � h
ð2Þ
i Þ; ð10Þ

where Wfc stands for the learnable weight parameter for the fully connected neural network.

The dual-task module

RiboMIMO captures the relations of translation elongation rates between neighboring codons

through a dual-task objective, i.e., with a regression task and a classification task. The targets of

the two tasks are both to predict the ribosome density distributions, only using discretized

labels for the classification task.

Here, we discretized the ribosome densities into different classes. The distribution of ribo-

some densities was close to Gaussian in log scale and thus we determined the thresholds for

discretization using different numbers of standard deviations derived from the plotted distri-

bution (S2 Fig). In particular, we discretized the ribosome densities into three classes, and the

thresholds of discretization are selected according to the average density (μ) and the average

density plus two standard deviations (μ + 2σ), calculated from all the training data. The codons

with ribosome densities below average (<μ) are labeled as “fast”, while those above average

(�μ) are labeled as “slow”. In addition, those codons with ribosome densities higher than

μ + 2σ are regarded as “pausing”, that is,

d̂ i ¼

fast di < m;

slow m � di < mþ 2s;

pausing mþ 2s � di;

8
>>><

>>>:

ð11Þ

where d̂ i stands for the discretized ribosome density. Such a threshold was also used in a previ-

ous study [11]. Noted that we did not use a threshold of μ − 2σ because we care more about

positions with slow ribosome elongation rates than those with fast rates.

For both regression and classification tasks in the dual-task module, RiboMIMO uses linear

projections of the feature representation h to predict the ribosome density for each codon, that
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is,

yi ¼Wreg � hi; ð12Þ

ŷl
i ¼W l

cls � hi; l 2 ffast; slow; pausingg; ð13Þ

where yi stands for the predicted ribosome density, ŷl
i stands for the unnormalized log-proba-

bility of discretized ribosome density with label l, Wreg and W l
cls stand for the learnable weight

parameters for the regression and classification task, respectively.

All the parameters of RiboMIMO are optimized by minimizing a regression loss LðregÞ and a

classification loss LðclsÞ simultaneously, that is,

L ¼
1

n

Xn

i¼1

ðdi � yiÞ
2

" #

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
LðregÞ

þ a �
1

n

Xn

i¼1

�
X

l

Iðd̂ i ¼ lÞ � ŷ l
i þ log

X

l

exp ðŷl
iÞ

 !" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
LðclsÞ

ð14Þ

where LðregÞ stands for the mean squared error loss in the regression task, LðclsÞ stands for the

cross-entropy loss in the classification task, and α stands for a weighting factor for balancing

the two losses. We used a value of 1.0 for α here.

Codon impact score

To provide the interpretability of RiboMIMO, we also define a new metric named the codon

impact score (CIS) measuring the impact of codon feature at position i to the predicted ribo-

some density at position j within the same gene, that is,

CISi;j ¼
@yj
@zi

; ð15Þ

where zi stands for the input of the codon feature at position i and yj stands for the predicted

ribosome density of the codon at position j by RiboMIMO. Note that here the CIS is defined

as the first order partial derivatives of individual output variables with respect to individual

input variables, which has been popularly used in the computer vision community [22]. Here

the CIS can also be regarded as the first order estimation of the Taylor expansion of our

model, that is,

yj ¼
X

i

@yj
@zi
� zi þ oðzÞ �

X

i

CISi;j � zi; ð16Þ

where o(z) stands for an infinitesimal of higher order. In this view, the ribosome density can

be estimated by computing the accumulation effect of CIS values along the CDS region, and

the CIS of each input codon thus measured its corresponding contribution to the prediction.

Basically, the CIS can be used to measure the impact of a codon of interest to the predicted

density of any other codon within the same gene regardless of the distance and direction. This

is also enabled by the particular end-to-end design of the RiboMIMO architecture in which an

input variable can contribute to any output variable. The CIS-related analyses in this paper

were performed using the same trained model for each dataset.
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Results

RiboMIMO accurately predicts ribosome densities from full-length CDS

sequences

We tested RiboMIMO on four datasets from the E.coli and S.cerevisiae species, respectively.

For each dataset, we performed a cross-validation procedure by randomly splitting the genes

into 10 folds to assess the generalization capacity of our method. In each fold, one subset of the

data was held out as test data while the remaining nine folds were used as training data. We

left out 1/10 of training data as the validation set for determining the early stop criterion. To

evaluate the performance of our model, we used the Pearson’s correlation coefficients to mea-

sure the correlations between the predicted ribosome densities vs. the experimentally mea-

sured values. We also calculated the gene-wise correlations by collecting the predicted and

measured ribosome densities for individual genes in the test set at each cross-validation. The

prediction results of several example genes can be found in S3 Fig.

We first compared our method with other ribosome density prediction approaches, includ-

ing a statistical based method RUST [9], a wavelet decomposition based method riboShape

[10] and a machine learning based method iXnos [12]. Our comparison results showed that

RiboMIMO can significantly outperform the state-of-the-art baseline methods, with an

increase of 5.79%, 7.60%, 3.73% and 3.64% compared to the best baseline iXnos upon gene-

wise correlations on the Mohammad16, Subtelny14, Mohammad19-1 and Mohammad19-2

datasets, respectively (Table 1 and S4 Fig).

In the above comparison results, all the baseline methods were trained and evaluated with

the same random train/test splitting fashion. For riboShape, we selected the component of

wavelet decomposition with the highest similarity with the original data, and used the results

of the asymmetry kernel scheme, which was the best among the three methods proposed in the

original paper [10]. For RUST and iXnos, we used the input sequences with a window size of

Table 1. Performance evaluation of different prediction methods, measured in terms of the Pearson’s correlation coefficient.

Methods Dataset

Mohammad16 Subtelny14 Mohammad19-1 Mohammad19-2

riboShape 0.4308 ± 0.1117 (����) 0.3892 ± 0.0993 (����) 0.3312 ± 0.1299 (����) 0.2879 ± 0.1160 (����)

RUST 0.5700 ± 0.1279 (����) 0.4151 ± 0.1047 (����) 0.5622 ± 0.1343 (����) 0.5775 ± 0.1308 (����)

iXnos 0.6325 ± 0.1084 (����) 0.5625 ± 0.1008 (����) 0.6333 ± 0.1282 (����) 0.6573 ± 0.1271 (����)

RiboMIMO 0.6904 ± 0.1112 0.6385 ± 0.0997 0.6706 ± 0.1353 0.6937 ± 0.1345

w/o nt & aa 0.6750 ± 0.1142 (����) 0.6312 ± 0.1021 (����) 0.6674 ± 0.1342 (����) 0.6885 ± 0.1349 (����)

w/o nt 0.6892 ± 0.1126 (��) 0.6351 ± 0.1007 (����) 0.6683 ± 0.1318 (����) 0.6897 ± 0.1352 (����)

w/o aa 0.6867 ± 0.1142 (����) 0.6345 ± 0.1014 (����) 0.6706 ± 0.1339 (ns) 0.6935 ± 0.1353 (ns)

w/o dual-task 0.6791 ± 0.1135 (����) 0.6263 ± 0.1005 (����) 0.6651 ± 0.1348 (����) 0.6833 ± 0.1346 (����)

10-fold cross-validation through randomly splitting genes into training and test sets was performed on the four datasets to assess the performance of each method. The

gene-wise correlations were computed by comparing the predicted and measured ribosome densities for individual genes in the test set at each 10-fold cross-validation.

The mean ± SD of the gene-wise Pearson’s correlation coefficients across the whole dataset are shown. Significant levels from Friedman tests with Dunn’s multiple

comparison correction are shown in the parentheses. The statistical tests were conducted by comparing different baseline methods or the RiboMIMO model without

certain modules with the original RiboMIMO model.

����: P< 0.0001,

���: P< 0.001,

��: P< 0.01,

�: P< 0.05,

ns: not significant. nt and aa stand for nucleotide encoding and amino acid encoding, respectively. The best results are shown in bold.

https://doi.org/10.1371/journal.pcbi.1008842.t001
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12 mainly because this selection covered the whole ribosome footprints and it was shown to be

an optimal choice in the original papers. We used the best hyperparameter settings as men-

tioned in the original papers, such as learning rate, optimizer, dropout rate and gradient clip-

ping. For RiboMIMO, we implemented the framework using PyTorch [23], a popularly used

open-source machine learning library. The detailed settings of the architecture and hyperpara-

meters can be found in S2 Table.

We also performed ablation studies on the feature encoding and dual-task training to vali-

date the contributions of the two modules to the performance of ribosome density prediction.

We first removed the nucleotide encoding and the amino acid encoding (i.e., using only codon

encoding) and retrained our model (denoted as “w/o nt & aa”). The results of removing either

nucleotide encoding (denoted as “w/o nt”) or amino acid encoding (denoted as “w/o aa”) were

also evaluated. As shown in Table 1, we observed a significant decrease of 1.54%, 0.73%, 0.32%

and 0.52% upon gene-wise correlation without nucleotide encoding and amino acid encoding

on the Mohammad16, Subtelny14, Mohammad19-1 and Mohammad19-2 datasets, respec-

tively. The performance without either nucleotide encoding or amino acid encoding also

decreased to some extent, indicating the necessarity of incorporating all the encodings. We

also examined the results after removing the classification task in the dual-task module and

using only the regression loss for training (denoted as “w/o dual-task”). We observed a

decrease of 1.13%, 1.22%, 0.55% and 1.04% upon gene-wise correlation without dual-task

training on the four datasets, respectively. Thus, the classification task in our dual-task module

can improve the performance of the regression task. Here, the introduction of the classification

task can be thought as a kind of multi-task learning. Optimizing diverse but correlated tasks

simultaneously could improve their performance compared with learning them individually.

More specifically, in the regression task, the labels of ribosome densities were normalized

within each gene. Here, the ribosome densities from different genes may exhibit diverse distri-

butions. On the other hand, for the labels in the classification task, though they were discre-

tized from the same labels in the regression tasks, the discretization thresholds were obtained

by referring to the distributions of all the genes in the training set, i.e., with the consideration

of global information of the whole training dataset. In addition, the classification loss may

bring a regularization effect as both tasks (i.e., regression and classification tasks) took the

same feature representations as input and updated the shared parameters through back-propa-

gation. Therefore, in principle, the performance of the regression task can be improved by

introducing the classification loss.

More results on the robustness of our model to different evaluation metrics, genomic/

sequencing factors, sequence similarities, hyperparameters, and cross-dataset evaluation can

be found in the supplementary information (S1 Text).

RiboMIMO detects the contributions of remote codons to the predicted

ribosome density of current A site

One major improvement of RiboMIMO over previous prediction methods is that it can model

the ribosome density distribution at full-length CDS level. Most of the previous computational

models focus on local sequence features centered at the ribosomal A sites with a length of

about 10–12 codons or slightly higher, and ignored the remote influence. In this section, we

demonstrated, for the first time (to the best of our knowledge), how input lengths influence

the ribosome density predictions. In particular, we truncated the whole CDS into fragments

with different lengths and fed them into the RiboMIMO model for training and then com-

pared the corresponding performance with that of the original full-length input setting. Noted

that RiboMIMO can take input with arbitrary lengths and make prediction for each codon
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position. Thus, the truncated sequences can be directly used as training data without modify-

ing the model architecture. We trained the RiboMIMO models separately using the truncated

sequences with lengths ranging from 8 to 128 codons, and evaluated their performances using

full-length coding sequences as test data (Table 2). We observed that with the increase of the

lengths of the input sequences, the prediction performance significantly improved and reached

the highest when taking the full-length CDS as input. This result proved that the remote

codons may have the potential to influence the ribosome densities, and modeling the transla-

tion elongation speed in a full-length CDS scheme can be of great benefit to the ribosome den-

sity prediction.

To further reveal how the sequence patterns of remote codons contribute to the predicted

ribosome density of a specific codon, we compared the performance of our models with and

without using the input features from the remote codon regions. More specifically, we sepa-

rated the CDS sequence into three regions named “center”, “left” and “right” based on their

relative positions with respect to the ribosomal A site (Fig 1D). The “center” region (with a

length of 10 codons ranging from positions −5 to + 4 around the A site) is generally regarded

the most crucial for ribosomal A site decoding. Here, we further evaluated the contributions of

the remaining parts of the CDS sequence, namely “left” region (from start codon to position

−6 at 50 end) and “right” region (from position + 5 to stop codon at 30 end), by measuring the

performance after removing these specific regions as input. We observed that the remote

regions of both “left” and “right” regions can indeed affect the prediction performance of ribo-

some densities at the A sites, with a decrease of 5.57%, 2.90%, 6.37% and 5.44% in the Pearson’s

correlation coefficients on the four datasets, respectively (Table 3). Therefore, the codons

located at remote positions can influence and contribute to the prediction of ribosome densi-

ties, indicating the necessity and superiority of modeling ribosome density distributions at

full-CDS level. Interestingly, codons at the “left” regions seemed to display a more important

role in ribosome density prediction, with a decrease of performance by about 3.78%, 2.17%,

5.37% and 5.22% for the four datasets, respectively, compared to those codons at the “right”

regions, with a decrease of performance by about 1.57%, 0.17%, 0.26% and 0.05% for the four

Table 2. Performance evaluation of RiboMIMO with different CDS lengths as input, measured in terms of Pearson’s correlation coefficient.

Input CDS length Dataset

Mohammad16 Subtelny14 Mohammad19-1 Mohammad19-2

8 0.6553 ± 0.1030 0.5682 ± 0.0987 0.6209 ± 0.1400 0.6656 ± 0.1349

16 0.6724 ± 0.1058 (����) 0.5858 ± 0.0969 (����) 0.6275 ± 0.1397 (����) 0.6765 ± 0.1355 (����)

32 0.6837 ± 0.1096 (����) 0.5985 ± 0.0965 (����) 0.6352 ± 0.1383 (����) 0.6812 ± 0.1353 (����)

64 0.6903 ± 0.1101 (ns) 0.6147 ± 0.0994 (����) 0.6529 ± 0.1314 (����) 0.6855 ± 0.1359 (����)

128 0.6905 ± 0.1073 (ns) 0.6289 ± 0.0994 (����) 0.6613 ± 0.1346 (����) 0.6882 ± 0.1355 (����)

full 0.6938 ± 0.1100 (ns) 0.6385 ± 0.0997 (����) 0.6706 ± 0.1353 (����) 0.6937 ± 0.1345 (����)

10-fold cross-validation through randomly splitting genes into training and test sets was performed on the four datasets to assess the performance of the model with

each input CDS length. The gene-wise correlations were computed by comparing the predicted and measured ribosome densities for individual genes in the test set at

each 10-fold cross-validation. The mean ± SD of the gene-wise Pearson’s correlation coefficients across the whole dataset are shown. Significant levels from Friedman

tests with Dunn’s multiple comparison correction are shown in the parentheses. The statistical tests were conducted by comparing each group (e.g., with input CDS

length of 16) with the previous group (e.g., with input CDS length of 8).

����: P< 0.0001,

���: P< 0.001,

��: P< 0.01,

�: P< 0.05,

ns: not significant.

https://doi.org/10.1371/journal.pcbi.1008842.t002
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datasets, respectively. Such an observation was in accordance with the fact that mRNAs are

read from the 50 to 30 direction by ribosomes [24]. The effects of distant codons on the pre-

dicted ribosome density may be explained by the accumulated effect of the translation process,

such as the overall dwell time spent in the previous steps during elongation, which may acti-

vate the mRNA degradation mechanism [25] and thus influence the ribosome distribution of

the successive part of the sequence.

RiboMIMO extracts the distance related patterns for predicting ribosome

densities

To quantify the pair-wise contribution from the input codon at position i to the predicted

ribosome density of the output codon at position j, we calculated the codon impact score CISi,j

for codon pair (xi, xj) as defined in Eq (15). The absolute value of a CIS refers to the strength of

the corresponding relation, while the sign indicates whether the input codon positively or neg-

atively influences the predicted ribosome density of the output codon. The CIS values can be

considered the interpreters of the trained RiboMIMO model and thus provide the underlying

contextual patterns and rules for understanding the translation elongation process.

We first calculated the contributions of distances for the predicted ribosome densities. Sup-

pose that the relative distance of a codon pair (xi, xj) is denoted by d = i − j. Then the contribu-

tion CISd for distance d is defined as,

CISd ¼
P

i;jjCISi;jj � Iði � j ¼ dÞ
P

i;jIði � j ¼ dÞ
: ð17Þ

Here, a CISd value with a positive d refers to the contribution from the 30 direction, while a

CISd value with a negative d refers to that from the 50 direction.

We observed a significantly high enrichment of the contributions at those codons near A

sites on both E.coli and yeast datasets (Fig 2). This was consistent with the previous finding

that the codon features around the A site generally dominate the prediction of ribosome den-

sity [12]. Although the contributions shrunk along with the distances at both directions, we

observed that those codons located far from the ribosomal A site can still influence the

Table 3. Performance evaluation of RiboMIMO with different CDS regions as input, measured in terms of Pearson’s correlation coefficient.

Input CDS region Dataset

Mohammad16 Subtelny14 Mohammad19-1 Mohammad19-2

center+left+right 0.6938 ± 0.1100 0.6385 ± 0.0997 0.6706 ± 0.1353 0.6937 ± 0.1345

center+left 0.6781 ± 0.1131 (����) 0.6368 ± 0.1010 (�) 0.6680 ± 0.1357 (���) 0.6932 ± 0.1343 (ns)

center+right 0.6560 ± 0.1127 (����) 0.6168 ± 0.1016 (����) 0.6169 ± 0.1361 (����) 0.6415 ± 0.1315 (����)

center 0.6381 ± 0.1165 (����) 0.6095 ± 0.1035 (����) 0.6069 ± 0.1402 (����) 0.6393 ± 0.1313 (����)

10-fold cross-validation through randomly splitting genes into training and test sets was performed on the four datasets to assess the performance of each input region.

The gene-wise correlations were computed by comparing the predicted and measured ribosome densities for individual genes in the test set at each 10-fold cross-

validation. The mean ± SD of the gene-wise Pearson’s correlation coefficients across the whole dataset are shown. Significant levels from Friedman tests with Dunn’s

multiple comparison correction are shown in the parentheses. The statistical tests were conducted by comparing the RiboMIMO models using parts of the CDS regions

as input with that using full-length CDS regions. The notations of CDS regions (i.e., “center”, “left” and “right”) are defined in both Fig 1D and main text.

����: P< 0.0001,

���: P< 0.001,

��: P< 0.01,

�: P< 0.05,

ns: not significant.

https://doi.org/10.1371/journal.pcbi.1008842.t003
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Fig 2. Contributions of the codon features at different distances to the predicted ribosome densities measured by

the codon impact score (CIS) on the Mohammad19-1 (E.coli) (A and D) and the Subtelny14 (S.cerevisiae) (B and

E) datasets. (A–B). The average contributions of input codons to the predicted ribosome density of current codon

with respect to the relative distances on the Mohammad19-1 (A) and the Subtelny14 (B) datasets. The horizontal axis

stands for the offset from the input codon to the A site of current codon, where a positive value stands for the 30

direction while a negative value stands for the 50 direction. The solid line refers to the average CISd values while the

shaded region stands for the scope of one standard deviation. (C). Case study for gene YGL216W in S.cerevisiae of the

Subtelny14 dataset, in which the CISi,j values of different positions with respect to the predicted ribosome density of

the codon at position j = 309 are shown. The horizontal axis is the offset of the codon at position i relative to the codon

at position j = 309. (D–E). The zoomed-in contributions of those codons near the ribosomal A sites on the

Mohammad19-1 (D) and the Subtelny14 (E) dataset. The blue shaded regions in (D) and (E) stand for the ribosome

protected regions of the mRNA sequence.

https://doi.org/10.1371/journal.pcbi.1008842.g002
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predicted ribosome density through a long distance (Fig 2C and the shaded regions of SD in

Fig 2A and 2B and S5A and S5B Fig). The long-tailed distribution of the contributions from

long distances suggested that although such a kind of remote influence was relatively rare, it

indeed existed. This phenomenon was also consistent with the results shown in the previous

section that the prediction performance of ribosome densities can be improved by increasing

the input CDS length.

Next, we focused on the regions near the ribosomal A sites (i.e., ribosome protected

regions), to further examine the contributions of individual positions at single-codon resolu-

tion (Fig 2D and 2E and S5C and S5D Fig). The ribosomal A site has been known as the most

crucial position in determining the ribosome densities, where the tRNA is recruited and recog-

nized. The time required for selecting a correct tRNA during A site decoding greatly contrib-

utes to the overall translation elongation speed [2]. We observed that the contribution of the A

site codon was the highest among all the positions on the Subtelny14 dataset of yeast, while the

other codons inside the ribosome protected region also played an important role in predicting

ribosome densities (Fig 2E). Similar patterns were also observed on two Mohammad19 data-

sets of E.coli (Fig 2D and S5D Fig). However, on the Mohammad16 dataset, the codon at the E

site seemed to be more important than that at the A site and there was a valley at the center of

the ribosome protected region (S5B Fig). One possible explanation was that, during cell lysis of

ribosome profiling experiments of the Mohammad16 dataset, chloramphenicol (Cm) is added

to the lysis buffer [13], which has been shown to cause the E site pausing [14]. By using the

optimized pre-treatment and filtering protocols, the E site signals observed on the Moham-

mad16 dataset did not appear on the two Mohammad19 datasets, indicating that these signals

could be due to the artifact caused by the experimental bias.

RiboMIMO identifies the factors affecting translation elongation rates at

both codon and amino acid levels

Codon usage bias has been widely believed to be one of the major determinants of translation

efficiency [26]. A rare codon generally means a low abundance level of the corresponding ami-

noacyl-tRNA (i.e., the corresponding amino acid loaded tRNA). Thus more likely it will cost

more time for the ribosome to upload the correct amino acid. We used the codon adaptation

index (CAI) [27] to measure the relative codon usage bias from endogenous genes. A codon

with a higher CAI refers to a higher usage frequency compared to its synonymous codons

encoding the same amino acid, while a codon with a lower CAI refers to a rare one, which is

more likely to cause a slow elongation rate. Therefore, codon usage bias scores are supposed to

correlate with the ribosome densities. tRNA adaptation index (tAI) is another measure of the

decoding rate of translation elongation, which is also supposed to associate with the ribosome

densities. Other biological factors that are likely to have associations with the translation elon-

gation rates were also included in our analyses, such as GC content, local folding energy and

amino acid hydrophobicity.

Here, the Mohammad19-1 and the Mohammad19-2 datasets were biological replicates,

therefore we only selected the Mohammad19-1 and the Subtelny14 datasets for our analyses.

The CAI value for each codon type was calculated using all the genes in the datasets, according

to its definition [27]. The tAI value for each codon type was collected from [4]. The GC con-

tent for each codon was computed directly. The folding energies of mRNA sequences with a

sliding window of 60 nucleotides (i.e., 20 codons) were computed using the RNAfold software

in the ViennaRNA package [28]. The hydrophobicity scales were obtained from [29]. The ribo-

some densities were predicted using the RiboMIMO model and then averaged for each codon

type. To investigate the impacts of single codon types on translation elongation dynamics
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learned by RiboMIMO, we also defined a new metric for each codon type c, denoted by CISc,�,

that is,

CISc;� ¼
P

i;jjCISi;jj � Iðxi ¼ cÞ
P

i;jIðxi ¼ cÞ
: ð18Þ

Our analysis results demonstrated that there existed significant correlations of the codon

usage bias with both ribosome densities and CISc,� values derived from RiboMIMO (Fig 3) on

the Subtelny14 dataset in yeast, suggesting that our RiboMIMO framework was able to extract

the codon-level characteristics for predicting translation elongation rates. More specifically,

we observed that CGA, CGG and CCG were among the top three codon types with the highest

CISc,� values and relatively low CAI or tAI values, indicating that our approach was able to

Fig 3. Correlations of ribosome densities and codon impact scores CISc,� at the A sites with codon adaptation

index (CAI) (A–B) and tRNA adaptation index (tAI) (C–D) for the Subtelny14 dataset. (A). Scatter plots of

averaged predicted ribosome densities and CAI scores for individual codon types. (B). Scatter plots of CISc,� values in

log scale and CAI scores for individual codon types. (C). Scatter plots of averaged predicted ribosome densities and tAI

scores for individual codon types. (D). Scatter plots of CISc,� values in log scale and tAI scores for individual codon

types. scc and pcc stand for the Spearman’s correlation coefficient and the Pearson’s correlation coefficient,

respectively. In panel (B) and (D), the rare codons CGA, CGG and CCG are labeled in red.

https://doi.org/10.1371/journal.pcbi.1008842.g003
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capture the influence of rare codons. In particular, we observed that CGA was the codon with

the highest CISc,� score among all the rare codons, which was consistent with the previous

studies that this codon has a strong inhibitory effect in controlling translation efficiency in

yeast [30].

We noticed that the associations of the CAI or tAI with the ribosome densities in E.coli
were weak (S6A, S7A and S7C Figs), which is consistent with the previous literatures [31, 32].

Although another study observed a certain level of correlation between the decoding time and

tAI in E.coli [33], we suggested that this could be due to the bias between different experiments

in ribo-seq and tAI measurement. In S6B Fig, we observed that six codon types (TCA, TCG,

TCC, TCT, AGT and AGC) with the highest CISc,� values were all serine encoding codons. Ser-

ine has been reported as a toxic amino acid for bacterias, and the levels of the corresponding

aminoacyl-tRNAs are the lowest (<10%) among all tRNA types due to the competition with

L-serine-deaminase [34]. This was also probably caused by the same reason previously men-

tioned in the last section that the E.coli dataset may bias towards the E site pausing resulted

from chloramphenicol treatment [14]. Note that all six serine encoding codons had high CISc,�

values regardless of codon usage bias, suggesting that the RiboMIMO framework can extract

additional determinants of ribosome densities other than codon usage bias at amino acid level.

For the associations with other biophysical factors, we observed positive correlations of

ribosome densities and CIS with GC content in both datasets (S7E–S7H Fig), which suggested

that the codons with higher GC content tended to have higher ribosome densities and contrib-

uted more to the ribosome density prediction. We also observed that the CIS values obtained

by our model were weakly and negatively correlated with the folding energies (S7J and S7L

Fig), and the sequences with lower folding energies (i.e., more stable secondary structures)

were more likely to have influence on the predicted ribosome densities. This was consistent

with the known fact that the secondary structures of mRNA can reduce the elongation rates

[35]. We noticed that a higher GC content may also be associated with a lower folding energy

(with Spearman’s correlation −0.13 in our datasets). Therefore the influence of these two fac-

tors (i.e., GC content of the codon and local folding energy) may be correlated with each other

to some extent. We also observed that the CIS was negatively correlated with the amino acid

hydrophobicity in yeast though no correlation was observed in E.coli (S7M–S7P Fig). This

result was also consistent with the previous study showing that a higher hydrophobicity is usu-

ally correlated with a higher elongation rate [36].

In summary, our RiboMIMO model and the defined codon impact score (CIS) can success-

fully detect the meaningful influencing factors that are associated with the translation elonga-

tion rates at both codon and amino acid levels.

RiboMIMO captures combinatorial effects of codon and position

information

To investigate the combinatorial contributions of both codon and position information, we

also define the codon impact scores CISc,d for codon type c located at distance d from the ribo-

somal A site, that is,

CISc;d ¼
P

i;jCISi;j � Iðxi ¼ cÞ � Iði � j ¼ dÞ
P

i;jIðxi ¼ cÞ � Iði � j ¼ dÞ
: ð19Þ

For the Subtelny14 dataset of S.cerevisiae, we noticed that the rare codons including

CGA, CGG and CCG had significant enrichment of the CIS values in the A sites. The CGA

codon was also observed to have a great effect on the predicted ribosome densities at the P

sites (Fig 4B). These findings agreed well with the previous results [12] that these three rare
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codons play important roles in predicting ribosome densities at the A sites. The phenome-

non that the CGA codons at the P sites greatly influenced the ribosome elongation rates may

be explained by the potential I-A wobble base paring which possibly slows down the transla-

tion speed [30].

For the Mohammad16 dataset of E.coli, we observed high impact scores of inhibition at the

ribosomal E sites for all the codons encoding the three amino acids including serine (S), gly-

cine (G) and alanine (A) (S8A Fig). This pattern was consistent with the previous results that

the ribosome densities for these three amino acids at the E sites are generally higher than those

at the A sites [14]. In particular, these three amino acids all have small side chains (−CH2OH

for serine, −H for glycine and −CH3 for alanine), which may allow the binding of chloram-

phenicol (an elongation inhibitor added in the lysis buffer in the current ribosome profiling

protocol [37]) much easier to the active site of the ribosome [38]. The two Mohammad19 data-

sets of E.coli, in comparison, were not treated with chloramphenicol and were directly pro-

cessed using flash-freezing, and thus should not be biased by the experimental protocols. We

observed that the signals of serine (S), glycine (G) and Alanine (A) at the E sites in the Moham-

mad16 dataset did not appear in the Mohammad19 datasets (Fig 4A and S9 Fig B), which sug-

gested that these signals were probably due to the bias introduced by experimental protocols

and our new findings on the improved datasets should provide convincing and useful insights

toward understanding the translation elongation dynamics. This finding suggested that the

RiboMIMO framework can capture the unusual behaviors hidden in the measured ribosome

densities, and thus provide a useful tool for analyzing ribosome profiling data.

Fig 4. The codon-distance impact score (CISc,d) values measuring the contributions of codon type c at distance d to the predicted ribosome

densities of the current A site for the Mohammad19-1 (A) and Subtelny14 (B) datasets, respectively. The horizontal axes represent the codon types

and vertical axes represent the positions relative to the ribosomal A sites. Only positions within the ribosome protected region (i.e., ranging from −5 to

+ 4 codons relative to the A sites) are shown. The positive values (red) of CISc,d refer to inhibition in translation efficiency, while the negative values

(blue) refer to promotion.

https://doi.org/10.1371/journal.pcbi.1008842.g004
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We further defined the codon impact scores CISaa,d for amino acid species aa located at dis-

tance d from the ribosomal A site, that is,

CISaa;d ¼
P

i;jCISi;j � Iðxi ¼ aaÞ � Iði � j ¼ dÞ
P

i;jIðxi ¼ aaÞ � Iði � j ¼ dÞ
: ð20Þ

As shown in S8C–S8F Fig, the amino acid level CIS could provide a closer look of the con-

tribution landscapes associated with each amino acid species. In addition to the proline (P)

and arginine (R) highlighted on the Subtelny14 dataset, tryptophan (W) also had high influ-

ence on the ribosome densities (S8 Fig D). This may be explained by the fact that TGG is the

only codon encoding tryptophan, while other amino acids generally have multiple synony-

mous codons, most of which are associated with faster elongation rates.

In a word, the above analysis results derived by RiboMIMO were consistent with the previ-

ous findings in the literatures, indicating the robustness and reliability of our prediction

results.

RiboMIMO provides new insights into translation elongation dynamics

affected by pairs of adjacent and distant codons

Previous research showed that certain pairs of adjacent codons can inhibit the translation effi-

ciency, in which the paired effects can be distinguished from the effects of single codons [39].

Through design of random pairs of adjacent codons for green fluorescent protein (GFP)

genes, 17 adjacent codon pairs were identified from over 35,000 GFP variants to associate with

expression reduction [39], as summarized in S3 Table. To test whether our model can also

learn such an effect from ribosome profiling data, we defined the codon impact score CISðadjÞc1;c2

for each pair of adjacent codons (c1, c2), that is,

CISðadjÞc1 ;c2
¼

P
i;jðjCISi;j þ CISiþ1;jjÞ � Iðxi ¼ c1Þ � Iðxiþ1 ¼ c2Þ

P
i;j � Iðxi ¼ c1Þ � Iðxiþ1 ¼ c2Þ

: ð21Þ

We also defined the codon impact score CISðsingleÞc measuring the marginal contribution of a

single codon c, that is,

CISðsingleÞc ¼

P
i;jðjCISi;jjÞ � Iðxi ¼ cÞ
P

i;j � Iðxi ¼ cÞ
: ð22Þ

We obtained an AUROC (area under receiver operating characteristic curve) of 0.985 using

CISðadjÞc1 ;c2
, and an AUROC of 0.962 using CISðsingleÞc1

� CISðsingleÞc2
. Noted that the AUROC score can

be less informative when the numbers of positive and negative samples are far from equal. In

fact, there were 17 positive pairs and 3704 negative ones in this case, resulting in a skewed posi-

tive to negative ratio of 0.0046. Therefore, we focused more on the AUPR (area under preci-

sion recall curve) score for each CIS, which should provide a better metric for evaluating in

such an imbalanced dataset. We obtained an AUPR score of 0.444 for CISðadjÞc1 ;c2
and 0.248 for

CISðsingleÞc1
� CISðsingleÞc2

. These AUPR results showed that although the marginal effect may play an

important role in calculating the contributions of adjacent codons, there were complicated fea-

ture patterns that cannot be simply reflected by single codons.

As a result, our model can extract the paired contributions of adjacent codon pairs more

than just the simple accumulation of their marginal contributions from the data. Although the

contributions of paring codons learned by our model seemed to be symmetric, there existed

several non-symmetric contributions. For example, the contributions of GTA-CCG and
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CTC-CCG were strong, while those of CCG-GTA and CCG-CTC were relatively weak. In

other words, the contributions would be stronger when the rare codon CCG is located at the 30

end. These results could provide insightful hints into understanding the translation elongation

dynamics.

In the previous sections, we showed that RiboMIMO was able to reveal that remote codons

can contribute to the predicted ribosome densities of current A sites. To further illustrate how

such a remote impact can be learned by RiboMIMO, we also defined an impact score

CISðremoteÞc1 ;c2
for those donor-acceptor codon pairs (c1, c2) with long-range associations, i.e., with a

distance >20 codons, that is,

CISðremoteÞc1 ;c2
¼

P
i;jCISi;j � Iðxi ¼ c1Þ � Iðxj ¼ c2Þ � Iðji � jj > 20Þ
P

i;jIðxi ¼ c1Þ � Iðxj ¼ c2Þ � Iðji � jj > 20Þ
: ð23Þ

The term “donor” indicated the codon position that contributed to the ribosome density

prediction of other positions. The term “acceptor” indicated the codon position where the

ribosome density is predicted. In other words, the “donor” codon c1 had certain impacts or

associations on the ribosome density at the “acceptor” codon c2.

We observed a strong impact from the CGA codon (Fig 5B), which was discovered in the

previous study to be the only codon in yeast decoded by the I-A wobble base pairing [40]. The

CGA codon is more likely to cause ribosome stalling during the translation process, waiting

for the complementarity pairing of tRNA [41], which thus may affect the translation efficiency

of the transcript. To further reveal the associations behind the codon pairs with long-range

influence, we particularly looked into two groups, i.e., those with the long-range donor-accep-

tor pairs with |CIS|� 0.01 (served as a negative control) and |CIS| > 0.2, and then plotted the

predicted ribosome densities for each group (S10 Fig). We observed that the distribution of

Fig 5. The analysis results on the impacts of adjacent codon pairs (A) and long-range codon pairs (B) on the predicted ribosome densities for the

Subtelny14 dataset. (A). Impact scores of adjacent codon pairs (CISðadjÞc1 ;c2
) showed in log scale. Orange boxes show 17 codon pairs reported to have

influence on the protein expression levels in yeast [39]. (B). Impact scores of long-range codon pairs (CISðremoteÞc1 ;c2
) in log scale. The impact scores are

asymmetric, in which the influencing directions are from donors to acceptors. The CISðremoteÞc1 ;c2
values were calculated using the CIS values as defined in

Eq (23).

https://doi.org/10.1371/journal.pcbi.1008842.g005
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group |CIS| > 0.2 was greatly different from that of the control group |CIS|� 0.01 (P< 0.0001

with t test). More specifically, the ribosome densities of the donors and acceptors in the

|CIS|> 0.2 group were both higher than those of the control group and were negatively corre-

lated, with a Pearson’s correlation of −0.27 (and a Spearman’s correlation −0.43), while the

Pearson’s correlation for |CIS|� 0.01 group was −0.006 (and a Spearman’s correlation 0.0003).

Based on this observation, the long-range influence detected by our model tended to take place

at two codon positions where the ribosome densities were both high. Therefore, there could

exist certain associations between two remote codons both with slow elongation rates.

We also discussed possible mechanisms of this long-range influence from remote codons.

As shown in S10 Fig, we observed that the long-range contributions tended to be occurred at

the codon pairs where donors and acceptors were both with high ribosome densities. In addi-

tion, the ribosome densities between donors and acceptors were negatively correlated, with the

Pearson’s and Spearman’s correlations of −0.27 and −0.43, respectively. This could be

explained by the theory of traffic jams [42]. According to this theory, when a ribosome reaches

a slow codon, the elongation rate at this position will be slowed down and the ribosome den-

sity will be increased. Meanwhile, fewer ribosomes will continue to traverse to the downstream

of the slow codon and the ribosomes at the downstream positions are less likely to pause. We

consider two remote codons with high observed ribosome densities, one at the 50 side while

the other at the 30 side. When traffic jams occurred at the 50 codon, the ribosome density at the

50 codon will increase while that at the 30 codon will decrease. According to another recent

study [43], the location with a limited elongation rate results in higher ribosome density on the

50 side and lower one on the 30 side. Such an observation can also support our hypothesis.

Therefore, the ribosome densities of the two slow and remote codons will be negatively corre-

lated. This hypothesis could well explain our observations in S10 Fig. Our prediction results

could thus provide useful biological insights and inspire further experimental investigation.

Discussion

The translation elongation process is generally regulated by multiple factors and plays an

essential role in protein expression. Ribosome profiling techniques provide a great opportunity

for measuring elongation dynamics at single codon resolution. In this paper, we developed a

deep learning based approach, named RiboMIMO, for modeling the ribosome density distri-

butions of full-length CDS during translation elongation. The RiboMIMO approach accurately

predicts the ribosome densities based on the training of ribosome profiling data and outper-

forms the state-of-the-art baseline methods on both E.coli and S.cerevisiae datasets. By consid-

ering the contextual features of full CDS sequences as well as the relations of ribosome

densities between adjacent codons, we also defined an interpretable metric named CIS based

on the prediction results of RiboMIMO, to further reveal the relations between different input

codons and individual output ribosome densities.

With the help of RiboMIMO, we discovered that the codons located in remote distances

from the ribosomal A sites indeed have impact on the prediction of ribosome densities, indi-

cating the potential existence of long-range regulatory mechanisms. In addition, the analyses

of CIS values revealed that the ribosome densities can be influenced by several factors, includ-

ing the positions relative to the ribosomal A sites, codon rarity, wobble base pairing and the

adjacent codon pairs, which can be partially supported by the previous studies. The captured

contextual patterns by RiboMIMO may provide meaningful hints for understanding the trans-

lation elongation mechanisms. Nevertheless, it would be generally hard to directly derive

causal conclusions from the model. In fact, translation elongation rates could be affected by

many factors associated with codons. In particular, codon usage bias is the major determinant
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of translation elongation rates [31, 44]. Rare codons usually require more residence time than

commonly used codons. Secondary structure of mRNA was also found to regulate translation

and folding energy was reported to be negatively correlated with the elongation rates [45–47].

In addition, the GC content or the energy of the folded regions can influence the translation

speed [48]. Other factors such as the hydrophobicity and the charge of encoded amino acids

could also play important roles in determining the ribosomal velocity [49–51]. Furthermore,

the contextual patterns of codons can be recognized during transcription. Thus, transcription

may have certain connections with the translation elongation process through the transcrip-

tion–translation coupling mechanisms [52–56]. Overall, understanding the causalities behind

the patterns learned by our model can offer useful insights for further investigating translation

dynamics.

The RiboMIMO framework provides a new tool for exploring the regulatory codes of trans-

lation elongation through modeling the elongation velocity by a machine learning approach

and extracting the contextual determinants of translation efficiency from ribosome profiling

data. The CIS derived based on the prediction results of RiboMIMO can accurately evaluate

the pair-wise contributions of codons to the predicted ribosome densities, thus providing a

detailed portrait of impact maps for arbitrary codon pairs of interest and thus may help reveal

the potential causality therein. Nevertheless, there still exist some limitations in the current

version of our RiboMIMO framework. First, although our approach benefits from feature

embedding of full-CDS sequences and multiple outputs, it is also limited by the sequencing

depth of the ribosome profiling data and the number of available genes for training. For a data-

set with low sequencing depth, the coverage of each gene would be generally low. In this case,

we can only obtain a limited number of genes after filtering in the data preprocessing step. In

addition, most of the machine learning based methods, including RiboMIMO, still have lim-

ited power in distinguish the artifact in experiments from real biological signals. Although

ribosome profiling provided a powerful tool for characterizing the translation elongation

dynamics, there may still exist some bias due to the experimental design. For example, ribo-

some profiling only captures the reads that are protected by monosomes, while ignoring the

reads protected by stacked ribosomes (e.g., disomes, trisomes and polysomes). The undetected

reads would introduce bias to the distribution of ribosome densities along the coding

sequences of mRNAs. This bias could be eliminated in future work through modelling the

translation elongation process using polysome profiling information. Nonetheless, Ribo-

MIMO can still provide useful biological insights into understanding the regulatory mecha-

nisms of translation elongation, as demonstrated in our comprehensive tests and analyses.
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