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Abstract
Currently,	using	biopsy	specimens	for	the	early	diagnosis	of	colorectal	cancer	(CRC)	
is	not	entirely	reliable	due	to	insufficient	sampling	amount	and	inaccurate	sampling	
location.	 Thus,	 it	 is	 necessary	 to	 develop	 a	 signature	 that	 can	 accurately	 identify	
patients	with	CRC	under	these	clinical	scenarios.	Based	on	the	relative	expression	
orderings	of	genes	within	individual	samples,	we	developed	a	qualitative	transcrip‐
tional	signature	to	discriminate	CRC	tissues,	including	CRC	adjacent	normal	tissues	
from	non‐CRC	individuals.	The	signature	was	validated	using	multiple	microarray	and	
RNA	sequencing	data	from	different	sources.	In	the	training	data,	a	signature	con‐
sisting	of	7	gene	pairs	was	identified.	It	was	well	validated	in	both	biopsy	and	surgi‐
cal	resection	specimens	from	multiple	datasets	measured	by	different	platforms.	For	
biopsy	specimens,	97.6%	of	42	CRC	tissues	and	94.5%	of	163	non‐CRC	(normal	or	
inflammatory	bowel	disease)	tissues	were	correctly	classified.	For	surgically	resected	
specimens,	99.5%	of	854	CRC	tissues	and	96.3%	of	81	CRC	adjacent	normal	tissues	
were	correctly	identified	as	CRC.	Notably,	we	additionally	measured	33	CRC	biopsy	
specimens	by	the	Affymetrix	platform	and	13	CRC	surgical	resection	specimens,	with	
different	proportions	of	 tumor	epithelial	 cells,	 ranging	 from	40%	 to	100%,	by	 the	
RNA	sequencing	platform,	and	all	 these	samples	were	correctly	 identified	as	CRC.	
The	signature	can	be	used	for	the	early	diagnosis	of	CRC,	which	is	also	suitable	for	
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1  | INTRODUC TION

Colorectal	 cancer	 (CRC)	 is	 the	 third	most	 commonly	 diagnosed	ma‐
lignancy	and	the	fourth	leading	cause	of	cancer‐related	deaths	in	the	
world.1	Patients	with	CRC	are	easily	curable	when	diagnosed	at	an	early	
stage,2	thus	the	early	diagnosis	of	CRC	is	crucial	for	the	fight	against	
this	 cancer.	However,	most	CRC	patients	 are	diagnosed	with	middle	
or	advanced	stage	disease.3	Currently,	established	noninvasive	tests,	
such	as	the	guaiac‐based	fecal	occult	blood	test,	have	a	low	sensitiv‐
ity4	and	positive	predictive	value.5,6	Several	serum	protein	biomarkers,	
including	carcinoembryonic	antigen,	CA19.9,	and	CA125,	can	be	used	
for	monitoring	the	prognosis	of	CRC	patients	but	none	of	them	are	rec‐
ommended	for	the	early	diagnosis	of	CRC.7,8	The	expression	of	TSP50	
has	also	been	proposed	as	a	diagnostic	signature	for	CRC,9	but	its	sensi‐
tivity,	specificity,	and	positive	predictive	value	were	68.4%,	92.5%,	and	
95.6%,	respectively.	This	signature	is	based	on	a	risk	score	summarized	
from	quantitative	expression	measurements	of	TSP50	protein,	which	
lacks	 robustness	 for	 clinical	 applications	 due	 to	 large	 measurement	
batch	effects.10

In	 clinical	 practice,	 biopsy	 sampling	 with	 less	 invasive	 tech‐
niques,	 such	 as	 colonoscopy,	 are	 often	 used	 for	 the	 initial	 clinical	
evaluation	of	CRC.11‐15	However,	an	 indeterminate	diagnosis	often	
creates	a	dilemma.16	It	has	been	reported	that	the	miss	rate	of	CRC	
after	colonoscopy,	which	is	the	predominant	screening	and	diagnos‐
tic	test	for	CRC,12,17	 is	approximately	15%	for	patients	with	IBD.12 
Moreover,	the	biopsy	location	can	be	inaccurate,	which	might	lead	
to	 inaccurately	 sampled	 adjacent	 nontumor	 tissues	 and	 degrading	
the	 diagnosis	 performance.18	 However,	 previously	 reported	 diag‐
nostic	 signatures,	 such	 like	 the	 transcriptional	 signatures	 reported	
by	 Zheng	 et	 al9	 and	 our	 previous	 study,10	 all	 took	 tumor‐adjacent	
normal	tissues	as	the	normal	samples	to	obtain	the	signature.	Thus,	
these	signatures	cannot	classify	inaccurately	sampled	CRC	adjacent	
normal	tissues	to	CRC.	Given	that	the	adjacent	nontumor	colorectal	
tissues	of	CRC	patients	might	have	some	molecular	characteristics	
of	CRC,19‐21	it	is	possible	to	develop	a	signature	to	discriminate	CRC	
(including	CRC	adjacent	 tissues)	 from	tissues	of	nontumor	 (normal	
or	IBD)	individuals,	which	is	suitable	for	minimum	biopsy	specimens	
and	inaccurately	sampled	specimens.

Another	major	 limitation	of	 the	previously	 reported	 transcrip‐
tional	 diagnostic	 signatures	 is	 that	 their	 applications	 are	 based	
on	risk	scores	summarized	 from	the	quantitative	expression	mea‐
surements	of	the	signature	genes,22‐24	which	are	sensitive	to	batch	
effects	 and	 hardly	 applicable	 to	 individualized	 diagnoses.10,25‐27 
Notably,	 several	 reported	quantitative	 transcriptional	disease	 sig‐
natures,	including	AlloMap,24	have	been	approved	by	the	US	FDA.	

However,	due	to	the	existence	of	batch	effects,	the	tissue	samples	
must	be	sent	 to	specific	 laboratories	 for	measurement	with	strict	
quality	control.

In	contrast,	the	REOs	of	genes	within	individual	samples,	which	
are	the	qualitative	transcriptional	characteristics,	are	robust	against	
experimental	batch	effects	and	can	be	directly	applied	to	samples	
at	the	individualized	level.28‐31	The	robustness	property	of	the	REO	
enables	researchers	to	integrate	multiple	datasets	produced	by	the	
same	or	similar	platforms	for	developing	disease	signatures	or	classi‐
fiers,32,33	which	makes	it	more	likely	to	find	robust	signatures.10,32,34 
In	addition,	the	qualitative	transcriptional	characteristics	are	highly	
robust	against	varied	proportions	of	the	tumor	epithelial	cell	in	speci‐
mens	sampled	from	different	tumor	locations	of	the	same	patients,26 
partial	RNA	degradation	during	specimen	preparation	and	storage,25 
and	amplification	bias	for	minimum	specimens,27	which	are	the	com‐
mon	 factors	 that	 lead	 to	 the	 failure	of	quantitative	 transcriptional	
signatures	 in	clinical	practice.	Therefore,	 it	 is	worth	exploiting	 the	
within‐sample	REOs	to	identify	a	robust	qualitative	signature	for	the	
early	diagnosis	of	CRC.

In	this	study,	based	on	the	robust	within‐sample	REOs,	we	identi‐
fied	a	qualitative	transcriptional	signature	consisting	of	7	gene	pairs	
for	the	early	diagnosis	of	CRC.	The	signature	can	accurately	discrim‐
inate	CRC	tissues,	including	CRC	adjacent	normal	tissues,	from	nor‐
mal	or	IBD	tissues	of	non‐CRC	individuals	in	both	biopsy	and	surgical	
resection	samples.

2  | MATERIAL S AND METHODS

2.1 | Samples and data measurement

The	 gene	 expression	 profiles	 of	 33	 CRC	 biopsy	 specimens	 were	
measured	by	Affymetrix	platform	in	our	laboratory35	and	this	study	
(NCT02770911)	 was	 approved	 by	 the	 Institutional	 Review	 Board	
at	Fujian	Medical	University	Union	Hospital	(No.	2015‐23;	Fuzhou,	
China).	Written	 informed	consents	for	all	 the	33	participants	were	
obtained.	 The	 tumor	 biopsy	 specimens	 were	 obtained	 by	 endos‐
copy.	RNA	was	extracted	using	 the	RNeasy	Mini	Kit	 (Qiagen),	and	
was	measured	 by	Affymetrix	GeneChip	 PrimeView	Array.	 For	 the	
raw	data	(.CEL	file)	from	the	array	platform,	the	Robust	Multi‐Array	
Average	algorithm36	was	applied	for	background	adjustment	with‐
out	quantile	normalization.

We	also	measured	13	CRC	surgical	resection	specimens,	from	5	
CRC	patients,	with	the	RNA‐seq	platform.	This	study	was	approved	
by	 the	 institutional	 review	 boards	 of	 all	 participating	 institutions,	
and	written	consent	forms	were	obtained	from	all	participants.	For	

minimum	biopsy	specimens	and	inaccurately	sampled	specimens,	and	thus	has	poten‐
tial	value	for	clinical	application.

K E Y W O R D S
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each	patient,	3	specimens	were	sampled	from	3	different	locations.	
Of	these,	2	specimens	were	excluded	from	the	subsequent	analy‐
sis	due	to	poor	RNA	quality	 (RNA	integrity	number	 less	than	6.0).	
The	proportion	of	 tumor	epithelial	 cells	 for	 each	of	 the	13	 tumor	
specimens,	ranging	from	40%	to	100%	(see	Table	1),	was	measured	
by	 pathological	 section	 analysis.	 After	 surgical	 resection,	 the	 ob‐
tained	cancer	specimens	were	fresh‐frozen	for	the	subsequent	RNA	
extraction.	 According	 to	 the	 manufacturer's	 protocol,	 total	 RNA	
was	 isolated	 from	 fresh‐frozen	 CRC	 tissues	 using	 TRIzol	 reagent	
(Invitrogen)	and	the	quality	of	RNA	was	assessed	by	Agilent	2200	
TapeStation	(Agilent	Technologies).	Then	mRNA	was	captured	from	
1‐2	μg	 total	RNA	using	NEBNext	PolyA	mRNA	Magnetic	 Isolation	
Module	and	stranded	RNA‐seq	 libraries	were	constructed	using	a	
NEBNext	 Ultra	 Directional	 RNA	 Library	 Prep	 Kit.	 Paired‐end	 se‐
quencing	 (2	 ×	 150)	 was	 undertaken	 using	 an	 Illumina	 HiSeqXten	
and	generated	 raw	RNA‐seq	 files	 (fastq)	were	preprocessed	using	
Trimmomatic,37	 and	 the	 reference	genome	 (GRCh37)	was	used	 to	
align	 reads	 using	 hisat2.38	 Finally,	 the	 fragments	 per	 kilobase	 of	
transcript	per	million	fragments	mapped	values	of	genes	were	cal‐
culated	using	StringTie.39

2.2 | Public data and preprocessing

Multiple	gene	expression	profiles	were	downloaded	from	the	GEO	
repository	 (http://www.ncbi.nlm.nih.gov/geo/),	 ArrayExpress	
(http://www.ebi.ac.uk/array	expre	ss/),	 and	 TCGA	 (http://cance	
rgeno	me.nih.gov/),	as	described	in	Table	2,	including	CRC	samples,	
CRC	 adjacent	 normal	 samples,	 IBD	 samples,	 and	 normal	 samples.	
Notably,	the	cancer	samples	include	CRC	samples	and	CRC	adjacent	
normal	 samples,	 and	 the	 noncancer	 samples	 include	 IBD	 samples	
and	 normal	 samples	 in	 this	 study.	 The	 normal	 samples	 have	 been	
proven	to	have	no	polyps	and	no	known	family	history	or	previous	
CRC	incidence.

For	 the	 data	measured	 by	 the	Affymetrix	 platform,	we	 down‐
loaded	 the	 raw	 mRNA	 expression	 data	 (.CEL	 files)	 and	 used	 the	
Robust	Multi‐array	 Average	 algorithm	 for	 background	 adjustment	
without	 quantile	 normalization.	 For	 the	 sequence‐based	 data,	 the	
fragments	per	kilobase	of	transcript	per	million	fragments	mapped	
or	 reads	per	kilobase	of	 transcript	per	million	 reads	mapped	value	
was downloaded.

For	 the	array‐based	data,	 if	multiple	probes	were	mapped	to	a	
gene,	the	expression	value	of	the	gene	was	defined	as	the	arithmetic	

mean	of	the	values	of	the	multiple	probes.	 If	a	probe	was	mapped	
to	zero	or	multiple	genes,	then	the	data	of	this	probe	were	deleted.	
For	the	sequence‐based	data	from	ArrayExpress,	the	gene	symbols	
were	mapped	 to	Entrez	 gene	 ID	with	 the	biological	 database	net‐
work.40	For	the	sequence‐based	data	from	TCGA,	the	Ensembl	gene	
IDs	corresponding	to	the	unique	Entrez	gene	IDs	of	protein	coding	
genes	were	used.

2.3 | Identification of REO‐based CRC 
diagnosis signature

First,	 within	 a	 sample,	 the	 REO	 of	 two	 genes,	 i and j,	 is	 denoted	
as Gi > Gj	 (or	Gi < Gj)	 if	 the	expression	 level	of	gene	 i	 is	higher	 (or	
lower)	than	that	of	gene	j.	If	the	same	REO	pattern	is	maintained	in	
a	majority	of	samples,	eg	85%,	it	is	called	a	stable	REO	and	the	pair	
is	a	stable	gene	pair.	A	gene	pair	with	stable	REOs	 in	both	groups	
of	samples,	but	the	REO	patterns	are	opposite,	 is	called	a	reversal	
gene	pair.	Here,	we	selected	the	reversal	gene	pairs	that	are	stable	
in	noncancer	samples	and	cancer	samples,	but	the	REO	patterns	are	
reversed	in	the	latter	group.	They	form	the	candidate	REO	signature	
of	the	cancer.

Then	the	selected	candidate	REO	signature	above	were	sorted	
in	 a	 descending	 order	 according	 to	 their	 reversal	 degree,	 where	
the	reversal	degree	for	each	reversal	gene	pair	was	calculated	as	
follow:	

where	 \vertmean[Rij(cancer)]\vert	 and	 mean	 \vert[Rij(non_can‐
cer)]\vert	represent	the	absolute	of	the	means	of	rank	differences	of	
the	reversal	gene	pair	(i, j)	in	cancer	samples	and	noncancer	samples,	
respectively.	The	rank	difference	for	each	reversal	gene	pair	was	cal‐
culated	as	follows:	

where	Ri and Rj	represent	the	rank	of	gene	i	and	gene	j in a sam‐
ple,	respectively,	and	Rij	is	the	rank	difference	between	the	2	genes.	
Obviously,	the	higher	the	reversal	degree	for	a	gene	pair,	the	higher	
the	cross‐platform	performance	is	for	this	gene	pair.

Finally,	we	used	the	top‐k	gene	pairs,	where	k	is	ranging	from	1	
to	the	total	number	of	the	reversal	gene	pairs,	to	classify	the	samples	
based	on	 the	majority	vote	 rule.	The	value	of	k	was	chosen	when	
its	value	reached	the	highest	geometric	mean	of	the	sensitivity	and	
specificity	in	the	training	data.	The	top‐k	gene	pairs	were	selected	as	
the	early	diagnosis	signature	of	CRC.

2.4 | Performance evaluation

Cancer	samples,	including	cancer	and	cancer	adjacent	normal	sam‐
ples,	were	classified	as	positive	samples;	noncancer	samples,	includ‐
ing	 normal	 and	 IBD	 samples,	were	 classified	 as	 negative	 samples.	

avgRij=

√
|||
mean

[
Rij(cancer)

]|||
×
|||
mean

[
Rij (non_cancer)

]|||

Rij=Ri−Rj

TA B L E  1  Proportions	of	tumor	epithelial	cells	in	colorectal	
cancer	(CRC)	tissues

Patient Proportion 1 Proportion 2 Proportion 3

CRC	1 70% – 40%

CRC	2 40% 100% 100%

CRC	3 50% 90% 90%

CRC	4 60% 100% 100%

CRC	5 100% 100% –

–,	No	sample	in	the	corresponding	category	due	to	poor	RNA	quality.

http://www.ebi.ac.uk/arrayexpress/
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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The	 performance	 of	 the	 signature	was	 evaluated	 using	 sensitivity	
and	specificity,	which	are	calculated	as	follows:	

where	TP,	 TN,	 FP,	 and	 FN	 represent	 the	 number	 of	 true‐posi‐
tive,	 true‐negative,	 false‐positive,	 and	 false‐negative	 samples,	
respectively.

The	 AUCs	 were	 calculated	 with	 the	 nonparametric	 Hanley‐
McNeil	 algorithm18	 and	 95%	 confidence	 intervals	 for	 AUCs	 were	
determined	using	an	approximate	normal	distribution.

3  | RESULTS

3.1 | Identification of the qualitative diagnostic signature

The	 analysis	 procedure	 of	 this	 study	 is	 described	 in	 Figure	 1.	
First,	using	30	normal	samples	and	65	IBD	samples	collected	from	
5	 datasets	 measured	 by	 the	 Affymetrix	 platform	 (see	 Table	 2),	
11	558	060	gene	pairs	with	identical	REO	patterns	in	at	least	85%	
of	both	the	normal	and	IBD	samples	were	identified	as	stable	gene	
pairs	of	noncancer	samples.	Similarly,	using	564	CRC	samples	and	
74	CRC	adjacent	normal	samples	collected	from	10	datasets	meas‐
ured	 by	 the	 Affymetrix	 platform,	 106	 958	 978	 gene	 pairs	 with	
identical	REO	patterns	 in	at	 least	85%	of	both	the	CRC	and	CRC	

Sensitivity=
TP

TP+FN

Specificity=
TN

TN+FP

TA B L E  2  Description	of	datasets	used	in	this	study

 Platform Sampling method

Sample size

Normal IBD Adjacent normal Cancer

Datasets	used	for	identification	of	the	qualitative	signature

GSE4183 AffymetrixGPL570 Biopsy 8 15 – 15

GSE9348 AffymetrixGPL570 Biopsy 12 – – 70

GSE35452 AffymetrixGPL570 Biopsy – – – 46

GSE22619 AffymetrixGPL570 Biopsy 10 10 – –

GSE14580 AffymetrixGPL570 Biopsy – 24 – –

GSE13367 AffymetrixGPL570 Biopsy – 16 – –

GSE18105 AffymetrixGPL570 Surgery – – 17 77

GSE23878 AffymetrixGPL570 Surgery – – 24 35

GSE33113 AffymetrixGPL570 Surgery – – 6 90

GSE32323 AffymetrixGPL570 Surgery – – 17 17

GSE41328 AffymetrixGPL570 Surgery – – 10 10

GSE17536 AffymetrixGPL570 Surgery – – – 177

GSE35144 AffymetrixGPL570 Surgery – – – 27

E‐GEOD‐72819 Illumina	GPL11154 Biopsy – 73 – –

E‐GEOD‐50760 Illumina	GPL11154 Surgery – – 18 36

Datasets	used	for	evaluating	the	performance	of	the	qualitative	signature

GSE47908 AffymetrixGPL570 Biopsy 15 39 – –

GSE36807 AffymetrixGPL570 Biopsy 7 28 – –

GSE16879 AffymetrixGPL570 Biopsy – 43 – –

GSE12251 AffymetrixGPL570 Biopsy – 23 – –

GSE9452 AffymetrixGPL570 Biopsy – 8 – –

GSE45404 AffymetrixGPL570 Biopsy – – – 42

GSE21510 AffymetrixGPL570 Surgery – – 25 104

GSE22598 AffymetrixGPL570 Surgery – – 17 17

GSE27854 AffymetrixGPL570 Surgery – – – 115

GSE35896 AffymetrixGPL570 Surgery – – – 62

Our_Data1 Affymetrix	PrimeView	
Array

Biopsy – – – 33

Our_Data2 Illumina	HiSeqXten Surgery – – – 13

TCGA Illumina 
HiSeq_RNASeqV2

Surgery – – 39 556

–,	No	sample	in	the	corresponding	category;	IBD,	inflammatory	bowel	disease;	TCGA,	The	Cancer	Genome	Atlas.
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adjacent	 normal	 samples	were	 identified	 as	 stable	 gene	 pairs	 of	
cancer	 samples.	We	 found	218	 reversal	 gene	pairs	 between	 the	
non‐CRC	 and	CRC	 tissues	 including	 the	 adjacent	 normal	 tissues	
from	the	above	2	lists	of	gene	pairs	identified	from	the	data	meas‐
ured	by	the	Affymetrix	platform.	Among	these	218	gene	pairs,	we	
further	selected	7	gene	pairs	that	had	the	identical	REO	pattern	in	
at	least	85%	of	73	noncancer	samples	and	reversal	REO	patterns	
in	at	 least	85%	of	54	cancer	samples	 in	 the	combined	data	 from	
the	E‐GEOD‐50760	and	E‐GEOD‐72819	datasets	measured	by	the	
RNA‐seq	platform.

Then,	the	7	gene	pairs	were	sorted	in	a	descending	order	accord‐
ing	 to	 their	 reversal	 degrees	 (see	Materials	 and	Methods	 2.3)	 be‐
tween	CRC	(including	CRC	and	CRC	adjacent	normal)	and	non‐CRC	
samples	(normal	and	IBD)	in	the	combined	data	from	the	training	set,	
as	shown	 in	Table	2.	We	then	used	the	top‐ranked	k	pairs	 to	clas‐
sify	samples	according	to	the	majority	vote	rule.	The	results	showed	
that,	for	all	possible	k	ranging	from	1	to	7,	the	largest	geometric	mean	
of	the	sensitivity	and	specificity	was	97.08%	when	k = 7	(Figure	2).	
Thus,	 these	 7	 gene	 pairs,	 as	 described	 in	 Table	 3,	 were	 selected	
as	 the	 signature	 for	 discriminating	 CRC	 samples	 from	 noncancer	

F I G U R E  1  Analysis	procedure	for	identifying	the	colorectal	cancer	(CRC)	diagnosis	signature.	IBD,	inflammatory	bowel	disease;	RNA‐seq,	
RNA	sequencing
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samples.	We	 additionally	 showed	 the	 expression	 pattern	 of	 the	 7	
gene	pairs	(consisting	of	13	genes)	in	the	training	datasets	measured	
by	Affymetrix	platform.	As	shown	in	Figures	S1	and	S2,	the	results	
showed	that,	for	each	gene	pair,	the	REO	is	stable	in	both	types	of	
samples,	but	the	REO	patterns	are	opposite.

3.2 | Validation of the diagnostic signature in 
independent datasets

We	then	validated	the	performance	of	the	7	gene	pairs	in	multiple	
public	 datasets	 for	 biopsy	 and	 surgically	 resected	 samples.	 For	 a	
total	of	977	cancer	samples	and	163	noncancer	samples	from	these	
public	databases,	the	geometric	mean	of	the	sensitivity	and	specific‐
ity	was	96.80%	and	the	AUC	was	0.9589	(95%	confidence	interval,	
0.9521‐0.9657;	Figure	3).

Notably,	 all	 the	 colorectal	 normal	 and	 IBD	 tissue	 samples	 from	
non‐CRC	individuals	and	42	CRC	tissue	samples	from	GSE45404	were	
obtained	by	endoscopic	biopsy.	For	these	biopsy	samples	measured	by	
the	Affymetrix	platform,	90.9%	of	the	22	normal	samples	from	healthy	
individuals	 and	 95.0%	of	 the	 141	 IBD	 samples	 of	 non‐CRC	patients	
were	 correctly	 identified	 as	non‐CRC,	while	97.6%	of	 the	42	 cancer	

samples	were	correctly	identified	as	CRC.	The	detailed	results	of	each	
dataset	are	shown	in	Table	4.	These	results	indicated	that	our	signature	
is	suitable	for	the	early	diagnosis	of	CRC	based	on	biopsy	specimens.

For	 surgically	 resected	 samples	 measured	 by	 the	 Affymetrix	
platform,	all	of	the	298	CRC	samples	and	42	CRC	adjacent	normal	
samples	were	correctly	identified	as	CRC.	For	the	data	measured	by	
the	RNA‐seq	platform,	99.3%	of	 the	556	CRC	samples	and	92.3%	
of	 the	 39	 CRC	 adjacent	 normal	 samples	were	 correctly	 identified	
as	CRC.	The	detailed	results	of	each	dataset	are	shown	in	Table	5.	
These	results	suggested	that	the	7	gene	pairs	could	identify	most	of	
the	adjacent	nontumor	colorectal	tissues	from	CRC	patients	as	CRC,	
which	is	suitable	for	inaccurately	sampled	specimens.

Among	the	556	CRC	samples	from	TCGA,	536	samples	included	
staging	 information.	 99.0%	 of	 96	 patients	 with	 stage	 I,	 99.0%	 of	
209	 patients	with	 stage	 II,	 100.0%	of	 156	 patients	with	 stage	 III,	
and	98.7%	of	75	patients	with	stage	IV	were	correctly	identified	as	
CRC.	The	clinical	 stage	 status	did	not	affect	 the	validation	 results	
using	the	GEO	dataset	either.	All	of	the	104	samples	from	dataset	
GSE21510,	including	13	patients	with	stage	I,	37	patients	with	stage	
II,	34	patients	with	stage	III,	and	20	patients	with	stage	IV,	were	cor‐
rectly	identified	as	CRC.	Moreover,	all	of	the	62	CRC	samples	from	
the	dataset	GSE35896	had	their	gene	mutation	status	 information	
(KRAS, BRAF, APC, TP53, PIK3CA,	 and	PTEN),	 but	 all	 of	 them	were	
correctly	identified	as	CRC	regardless	of	the	mutation	status	of	any	
gene.	Among	the	dataset	GSE35896,	61	of	the	62	CRC	samples	had	
microsatellite	instability	information.	All	of	the	56	patients	with	sta‐
ble	microsatellite	status	and	5	patients	with	unstable	microsatellite	
status	were	correctly	identified	as	CRC,	regardless	of	the	microsat‐
ellite	status.	The	results	further	indicated	that	our	signature	is	robust	
against	clinicopathological	variations.

3.3 | Validation of the diagnostic signature in our data

To	 further	validate	 the	signature,	using	 the	RNA‐seq	platform,	we	
additionally	measured	gene	expression	profiles	of	13	CRC	surgical	

F I G U R E  2  Performance	of	k	gene	pairs	
of	relative	expression	ordering‐based	
signatures	in	the	training	set	of	biopsy	and	
surgically	resected	colorectal	cancer	and	
noncancer	samples

TA B L E  3  Seven	gene‐pair	signatures	for	early	diagnosis	of	
colorectal	cancer	(CRC)

Signature Gene i Gene j

Pair	1 AREG TRIM40

Pair	2 SCARNA2 CHRNE

Pair	3 SCARNA2 CASKIN1

Pair	4 ARHGAP10 KIAA0125

Pair	5 KCNH2 ZNF671

Pair	6 CLCN5 C19orf44

Pair	7 SSBP1 DHRS7

Gene	i	has	a	higher	expression	level	than	gene	j	in	CRC	tissue	samples	
compared	with	non‐CRC	tissue	samples.
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resection	 specimens	 from	5	CRC	patients,	 each	with	3	 specimens	
sampled	from	3	tumor	locations	with	different	proportions	of	tumor	
epithelial	 cells	 (see	 Table	 1).	 Two	 specimens	 were	 excluded	 from	
the	 gene	 expression	measurements	 because	 of	 poor	RNA	quality.	
All	the	13	CRC	specimens	were	correctly	 identified	as	CRC	by	our	
signature,	 even	when	 the	proportion	of	 tumor	 epithelial	 cells	was	
as	low	as	40%,	which	further	verified	that	the	REO‐based	signature	
is	robust	against	varied	proportions	of	tumor	epithelial	cells	for	the	

same	patient	with	different	tumor	locations.26	Moreover,	for	the	33	
CRC	biopsy	specimens	measured	by	the	Affymetrix	platform	in	our	
laboratory,35	all	of	them	were	correctly	identified	as	CRC	based	on	
our	signature.

In	 summary,	 the	 above	 results	 together	 revealed	 that	 the	 sig‐
nature	 can	 accurately	 discriminate	CRC	 from	non‐CRC	 individuals	
using	both	surgical	resection	and	biopsy	samples	measured	by	dif‐
ferent	platforms.	In	particular,	the	signature	is	robust	against	varied	

F I G U R E  3  Area	under	the	receiver	
operating	characteristic	curve	(AUC)	of	
the	validation	data	from	public	databases	
of	biopsy	and	surgically	resected	
colorectal	cancer	and	noncancer	samples

 Normal IBD Adjacent_normal Cancer Specificity Sensitivity

GSE36807 7 28 – – 85.71% –

GSE12251 – 23 – – 100.00% –

GSE9452 – 8 – – 100.00% –

GSE47908 15 39 – – 92.59% –

GSE16879 – 43 – – 100.00% –

GSE45404 – – – 42 – 97.62%

–,	No	information	in	the	corresponding	category;	IBD,	inflammatory	bowel	disease.

TA B L E  4  Performance	of	the	gene	
signature	in	the	validation	datasets	for	
colorectal	biopsy	samples

 Normal IBD Adjacent _normal Cancer Specificity Sensitivity

GSE21510 – – 25 104 – 100.00%

GSE22598 – – 17 17 – 100.00%

GSE27854 – – – 115 – 100.00%

GSE35896 – – – 62 – 100.00%

TCGA – – 39 556 – 98.82%

–,	No	information	in	the	corresponding	category;	IBD,	inflammatory	bowel	disease;	TCGA,	The	
Cancer	Genome	Atlas.

TA B L E  5  Performance	of	the	gene	
signature	in	the	validation	datasets	for	
surgically	resected	colorectal	samples
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proportions	of	tumor	epithelial	cells	in	specimens	sampled	from	dif‐
ferent	tumor	locations	of	the	same	patients.

4  | DISCUSSION

In	this	study,	we	identified	a	robust	qualitative	signature	of	7	gene	
pairs,	consisting	of	13	genes,	for	the	early	diagnosis	of	CRC,	which	
can	discriminate	CRC	and	CRC	adjacent	tissues	from	IBD	and	nor‐
mal	 tissue	 of	 non‐CRC	 individuals.	 It	 means	 that,	 even	 when	 the	
specimens	are	sampled	 inaccurately,	this	signature	can	still	aid	the	
early	 diagnosis	 of	 CRC.	 The	REO‐based	 qualitative	 transcriptional	
signature	is	robust	against	experimental	batch	effects	and	invariant	
to	monotone	data	transformation,	and	it	can	be	directly	applied	to	
samples	at	 the	 individualized	 level.28‐31	For	a	 total	of	1023	cancer	
sample	 and	 163	 noncancer	 samples	 from	 the	 validation	 datasets,	
the	sensitivity,	specificity,	and	positive	predictive	value	of	our	sig‐
nature	was	99.22%,	94.48%,	and	99.12%,	which	indicate	the	robust‐
ness	of	our	signature.	As	shown	in	Table	4,	among	the	5	validation	
datasets	with	noncancer	samples,	our	signature	has	100%	specificity	
in	3	datasets,	GSE12251,	GSE9452,	and	GSE16879.	For	the	other	2	
datasets,	GSE47908	and	GSE36807,	our	signature	has	92.59%	and	
85.71%	specificity,	respectively.	For	the	dataset	GSE47908	with	54	
noncancer	samples	(including	15	normal	and	39	IBD	samples	[includ‐
ing	19	pancolitis	and	20	left‐sided	colitis	samples]),	all	the	15	normal	
samples	and	20	 left‐sided	colitis	samples	were	correctly	 identified	
as	noncancer,	whereas	4	of	 the	19	pancolitis	samples	were	 identi‐
fied	as	cancer.	Because	patients	with	pancolitis	have	a	higher	cancer	
incidence	risk	than	those	with	left‐sided	colitis,41	we	speculate	that	
these	4	pancolitis	samples	might	have	some	characteristics	of	can‐
cer.	Similarly,	for	the	GSE36807	database	with	35	noncancer	sam‐
ples	 (including	7	normal	and	28	IBD	samples),	2	normal	and	3	 IBD	
(1	Crohn's	disease	and	2	ulcerative	colitis)	samples	were	 identified	
as	 cancer.	 Those	 healthy	 individuals	with	 normal	 samples,	 includ‐
ing	that	were	identified	as	cancer,	were	referred	for	colorectal	can‐
cer	screening42;	we	speculated	that	some	of	them	might	also	have	
some	characteristics	of	cancer.

Under	many	practical	 situations,	with	 tissue	biopsy	sampling,	 it	
is	difficult	to	obtain	sufficient	a	quantity	of	RNA	molecules	for	gene	
expression	profiling	or	other	molecular	measurements.18	Fortunately,	
our	recent	study	showed	that	the	REO‐based	signatures	can	be	ro‐
bustly	 applied	 to	minimum	 specimens	 even	with	 approximately	 15	
cancer cells.27	Therefore,	 it	 is	highly	possible	 that	 the	7	gene	pairs	
could	 be	 applicable	 for	 biopsy	 samples	 with	 minimum	 sampling	
amounts.	Moreover,	the	REO‐based	signature	was	robust	against	var‐
ied	proportions	of	tumor	epithelial	cells	from	the	same	patient	with	
different	tumor	locations,26	which	is	a	common	factor	that	could	lead	
to	the	failure	of	the	quantitative	transcriptional	signature	 in	clinical	
practice.	This	study	also	showed	that	13	specimens	from	5	patients	
with	different	sampling	locations,	with	different	proportions	of	tumor	
epithelial	cells	(see	Table	1),	were	correctly	identified	as	CRC.

As	 for	 the	other	REO‐based	 approaches,	 such	 as	 TSP	 and	 k‐
TSP,	we	additionally	evaluated	these	approaches	using	 the	same	

training	 and	 validation	 datasets,	 as	 shown	 in	 Table	 2.	 Using	 the	
tspair	 R	 package	 (version	 3.3.3)	 and	 ktspair	 R	 package	 (version	
3.3.3),	 we	 trained	 the	 TSP	 and	 k‐TSP	 classifier	 in	 the	 combined	
sample	data	from	the	training	datasets	measured	by	the	Affymetrix	
and	RNA‐seq	platforms,	respectively.	In	the	validation	data,	the	k‐
TSP	classifier	performed	better	than	the	TSP	classifier	but	poorer	
than	 our	 signature,	 as	 shown	 in	 Tables	 S1	 and	 S2.	 For	 example,	
for	the	33	CRC	samples	measured	by	our	laboratory,	our	REO	sig‐
nature	could	identify	100%	of	the	33	CRC	samples	correctly,	but	
the	k‐TSP	signature	identified	only	30.3%	CRC	samples	correctly.	
One	possible	reason	could	be	that	the	difference	in	the	proportion	
of	samples	from	the	Affymetrix	and	RNA‐seq	platforms	will	bias	
the	signature	to	the	platform	with	larger	samples	when	using	the	
tspair	 R	 package	 and	 ktspair	 R	 package.	 In	 the	 training	 process	
for	our	REO	signature,	 the	gene	pairs	 that	were	consistently	de‐
tected	in	the	data	produced	by	the	2	platforms	were	used	for	the	
final	signature	selection	(7	gene	pairs	in	this	study).	Therefore,	our	
method	is	intuitive	and	simple	with	the	ability	to	identify	very	ro‐
bust	disease	signatures.

Some	genes	in	our	signature,	including	AREG, SSBP1, KCNH2,	and	
TRIM40,	 are	well	 known	CRC‐related	 genes	 that	might	 play	 a	 key	
role	in	the	development	of	CRC.	For	example,	AREG	could	induce	the	
upregulation	of	EGFR,	which	is	a	key	mediator	of	intestinal	neoplastic	
transformation,	and	high	gene	expression	level	of	AREG	is	a	favorable	
prognostics	biomarker	for	metastatic	CRC.43	Another	gene,	SSBP1,	
has	highly	abundant	gene	expression	levels	in	CRC	and	is	closely	re‐
lated	with	 poor	 outcomes	of	CRC	patients.44	 In	 cisplatin‐resistant	
CRC	cells,	KCNH2	 inhibitors	had	a	synergistic	action	with	cisplatin	
in	 triggering	 apoptosis	 and	 inhibiting	 proliferation.45	 Additionally,	
TRIM40	might	provide	therapeutic	benefits,	not	only	for	 inhibition	
of	the	growth	of	gastrointestinal	cancers	but	also	for	the	prevention	
of	chronic	IBDs.46	In	addition,	ARHGAP10,47 DHRS7,48 and ZNF67149 
have	also	been	reported	to	be	closely	correlated	with	other	types	of	
cancer,	such	as	lung	and	prostate	cancer.	The	above	results	indicated	
that	the	genes	of	the	signature	might	play	important	roles	in	the	car‐
cinogenesis	of	CRC	and	these	functions	need	to	be	further	studied	
in	future	work.

In	summary,	our	signature,	consisting	of	7	gene	pairs,	could	ro‐
bustly	be	applied	 for	aiding	 the	early	diagnosis	of	CRC	 in	multiple	
datasets	 of	 both	 biopsy	 and	 surgically	 resected	 samples,	which	 is	
also	suitable	for	minimum	biopsy	specimens	and	inaccurately	sam‐
pled	specimens.	The	clinical	value	of	 the	7	gene	pairs	 for	early	di‐
agnosis	of	CRC	 is	worthy	of	 further	verification.	Moreover,	as	 the	
cost	of	high‐throughput	sequencing	decreases	markedly,	 for	a	 lim‐
ited	amount	of	precious	tissue	sample	at	the	clinical	scene,	we	could	
measure	all	the	genes	or	a	set	of	genes	of	different	biomarkers	for	
diagnosis,	histological	classification,	prognosis,	and	drug	resistance	
evaluation	of	CRC	(“a	sequencing	for	all”).
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