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Abstract

The TOB or SAM complex is responsible for assembling several proteins into the mitochondrial outer membrane, including
all b-barrel proteins. We have identified several forms of the complex in Neurospora crassa. One form contains Tob55,
Tob38, and Tob37; another contains these three subunits plus the Mdm10 protein; while additional complexes contain
only Tob55. As previously shown for Tob55, both Tob37 and Tob38 are essential for viability of the organism.
Mitochondria deficient in Tob37 or Tob38 have reduced ability to assemble b-barrel proteins. The function of two
hydrophobic domains in the C-terminal region of the Tob37 protein was investigated. Mutant Tob37 proteins lacking
either or both of these regions are able to restore viability to cells lacking the protein. One of the domains was found to
anchor the protein to the outer mitochondrial membrane but was not necessary for targeting or association of the protein
with mitochondria. Examination of the import properties of mitochondria containing Tob37 with deletions of the
hydrophobic domains reveals that the topology of Tob37 may be important for interactions between specific classes of b-
barrel precursors and the TOB complex.
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Introduction

The vast majority of proteins found in mitochondria are

encoded by nuclear genes and synthesized in the cytosol. These

proteins must be imported into mitochondria, directed to the

proper mitochondrial subcompartment, and properly assembled at

their final destination. The mitochondrial outer membrane houses

the TOM complex (translocase of the outer membrane) which

recognizes most mitochondrial precursor proteins in the cytosol

and imports them into the organelle. A few outer membrane

proteins partition directly into the outer membrane via the TOM

complex or other assembly routes. However, the majority of

mitochondrial precursor proteins are transported through the

membrane where targeting information within the precursors

enable further interactions with specific factors and/or complexes

in the intermembrane space and/or the mitochondrial mem-

branes. These interactions lead to the completion of accurate

subcompartment targeting for the incoming precursor proteins

[1,2,3,4].

b–barrel proteins form a specific class of mitochondrial protein

that exist exclusively in the outer membrane of the organelle. They

are imported through the TOM complex to the intermembrane

space where they are chaperoned to the inner surface of the outer

membrane by the small Tim protein complexes [5,6] for

interaction with the TOB complex (topogenesis of b-barrel

proteins), also known as the SAM complex (sorting and assembly

machinery). The TOB complex assembles the b-barrel precursor

proteins into the outer membrane [1,2,3,7,8]. The known b-barrel

proteins of the outer mitochondrial membrane include: Tom40,

Tob55 (Sam50, Omp85), porin (VDAC), Mdm10, and possibly

Mmm2. In addition to its role in the assembly of b-barrel proteins,

the Saccharomyces cerevisiae TOB complex has been shown to be

involved in the integration and/or assembly of several TOM

complex proteins that are anchored in the membrane via C-

terminal a-helical domains (discussed below).

A core TOB complex has been defined in S. cerevisiae [9,10,11] that

contains Tob55, Tob38 (Sam35, Tom38), and Tob37 (Tom37,

Sam37, Mas37). (To minimize confusion we will henceforth use the

names Tob55, Tob38, and Tob37 to refer to the subunits of the

fungal TOB core complex.) Recent studies suggest that the core

complex has the capacity to partner with several other proteins

resulting in the formation of dynamic complexes with specialized

function. For example, the core complex is known to associate with

the Mdm10 protein in S. cerevisiae [12,13,14,15] and Neurospora crassa

[16]. Mdm10 is a multifunctional protein that was originally

described for its role in mitochondrial distribution and morphology

[17]. It was found to exist in a complex with Mdm12 and Mmm1,

which are also involved in maintenance of mitochondrial morphol-

ogy [18]. Subsequently the three proteins were shown to be part of a

mitochondrial/ER tethering system known as the ERMES (endo-

plasmic reticulum mitochondria encounter structure) complex [19].

Binding of Mdm10 to the TOB complex has been shown to play a

role in Tom40 assembly [12,13,14,15]. However, the exact role of

Mdm10 is currently unresolved. One model suggests that Mdm10

stimulates release of Tom40 precursor from the TOB complex [15].

Another model suggests that the requirement of Mdm10 for Tom40
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assembly is indirect because integration of Tom22 into the

membrane requires the action of the TOB complex associated with

Mdm10 [14] and Tom22 is necessary for assembly of Tom40 into

the TOM complex [20,21]. Recently, an additional form of the

TOB complex containing endogenous Tom5 and Tom40 proteins

(referred to as SAM-Tom5/Tom40) was described in S. cerevisiae

[14]. Co-purification experiments have also shown an interaction

between the TOB complex and the Mim1 (Tom13) protein [22] and

a genetic interaction between Tob37 and Mim1 has also been

demonstrated [23].

The function and topology of the individual components of the

TOB core complex have been investigated to varying degrees.

Tob55 is essential for viability in S. cerevisiae and N. crassa

[24,25,26,27]. The protein is itself a b-barrel protein and is thought

to form a pore that enables incoming precursors to enter the

membrane [24,28]. Homologues of Tob55 have been identified in

organisms as diverse as mammals and gram-negative bacteria

[24,25,26]. Tob55 contains a polypeptide transport-associated

(POTRA) domain that plays a role in releasing b-barrel precursor

proteins from the TOB complex [29]. Tob38 of S. cerevisiae is also an

essential protein but is found as a peripheral membrane protein on

the cytosolic side of the outer membrane [9,10,11]. Despite its

topology, the protein has been shown to interact with precursor

proteins that have entered the intermembrane space. This

interaction occurs between the b-signal, found at the C-terminus

of b-barrel precursor proteins, and a domain of Tob38 that most

likely becomes available to the b-signal via membrane embedded

protein-protein interactions with Tob55 [28].

Early investigations into the role of Tob37 in S. cerevisiae

demonstrated that it was not essential for viability, but cells lacking

the protein had growth defects at high temperature [30]. Originally,

the protein was thought to interact with Tom70 as an import

receptor for mitochondrial precursors that lacked matrix targeting

signals, such as AAC (ATP/ADP carrier) [30]. Subsequently, it was

shown that Tob37 did not act as a receptor for AAC import [31]

and that the protein was actually part of the TOB complex [32]. S.

cerevisiae Tob37 is thought to be a peripheral membrane protein

because it can be removed from the mitochondrial outer membrane

by alkali extraction [31]. Both Tob37 and Tob38 interact with

Tob55 in S. cerevisiae. This interaction is likely responsible for

binding the two peripheral membrane proteins to the membrane

[9,10,11,25,28]. Tob37 is thought to act later in the process of

assembling b-barrels by assisting release of substrates from the TOB

complex [33,34]. Interestingly, a close genetic relationship between

Tob37 and Tom6 has been described in which overexpression of

one protein suppresses defects seen when the other protein is absent.

Deletion of both genes was found to be synthetically lethal. It was

suggested that since Tom6 plays a role in stabilizing Tom40,

overexpression of Tom6 could compensate for the decreased

assembly of Tom40 that resulted from absence of Tob37 [34].

Overexpression of Mdm10, Mdm12, or Mmm1 has also been

shown to partially suppress the growth phenotype of cells lacking

Tob37 [35]. Recently, Tob37 has been shown to be involved in a

complex series of pathways involving phospholipid metabolism,

endoplasmic reticulum-mitochondrial interactions, and cell wall

integrity in Candida albicans [36].

Mammalian mitochondria contain Tob55 [37] as well as weakly

conserved homologues of Tob38 and Tob37, known as Metaxin 2

(Mtx2) and Metaxin 1 (Mtx1), respectively [10,38,39]. The

components and size of the mammalian TOB complex are

presently unclear. In one study [37], Tob55 was found in a

complex of about 200 kDa by BNGE. Antibodies against Tob55

shifted an import complex containing a stalled Tom40 precursor

to a higher molecular weight. However, antibodies against Mtx1

did not shift the complex. In another study [40], two-dimensional

gel electrophoresis revealed that Tob55 was present in a complex

of more than 200 kDa, but Mtx2 was found in a 600 kDa

complex. Most of Mtx1 was present as a low molecular weight

species, but also appeared in a smear from 200 kDa to over

600 kDa [40,41]. It was concluded that Mtx1 and Mtx2 are

present in a complex separate from the Tob55 containing complex

[40]. A different study showed all three proteins to be a part of a

larger complex, along with several other proteins, that was

immunoprecipitated from human heart mitochondria using

antibody to mitofilin [42].

Mtx1 contains a signal anchor sequence near its C-terminus and

the protein is not removed from the outer membrane by alkali

extraction [38,39]. Removing the signal anchor sequence severely

reduced targeting and association of the protein with mitochondria

[38]. Mtx1 was found to be essential for mouse development [43]).

Mtx2 is considered to be a peripheral outer membrane protein

based on alkali extraction experiments. Since Mtx1 and Mtx2

have been shown to physically interact, it was suggested that Mtx1

binds Mtx2 to the membrane [39]. Early studies suggested that

Mtx1 had an effect on the import of precursors destined for the

mitochondrial matrix [38,41]. A later study concluded that

mitochondria depleted of Mtx2 were deficient in the assembly of

b-barrel proteins and that the import of matrix destined precursors

was not affected [40].

Thus, despite several recent advances, many questions regard-

ing the nature and function of the TOB complex and its

components remain controversial. Differences in the topology,

function, and place of Tob37 in the TOB complex between the S.

cerevisae protein and mammalian Mtx1 are particularly evident.

Here we describe an investigation into the N. crassa TOB complex.

We have examined the nature of the complex and the properties of

Tob37 and Tob38 mutants. The existence of two possible

membrane spanning hydrophobic regions near the C-terminus

of the N. crassa Tob37 protein suggested that in this fungal species

the protein more closely resembled its mammalian orthologue in

its structure. Thus, to gain further insight into the function of

Tob37 and its properties in different species, we investigated the

roles of these hydrophobic domains in the N. crassa protein.

Methods

Ethics statement
All work with animals used in the production of antibodies was

conducted according to the guidelines established by the Canadian

Council on Animal Care. Antibodies against Tob37, Tob38, and

Mdm10 were raised in guinea pigs and mice for this study and

were described previously [16]. Methods for injection of antigens

and removal of blood were approved by the Biological Sciences

Animal Policy and Welfare Committee of the University of

Alberta, protocol number 587.

Strains and growth of N. crassa
Strains used in this study are listed in Table 1. N. crassa was

grown according to previously described procedures [44]. Unless

otherwise stated, cells were grown at 30uC. Tests of growth rate

were performed as described previously [27].

Construction of Tob37 and Tob38 knockout strains
A split marker approach was used to knock out the tob37 and

tob38 genes. Approximately three kilobase regions upstream and

downstream of the coding sequence for each gene were generated

via PCR of cosmids containing the genes, or from genomic DNA.

These regions and a hygromycin resistance cassette were used in

Neurospora TOB Complex
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the construction of the appropriate split markers [45] for each

gene as described previously for N. crassa tob55 [27]. For each gene,

the two portions of the split marker were transformed into

heterokaryon HP1 [46]. Hygromycin resistant colonies were

isolated, purified, and examined for replacement of the tob37 or

tob38 gene in one of the nuclei of HP1 by Southern analysis (not

shown). Strains showing the correct pattern of integration were

then examined for growth characteristics. One nucleus of the

heterokaryon carries an allele (mtr) for resistance to p-fluorophe-

nylalanine (fpa) plus auxotrophy for histidine, while the second

carries benomyl resistance (Bml) and pantothenate auxotrophy.

Transformation of N. crassa typically occurs in only one nucleus of

a multi-nucleate conidium [47]. To determine which nucleus of

the heterokaryotic transformants was transformed by the split

marker and carried the knockout, the strains were tested for their

ability to grow on medium containing either histidine plus fpa or

pantothenate plus benomyl. For isolates with the knockout in the

histidine-requiring, fpa-resistant nucleus, the presence of fpa in the

growth medium forces the nucleus containing the knockout to

predominate the culture, resulting in a deficiency of Tob37 or

Tob38. If the proteins are required for maximal growth rate, such

knockouts should grow slowly under these conditions. One strain

showing this phenotype for each gene was chosen for further

analysis: for Tob37, strain Tob37KO-5; for Tob38, strain

Tob38KO-6.

To obtain mitochondria with reduced levels of Tob37 or

Tob38, liquid cultures of knockout heterokaryons were grown in

the presence of histidine plus fpa for 36 to 40 hours, compared to

16 to 20 hours for cultures without histidine and fpa. Controls

were grown for about 20–24 hours in histidine plus fpa, or 16–

20 hr without histidine and fpa.

Creation of strains carrying altered versions of Tob37
Mutant alleles of tob37 were created by site-directed PCR

mutagenesis of a Bluescript plasmid containing the genomic copy

of N. crassa Tob37 and a bleomycin resistance gene [48].

Mutagenesis was performed to create HpaI restriction sites flanking

the regions containing two possible transmembrane domains

(TMDs). Following mutagenesis, coding regions between residues

386–405, 434–452, and 386–452 could be removed by HpaI

digestion and religation. Because of the coding capacity of the

restriction sites, the deletions are flanked with Val (GTT) and Asn

(AAC) codons. Plasmids confirmed to contain the desired

mutations by sequence analysis were linearized and used to

transform conidia from the sheltered heterokaryon strain

Tob37KO-5. The transformation mixture was plated on medium

containing histidine, and fpa to select for the nucleus bearing the

tob37 knockout, as well as bleomycin to select for transformants

carrying the plasmid. Transformants were purified through one

round of single colony isolation on medium containing fpa,

histidine, and bleomycin. Colonies were picked and tested for

nutritional requirements. Transformants that required histidine

were homokaryons that contained the desired mutant alleles,

which must be capable of restoring Tob37 function to a level

sufficient for viability. The presence of the correct mutant alleles in

the transformants was confirmed by sequencing PCR products of

the ectopically integrated tob37 mutant alleles from isolated

genomic DNA.

Salt treatment of isolated mitochondria
Mitochondria (50 mg protein), were suspended in 50 ml of

isolation buffer (0.25 M sucrose, 1 mM EDTA, 10 mM MOPS,

pH 7.2) containing 1 mM phenlymethylsulfonyl fluoride (PMSF)),

Table 1. Strains used in this study.

Strain (short name) Genotype Origin or reference

76–26 his-3 mtrR a (mtrR imparts fpa resistance) R.L. Metzenberg

71–18 pan-2 BmlR a (BmlR imparts benomyl resistance) R.L. Metzenberg

HP1 Heterokaryon of 76-26 plus 71–18. Nargang Lab. [46]

Tob37KO-5 (DTob37) Sheltered heterokaryon. As HP1, but with replacement of tob37 gene
in 76–26 nucleus with a hygromycin resistance (hygR) cassette.

Transformation of HP1 with split
marker fragments for tob37 knockout.

Tob38KO-6 (DTob38) Sheltered heterokaryon. As HP1, but with replacement of tob38 gene
in 76–26 nucleus with a hygromycin resistance (hygR) cassette.

Transformation of HP1 with split
marker fragments for tob38 knockout.

Tob37HT (9His-Tob37-2) his-3 mtrR a Dtob37::hygR contains an ectopic copy of genomic
tob37 with C-terminal 9x His tag. Bleomycin resistant.

Nargang Lab [16]

Tob38HT (9His-Tob38-3) his-3 mtrR a Dtob38::hygR contains an ectopic copy of genomic
tob38 with C-terminal 9x His tag. Bleomycin resistant.

Nargang Lab [16]

Tob55HT (H6C4–5) his-3 mtrR a Dtob55::hygR contains an ectopic copy of genomic
tob37 with N-terminal 9x His tag. Bleomycin resistant.

Nargang Lab [16]

Tob55 Short HT his-3 mtrR a Dtob55::hygR contains an ectopic copy of N-terminal
9x His tagged tob55 cDNA specific for the short form.

Nargang Lab

Tob55 Int HT his-3 mtrR a Dtob55::hygR contains an ectopic copy of N-terminal
9x His tagged tob55 cDNA specific for the intermediate form.

Nargang Lab

Tob55 Long HT his-3 mtrR a Dtob55::hygR contains an ectopic copy of N-terminal
9x His tagged tob55 cDNA specific for the long form.

Nargang Lab

Tob37DTMD1–9 his-3 mtrR a Dtob37::hygR contains an ectopic copy of genomic
tob37DTMD1. Bleomycin resistant.

Nargang Lab

Tob37DCHD2–3 his-3 mtrR a Dtob37::hygR contains an ectopic copy of genomic
tob37DCHD. Bleomycin resistant.

Nargang Lab

Tob37DT+C12–5 his-3 mtrR a Dtob37::hygR contains an ectopic copy of genomic
tob37DT+C. Bleomycin resistant.

Nargang Lab

doi:10.1371/journal.pone.0025650.t001
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plus 500 mM NaCl and left on ice for 30 min. The sample was

then centrifuged at 16,250 x g at 4uC for 20 min in a refrigerated

microcentrifuge. The mitochondrial pellets were processed for

electrophoresis by dissolving in cracking buffer (0.06 M Tris-HCl,

pH 6.8; 2.5% SDS; 5% b-mercaptoethanol; 5% sucrose). The

supernatant was desalted using the ZebaTM Spin Desalting

Column system (Pierce Biotechnology – Thermo Scientific,

Rockford, IL) and then prepared for electrophoresis by adding

one fifth volume of 5X cracking buffer.

Gel electrophoresis of proteins
Proteins were analyzed by sodium dodecyl sulphate polyacryl-

amide gel electrophoresis (SDS-PAGE) or BNGE as described

previously [49,50,51] using 30 mg or 50 mg of mitochondrial

protein per lane, respectively, unless stated otherwise. For two

dimensional electrophoresis, lanes from the first dimension BNGE

were excised and soaked in cracking buffer for 5 min. Treated

lanes were then placed between the glass gel plates, onto the

stacking gel, of a pre-made gel for second dimension SDS-PAGE.

Following electrophoresis, gels were transferred to either nitrocel-

lulose or PVDF (polyvinylidene fluoride) membrane and immu-

nodecorated with specific antibodies.

Electrophoretic analysis of affinity purified proteins
Affinity purification of His-tagged proteins was performed as

described [16]. For BNGE of purified His-tagged proteins, one

tenth volume of 10X sample buffer (100 mM bis-Tris, pH 7.0;

500 mM 6-aminocaproic acid; 5% Coomassie brilliant blue G250)

was added directly to the elution fractions. These were

immediately subjected to BN-PAGE. After electrophoresis gels

were transferred to PVDF for Western analysis.

Proteinase K treatment of Isolated Mitochondria
Isolated mitochondria (50 mg) were suspended in 150 ml of

isolation buffer on ice. Following addition of proteinase K (8 ml

from a stock solution of 2 mg/ml) the sample was incubated for

15 min on ice. The proteinase K was then inactivated by the

addition of 1.5 ml PMSF (200 mM in ethanol) and an additional

340 ml of isolation buffer containing 1 mM PMSF. After gentle

mixing the sample was then centrifuged at 16,250 x g at 4uC for

20 min in a microcentrifuge. The mitochondrial pellets were

dissolved in 50 ul of cracking buffer and subjected to SDS-PAGE.

Standard procedures
Mitochondria were isolated as described previously [16,52].

Alkali extraction was performed as described [16] except that

different pHs of sodium carbonate were used in this study as stated

for individual experiments. Preparation of damaged mitochondria

[16], import of mitochondrial precursor proteins [53], and

transformation of N. crassa [27] were performed as described

previously. Irrelevant lanes were sometimes removed electronically

from blots or gels for the production of figures. Comparative

quantification of bands on x-ray film was performed on scanned

images using Adobe Photoshop.

Results

Development of sheltered heterokaryons harbouring
nuclei with knockouts of tob37 or tob38

We generated knockouts of the N. crassa tob37 and tob38 genes

via transformation of the HP1 heterokaryotic strain using a split

marker approach as described previously for N. crassa tob55 [27].

Transformation of one of the two different nuclei in HP1 results in

the creation of a sheltered heterokaryon (Figure 1A). As described

in the Methods, we chose one strain for each gene where the

knockout was in the histidine-requiring (his-3), fpa resistance (mtr)

nucleus. These sheltered heterokaryon strains will hereafter be

referred to as DTob37 and DTob38. Growth of these strains in the

presence of histidine and fpa results in a severely reduced growth

rate (Figure 1B) as the knockout-containing nuclei are forced to

predominate the culture to supply resistance to fpa thus reducing

the levels of Tob37 or Tob38. Mitochondria isolated from these

strains grown in the presence of histidine and fpa were examined

for the presence of various mitochondrial proteins (Figure 1C).

Reduction of Tob37 in DTob37 also resulted in a reduction of the

level of Tob38 but reduction of Tob38 in DTob38 had only a

minor effect on Tob37 levels. This agrees with previous

suggestions that Tob37 may be involved in the association of

Tob38 with mitochondria or its stability. Both sheltered

heterokaryons grown in the presence of histidine and fpa show a

reduction in all b-barrel proteins examined (Mdm10, Tob55,

Tom40, and porin). Tom5, Tom6, and Tom22 of the outer

membrane were also reduced. Slight reductions of the intermem-

brane space proteins Tim8 and Tim13 were observed. Levels of

the inner membrane protein Tim23 and the outer membrane

protein Tom70 were unaffected. These observations are consistent

with a role for the TOB complex in the assembly of b-barrel

proteins and certain a-helical anchored proteins of the TOM

complex.

The reduction in the intermembrane space proteins Tim8 and

Tim13 suggests possible breakage of mitochondrial outer mem-

branes during the isolation of mitochondria as we have observed

previously for other mutants affecting mitochondrial outer

membrane proteins [16]. We investigated this further by

examining isolated mitochondria for the presence of the

intermembrane space protein cytochrome c heme lyase (CCHL)

following exposure to proteinase K. In mitochondria from

DTob37, DTob38, and DTom70, a mutant previously shown to

have mitochondria that were damaged upon isolation [54], the

CCHL was degraded by the proteinase (Figure 1D). This

demonstrates increased accessibility of the proteinase to the

intermembrane space. It should also be noted that levels of

CCHL in untreated mitochondria are similar in all the strains

examined, as for Tim23 and Tom70 (Figure 1C,D). When

DTob37 and DTob38 were grown in minimal medium, which

forces the strains to grow as heterokaryons with relatively equal

contributions from both nuclei due to the complementing

auxotrophic mutations, all proteins examined in isolated mito-

chondria were essentially at wild type levels (Figure 1E). To

determine if Tob37 and Tob38 were essential for viability, we

examined the nutritional requirements of colonies arising from

conidiaspores produced by the DTob37 and DTob38 strains. No

histidine-requiring auxotrophs were found for either strain

(Figure 1F). This demonstrates that both Tob37 and Tob38 are

essential for viability in N. crassa.

Import/assembly of mitochondrial precursor proteins in
mitochondria deficient for Tob37 or Tob38

Next, we examined import and assembly of mitochondrial

precursor proteins in mitochondria isolated from DTob37 and

DTob38 grown in the presence of histidine and fpa to reduce the

levels of Tob37 and Tob38, respectively. Import of the matrix

targeted precursor F1b was found to be slightly reduced to 64%

(standard deviation 11%) of the control in DTob37 and to 43%

(standard deviation 17%) in DTob38 mitochondria (Figure 2A).

Similarly, import of AAC was slightly reduced to 64% (standard

deviation 18%) of the control in DTob37 and 47% (standard

Neurospora TOB Complex
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deviation 10%) in DTob38 mitochondria (Figure 2A). Alterations

in the assembly of the b-barrel protein Tom40 (Figure 2B) was also

observed with both mutants. In wild type mitochondria the

Tom40 precursor is imported across the outer membrane and can

then be detected associated with the TOB complex as interme-

diate I of 250 kDa. The precursor is then integrated into the

Figure 1. Isolation and characterization of N. crassa strains with reduced levels of Tob37 or Tob38. (a) Sheltered heterokaryons with
deletions of either tob37 or tob38 in one nucleus of the heterokaryon were constructed using a split marker approach. Boxes symbolize heterokaryons
while circles within the boxes represent the different component nuclei of the heterokaryon. The Figure shows an example for tob37, but the process
was identical for tob38. The starting heterokaryon (HP1) contained nuclei with different genetic markers: either his-3 and mtr (provides resistance to
fpa) or pan-2 and Bml (provides resistance to benomyl). Strains chosen for further work carried the knockouts in the his-3 mtr nucleus (see Methods).
(b) Serial dilutions of conidiaspores (actual numbers spotted shown at top of panel) from the strains indicated on the left were spotted onto plates
containing either minimal medium (min), which maintains both nuclei of the heterokaryon approximately equally; minimal medium containing
pantothenate and benomyl (pan ben), which forces the nucleus carrying benomyl resistance (Bml, Figure 1A) to predominate the culture; or minimal
medium containing histidine plus fpa (his fpa), which forces the nucleus carrying fpa resistance (mtr, Figure 1A) to predominate the culture. The
control was strain HP1. (c) Cells from the indicated strains (top of panel) were grown in the presence of histidine (His) and fpa to force the
predominance of the nucleus bearing the deletion of either tob37 or tob38. This results in reduction of the levels of Tob37 or Tob38, respectively.
Mitochondria were isolated and subjected to SDS-PAGE followed by transfer to nitrocellulose, and immunodecoration with the anitbodies indicated
on the left. The control strain was HP1. Multiple bands in the Tob55 lane correspond to different isoforms of the protein [27]. (d) Mitochondria
isolated from the indicated strains were either untreated (Mitos) or incubated in the presence of proteinase K (Mitos + pK) for 15 min. Mitochondrial
proteins were then subjected to SDS-PAGE and western blotting. The blot was examined for the presence of Tom70 and the intermembrane space
protein CCHL. (e) As in panel C, except strains were grown in minimal medium which maintains the numbers of both types of nuclei in the culture
approximately equally. (f) Conidia produced from the sheltered heterokaryons (DTob37 and DTob38) were streaked onto medium containing
histidine and pantothenate. Individual colonies were isolated and tested for nutritional requirements to determine if they were histidine-requiring
homokaryons (His-req), pantothenate requiring homokaryons (Pan-req), or heterokaryons (Het).
doi:10.1371/journal.pone.0025650.g001
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membrane where it forms intermediate II of 100 kDa containing

an endogenous Tom40 molecule and a Tom5 subunit. The

precursor then proceeds to the fully assembled 400 kDa complex

[32,55,56,57]. Particularly striking for Tom40 assembly in

mitochondria deficient in Tob37 or Tob38 was the lack of

accumulation of the precursor at the 250 kDa first intermediate

stage of assembly (Figure 2B), which represents a Tom40

precursor protein at the TOB complex. A substantial amount of

Tom40 does seem to reach the final assembled state in the

400 kDa complex in a time dependent fashion. This is similar to

the assembly pattern we observed for mitochondria depleted of

Tob55 [27]. To insure that the Tom40 observed in the 400 kDa

complex was properly assembled, the import was repeated and

followed by treatment with proteinase K, which cleaves assembled

Figure 2. Import/assembly of mitochondrial precursor proteins into mitochondria deficient in Tob37 or Tob38. (a) Radiolabeled matrix
precursor F1b and inner membrane precursor AAC were incubated (for 5 min or 20 min, as indicated) with mitochondria isolated from heterokaryotic
strains (indicated at the top of the panel) grown in the presence of histidine and fpa to reduce levels of Tob37 or Tob38 in the respective mutants.
Following import, mitochondria were subjected to SDS-PAGE. Proteins were transferred to nitrocellulose membrane, and import was analyzed by
autoradiography. (control, strain HP1; lys, 33% of the radiolabeled lysate added to each import reaction; bp, ‘‘bypass import’’ in mitochondria treated
with trypsin to remove surface receptors prior to the import reaction; p, precursor protein; m, mature protein.) (b) Radiolabelled Tom40 precursor was
incubated for 5 min and 20 min with mitochondria isolated from the strains indicated (top of panel) grown in the presence of histidine and fpa.
Mitochondria were dissolved in 1% digitonin and subjected to BNGE. The proteins were transferred to PVDF membrane and analyzed by
autoradiography. The size of the mature TOM complex (400 kDa), and assembly intermediates I (250 kDa) and II (100 kDa) are indicated on the left.
* indicates an undefined band. (c) Tom40 was imported into mitochondria isolated from the strains indicated for 20 min. Following import,
proteinase K was added to each import reaction for 15 min on ice. PMSF was added to inactivate the proteinase, each reaction was divided into equal
halves, and mitochondria were pelleted. One half was suspended in SDS-PAGE cracking buffer (Mitos). The other half was suspended in sodium
carbonate (pH 11.5) and incubated on ice for 30 min. The membrane sheets were pelleted and suspended in cracking buffer (Carb pellet). Both sets
of reactions were subjected to SDS-PAGE and the proteins were transferred to nitrocellulose membrane and examined by autoradiography. The
positions of Tom40 and the 26 kDa and 12 kDa fragments generated by proteinase K digestion are indicated. (d) As in panel B except that
mitochondria were incubated with the radiolabeled precursor of porin. The numbers on the left indicate the position of molecular weight markers.
(e) Assembly of Tom22. As in panel D, except mitochondria were incubated with radiolabeled Tom22.
doi:10.1371/journal.pone.0025650.g002
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N. crassa Tom40 into 26 kDa and 12 kDa fragments [56]. The

ratio of these fragments in the mutants compared to control

mitochondria was similar to the ratios observed for the undigested

protein in fully assembled TOM complex (compare Figure 2B and

Figure 2C). These fragments were also shown to be resistant to

alkali extraction (Figure 2C) consistent with the idea that Tom40

had been integrated into the membrane. We conclude that some

Tom40 precursor is assembled into mitochondria containing

reduced levels of Tob37 and Tob38 and is correctly integrated

into the TOM complex. One difference between the DTob37 and

DTob38 mitochondria with respect to Tom40 assembly was the

low level of material evident at the 100 kDa position of

intermediate II for DTob38. The DTob37 mitochondria contained

a substantial amount of precursor in this region, but the band was

more diffuse and lower in molecular weight than in the control

mitochondria. These observations demonstrate specificity of

function for each protein and imply that Tob37 acts following

membrane integration of Tom40 while Tob38 acts in an earlier

step. The assembly pattern for porin showed a much reduced

efficiency for assembly into all complexes in the mutant

mitochondria (Figure 2D). The exact nature of the different porin

complexes is not understood, though we have shown that the

highest molecular weight complex contains porin precursor bound

to the TOB complex [27]. Finally, we demonstrated that the

assembly of Tom22 precursor into the TOM complex was also

reduced in both mutants (Figure 2E).

The decrease of AAC import (Figure 2A) and the slight deficiency

of Tim8 and Tim13 in mitochondria reduced for Tob37 or Tob38

(Figure 1C) was reminiscent of previous observations for mutants

lacking the Mdm10 protein [16]. In the latter case, we

demonstrated that loss of the small Tim proteins was likely due to

breakage of the outer mitochondrial membrane during the isolation

of mitochondria from mutant cells. Since the small Tim proteins are

known to be involved in the assembly of both AAC [58,59,60,61]

and b-barrel proteins [5,6,62], we showed that the effects on AAC

import, but not the effects on the b-barrels could be explained by the

loss of the small Tim proteins from the intermembrane space during

the isolation of mitochondria lacking Mdm10 [16]. Similar

experiments in this study revealed that control mitochondria, in

which the outer membranes had been purposefully damaged to

allow loss of intermembrane space components like Tim8 and

Tim13, were more severely affected in their ability to import AAC

than mitochondria lacking Tob37 or Tob38. However, the

damaged control mitochondria were much more efficient at import

and assembly of Tom40 and porin than were Tob37 or Tob38

deficient mitochondria (Figure S1). Thus, reductions in the level of

Tob37 or Tob38 are the major factor responsible for the

deficiencies in the assembly of b-barrel proteins while reduced in

vitro import of AAC appears to be at least partly due to the loss of

factors from the intermembrane space. However, it should be noted

that Tob37 was originally characterized as having an effect on the

import of AAC [30]. Since our observations suggest that steady state

levels of AAC are also slightly reduced in strains depleted of either

Tob37 or Tob38 (Figure 1C) it is conceivable that these proteins

also play a minor or indirect role in AAC import/assembly.

TOB complexes in N. crassa mitochondria
The import data discussed above for strains with reduced levels

of Tob37 or Tob38, together with our previous findings for Tob55

[27], demonstrate that the three proteins have similar functions in

the import of b-barrel proteins into the outer membrane. We have

previously shown that the proteins co-purify as a complex [16], but

the number of TOB complexes, their components, and their size

has not been investigated in N. crassa. BNGE examination of the

complex purified from mitochondria containing His-tagged

versions of the different TOB core-complex components reveals

that Tob55, Tob38, and Tob37 are all found together in two

complexes of about 280 kDa and 190 kDa (Figure 3A). In

addition, Tob55 appears alone in two smaller complexes of about

75 and 140 kDa and one larger complex of 370 kDa. These latter

three complexes are virtually devoid of Tob37 or Tob38, though a

small amount of Tob38 is detectable in the 140 kDa form. Two-

dimensional gel electrophoresis (BNGE followed by SDS-PAGE)

of TOB complex purified from mitochondria containing His-

tagged Tob55 confirms these observations (Figure 3B), as does the

finding that the 370 kDa, 140 kDa, and 75 kDa complexes are not

observed when purification is performed using His-tagged Tob37

or Tob38 (Figure 3A). Mdm10 appears only in the 280 kDa

complex (Figure 3A). This was also confirmed by two-dimensional

gel analysis (Figure 3C) of TOB complex purified from

mitochondria containing His-tagged Tob38. Thus, the 190 and

280 kDa complexes appear to correlate with the TOB core- and

holo-complexes, respectively, that have been defined in S. cerevisiae

[9,10,11,12,15,35]. It should be noted that in mock purifications

using control mitochondria without His-tagged proteins that no

bands correlating with these complexes are observed when blots

are immunodecorated with antibodies to Tob55, Tob38, Tob37,

or Mdm10 [16].

When whole mitochondria were examined by western blot for

Tob55 following BNGE or two-dimensional gel electrophoresis, a

pattern similar to that observed for purified complexes was seen

(Figure 3D). Thus, it appears unlikely that any of the complexes

observed are artefacts of the purification procedure. However, we

cannot be certain that all bands detected represent physiologically

relevant complexes or if some are breakdown products resulting

from BNGE.

N. crassa contains three different isoforms of Tob55 [27]. To

determine if any of these was specific for a given complex or set of

complexes, mitochondria were isolated from strains expressing

only the His-tagged versions of either the short, intermediate, or

long form of Tob55. TOB complexes were purified and analyzed

by BNGE and western blot. In each case, all five TOB complexes

described above were present (Figure 3E). In addition, the

distribution of Tob37 and Tob38 was similar to cells expressing

all three isoforms. We conclude that the different Tob55 isoforms

are not involved in the formation of specific TOB complexes.

Topology of Tob37 and Tob38
Both Tob37 and Tob38 are susceptible to degradation by

proteinase K added to isolated mitochondria (Figure 4A), showing

that the proteins have domains exposed on the outer surface of the

outer membrane as does the control protein Tom70. The

intermembrane space protein Tim8, and the matrix protein

Hsp70 are protected from the externally added protease. We also

examined the properties of N. crassa Tob37 and Tob38 by alkali

extraction at varying pHs. The soluble protein Tim13, appears in

the extracted, supernatant phase at all pH levels tested while the b-

barrel proteins Tom40 and Tob55 partition with the pelleted

membrane sheets (Figure 4B). For Tob38, about half the protein is

removed from the membrane at pH 11.5 and the majority is

removed at pH 12.0 (Figure 4B). Thus, the behaviour of the

protein is similar to the Tom70 protein which is known to have a

single membrane spanning domain [63,64,65]. However, analysis

of the Tob38 amino acid sequence reveals no strong candidates for

a membrane spanning helix. Tob37 is more resistant to alkali

extraction than Tob38. Very little of the protein is removed from

the membrane at pH 11.5, but at pH 12.0 it is roughly equally

partitioned between the membrane and supernatant fractions
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Figure 3. The N. crassa TOB complex. (a) Number and protein content of N. crassa TOB complexes. Mitochondria were isolated from strains
expressing only His-tagged versions (instead of the endogenous versions) of either Tob55 (Tob55HT), Tob38 (Tob38HT), or Tob37 (Tob37HT) as
indicated for each lane at the top of the panel. TOB complexes were purified using Ni-NTA resin. Purified complexes were subjected to BNGE,
transferred to PVDF membrane, and decorated with antibodies to Tob55, Mdm10, Tob37, or Tob38 as indicated at the bottom of each panel. The
position of molecular weight markers (kDa) is shown on the left and the estimated size (kDa) of complexes is shown on the right. (b) TOB complex
was purified from a strain carrying His-tagged Tob55 and subjected to first dimension BNGE (1st dim) in two separate lanes of the gel. One lane was
transferred to PVDF, and decorated with antibody to Tob55 (top lane in panel). The second lane was removed for second dimension (2nd dim)
electrophoresis by SDS-PAGE as described in the Methods. Following SDS-PAGE, the gel was transferred to nitrocellulose. The membrane was cut into
strips corresponding to the molecular weights of Tob55, Tob38, and Tob37 and probed with antibodies to those proteins, respectively (indicated on
the left). Sizes of TOB complex following 1st dimension BNGE are indicated at the top of the panel. (c) As in panel B, except the purification was
performed using mitochondria containing His-tagged Tob38 and the SDS-PAGE blot was examined with antibodies to Tob38 and Mdm10. (d) As in
panel B except that whole mitochondria were examined for the presence of TOB complexes. (e) As in panel A, except TOB complex was purified from
mitochondria isolated from cells expressing only His-tagged versions of different Tob55 isoforms [27]: short Tob55 (Tob55 Short HT), intermediate
Tob55 (Tob55 Int HT), or long Tob55 (Tob55 Long HT) as indicated at the top of the panels. Blots were immunodecorated with the antibodies
indicated at the bottom of the panels.
doi:10.1371/journal.pone.0025650.g003
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(Figure 4B). Thus, it appears to be a membrane anchored protein

as it is slightly more resistant to extraction than Tom70. However,

the protein is more easily removed from the membrane than are

the b-barrel membrane proteins Tom40 and Tob55. It has been

suggested that Tob37 anchors Tob38 to the mitochondrial

membrane in mammals [39] or that Tob37 is required for

stability of Tob38 in yeast [33,34]. We examined this possibility by

subjecting mitochondria depleted for Tob37 to alkali extraction at

pH 11.0. In control mitochondria, Tob38 stays almost entirely

associated with the pelleted membrane sheets. However, in the

absence of Tob37, the reduced amount of Tob38 that remains in

mitochondria is about equally portioned between the pellet and

supernatant fractions (Figure 4C). These data support a role for

Tob37 in binding Tob38 to mitochondria, but also suggest that

Tob38 is bound to the membrane by other interactions. Analysis

of the Tob37 amino acid sequence suggests the presence of two

possible TMDs (Figure 5A). The first occurs in a position that ends

35 residues before the C-terminus. This placement of the TMD

resembles the position of the TMD of mammalian Mtx1 and we

refer to the domain as TMD1. The second comprises the last 19

residues of the protein and is referred to as the C-terminal

hydrophobic domain (CHD). Taken together, the above data

suggest that Tob37 is anchored to the mitochondrial membrane

by one or two TMDs. On the other hand, Tob38 is likely a

peripheral membrane protein that is strongly associated with

Tob37 and other factors in the outer membrane.

Role of transmembrane domains (TMDs) in Tob37
To assess the roles of the two possible TMDs of Tob37, we

removed one or both of the domains from the protein coding

sequence as shown in Figure 5A. Plasmid constructs encoding

these mutant forms of Tob37 were used to transform the DTob37

sheltered heterokaryon. Histidine-requiring homokaryons express-

ing only the mutant forms of Tob37 were isolated, indicating that

the DTob37 nucleus of the sheltered heterokaryon (Figure 1A)

could be rescued by any of the three mutant versions of the

protein. One strain from each transformation was chosen for

further analysis: DTMD1-9 (lacking TMD1, Figure 5A), DCHD2-

3 (lacking CHD), and DT+C12-5 (lacking both TMD1 and CHD).

Mitochondria and post-mitochondrial pellet (referred to as cytosol)

fractions were isolated from each strain. Western blot analysis

showed that despite the removal of either or both of the domains,

the shortened versions of Tob37 were targeted to, and remained

associated with, mitochondria during standard isolation conditions

while the control protein arginase [66,67] was found predom-

inantly in the cytosol fraction as predicted (Figure 5B). When

mitochondria were treated with buffer containing 500 mM NaCl,

all three mutant proteins still remained associated with the

mitochondria (Figure 5C). Mitochondria isolated from the mutant

strains were then subjected to alkali extraction with sodium

carbonate at pH 11.0, 11.5, and 12.5 (Figure 5D). At pH 11.0, all

versions of the protein remain in the membrane fraction. At

pH 11.5, the wild type protein and the mutant lacking only the

CHD were resistant to extraction from the membrane and

remained in the pellet as did the control protein Tom40. However,

the mutant proteins lacking either TMD1, or TMD1 and CHD

were completely removed from the membrane by the alkali

treatment. At pH 12.5, the behaviour of the protein lacking CHD

is indistinguishable from the wild type protein. These data strongly

suggest that TMD1 is a membrane spanning domain, but the

CHD is not. This was further tested by examining the

susceptibility of the mutant proteins to proteinase K treatment.

If both TMD1 and CHD were membrane spanning domains, then

loss of one of the domains could conceivably result in mislocaliza-

tion of the large domain in the cytosol to the intermembrane

space. However, all three mutant forms were shown to be digested

when mitochondria were treated with proteinase K, as was the

control protein Tom70. The intermembrane space control protein

Tim13 was not digested. This suggests that no change in the

location of the cytosolic domain resulted from deletion of either or

both TMD1 and CHD (Figure 5E). This is consistent with the

conclusion that only TMD1 spans the outer membrane and

suggests that absence of TMD1 likely results in mislocalization of

the small CHD to the cytosol (Figure 5F). Taken together, these

data suggest that TMD1 serves as a membrane spanning tail-

anchoring domain for N. crassa Tob37 (Figure 5F). The position of

TMD1 within the protein is similar to the analogous region from

the human Mtx1 protein (Figure 5G). In both proteins, the

Figure 4. Topology of Tob37 and Tob38. (a) Mitochondria isolated from wild type cells (strain 76-26) were treated with proteinase K (+pK) as in
Figure 2C or not (-pK). Mitochondria were washed and subjected to SDS-PAGE. The gel was blotted to nitrocellulose and examined by
immunodecoration with the antibodies indicated on the left. (b) Mitochondria from the control strain (76-26) were subjected to extraction with 0.1 M
sodium carbonate at the pHs indicated at the top of the panel. Following the treatment, membrane sheets were pelleted and supernatants were
subjected to trichloroacetic acid precipitation. Membrane pellets (p) and supernatant precipitates (s) were subjected to SDS-PAGE. Proteins in the gel
were transferred to nitrocellulose and the membrane was examined with the antibodies indicated on the left. (c) As in panel B except extractions
were done at pH 11.0 from control (HP1), DTob37, and DTob38 strains grown in the presence of histidine and fpa. The three lanes on the left show
the protein levels in whole mitochondria (mitos), while the six lanes on the right show the pellets and supernatants resulting from alkali extraction.
doi:10.1371/journal.pone.0025650.g004
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Figure 5. Role of predicted TMDs of Tob37. (a) The WT row shows the sequence of the 63 amino acids at the C-terminus of wild type N. crassa
Tob37. DTMD1 is the deletion constructed for the first possible transmembrane domain and is the name of the strain expressing this form of Tob37.
Similarly for CHD, the second possible TMD found at the C-terminus of the protein, and for DT+C, the deletion of the last 56 amino acids of the
protein which removes both possible TMDs. (b) Mitochondria and post-mitochondrial supernatants (cytosol) were isolated from strains expressing
the mutant forms of Tob37 described in panel A. Samples of each were subjected to SDS-PAGE and transferred to nitrocellulose. The membrane was
immunodecorated with the antibodies indicated on the left. The control was strain 76-26. Arginase represents a cytosolically localized control protein
that is synthesized from two different start codons of the same locus [67] so that two bands of 41 kDa and 36 kDa are observed. (c) As in panel A
except isolated mitochondria were treated for 30 min on ice with isolation buffer containing 0.5 M NaCl. Following the incubation period,
mitochondria were pelleted. The supernatant was collected and desalted. The mitochondria were washed in isolation buffer and pelleted. Pelleted
mitochondria and the desalted supernatant were subjected to SDS-PAGE. Proteins were transferred to nitrocellulose and the membrane was probed
with the antibodies indicated on the left. (d) Mitochondria from the strains indicated above the panel were subjected to alkali treatment using 0.1 M
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predicted TMD is flanked by regions containing positive charges,

which is a characteristic of tail-anchoring mitochondrial sequences

[38,68,69].

The growth rates of strains expressing the mutant alleles of

Tob37 were virtually identical to the control strain (Figure 6A) and

there were no apparent alterations in the steady state levels of

mitochondrial proteins (Figure 6B). However, lysis of isolated

mitochondria with digitonin, followed by BNGE and western blot

analysis revealed that the ratio of larger to smaller TOB complexes

is somewhat reduced in mitochondria containing Tob37 proteins

missing TMD1, or TMD1 plus CHD (Figure 6C). These data

suggest that TMD1 of Tob37 plays a role in TOB complex

assembly and/or stability.

We also investigated the import/assembly of mitochondrial

proteins into mitochondria isolated from the strains containing the

Tob37 mutant proteins. Import of F1b and AAC was indistin-

guishable from controls (Figure 7A). However, differences were

observed with respect to the import of b-barrel proteins. For

Tom40 (Figure 7B), mitochondria containing Tob37 lacking

TMD1 assemble Tom40 into the final 400 kDa TOM complex at

a slightly increased rate and accumulation of Tom40 precursor at

the 250 kDa TOB complex intermediate stage is greatly reduced.

However, mitochondria containing Tob37 lacking the CHD, or

both TMD1 and the CHD, are only slightly different from the

wild type control with respect to appearance of the precursor into

the 250 kDa intermediate I and the final assembled complex. For

porin (Figure 7C), mitochondria containing Tob37 lacking the

CHD are indistinguishable from the wild type control. However,

mitochondria with Tob37 lacking TMD1 do not efficiently form

the highest molecular weight form (240 kDa). Other porin

complexes are present at or near control levels. We have

previously shown the 240 kDa form represents porin precursor

bound to the TOB complex [27]. Assembly of the porin precursor

in mitochondria lacking TMD1 plus the CHD resembles the

pattern seen in those lacking only TMD1. Thus, the loss of TMD1

alone reduces the level of both Tom40 and porin precursors

bound at the TOB complex. However, there is a clear difference

in the assembly of the two precursors in the DT+C mitochondria.

For Tom40 assembly is similar to the control, but for porin it is

similar to the DTMD1 mitochondria. As shown in Figure 2E, the

TOB complex is also required for the assembly of Tom22.

Examination of Tom22 assembly into mitochondria with the

TMD deletions revealed a slightly lower rate of assembly when

TMD1 or TMD1 plus the CHD were deleted (Figure 7D), which

is most clearly seen at the 5 min time point.

Discussion

Despite the limited sequence similarity among the Tob37 and

Tob38 proteins from different organisms (Figure S2), many of

their characteristics and functions are conserved. N. crassa Tob37

and Tob38 are found in complexes with either Tob55 or with

Tob55 and Mdm10, which are analogous to the core- and holo-

TOB complexes, respectively, that have been described in S.

cerevisiae [9,10,11,12,15,35]. Tob38 is essential in both N. crassa and

S. cerevisiae [9,10,11]. Its function in b-barrel import is common to

these two organisms as well as mammals [40], as is its topology as

an alkali extractable peripheral membrane protein. Tob37 is an

essential protein in N. crassa and is required for embryonic

development in mice [43]. Although the S. cerevisiae protein is not

sodium carbonate at pH 11.0, 11.5, and 12.5 (indicated below each panel) as described in the legend to Figure 4B. (e) Mitochondria were isolated
from each of the Tob37 deletion protein strains and treated with proteinase K as described in the Materials and Methods and Figure 4A. (f) The large
circle represents the cytosolic domain of Tob37, the filled box is TMD1, and the open box is the CHD. Two horizontal lines represent the
mitochondrial outer membrane. The predicted arrangement of the domains for wild type and each of the TMD/CHD deletions is indicated. (g)
Comparison of potential tail-anchoring sequences of N. crassa (Nc) Tob37 and H. sapiens (Hs) Mtx1. The potential TMD is indicated by the solid line.
The position of the region within each protein is indicated by the numbers flanking each amino acid sequence. The overall length of the N. crassa
protein is 442 residues. The H. sapiens protein is 304 residues. Positively charged residues in the immediate flanking regions are indicated by the plus
sign.
doi:10.1371/journal.pone.0025650.g005

Figure 6. Characteristics of Tob37 C-terminal deletion strains. (a) Conidia from the strains indicated on the left were plated as described in
the legend to Figure 1B. (b) Mitochondria were isolated from the strains indicated at the top of the panel and analyzed as described in the legend to
Figure 1C. The control was strain 76–26. (c) Mitochondria isolated from the strains indicated at the top of the panel were dissolved in 1% digitonin,
subjected to BNGE, transferred to PVDF, and decorated with antibody to Tob55. The position of molecular weight markers is indicated on the left.
doi:10.1371/journal.pone.0025650.g006
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essential, knockouts have growth defects at high temperatures [30].

Loss of Tob37 in C. albicans leads to a much reduced growth rate

[36]. Tob37 is involved in b-barrel protein assembly in S. cerevisiae

[32] and N. crassa. This has not been shown directly in mammals,

but Mtx1 is known to associate with Mtx2 and its levels decrease in

Mtx2 knockdowns suggesting a functional relationship between

the two proteins [39,40]. The N. crassa and mammalian Tob37

proteins both contain a tail-anchoring domain. Although potential

TMDs were detected in the S. cerevisiae protein [30], it was

concluded that it is a peripheral membrane protein based on

alkaline extractability [31]. In mammals deletion of the anchoring

domain has a severe effect on targeting Mtx1 to mitochondria

[38]. Deletion of TMD1 in the N. crassa protein results in loss of

resistance to alkaline extraction. However, when TMD1 is absent,

the N. crassa protein still associates with mitochondria. Thus, N.

crassa Tob37 seems to possess a mixture of the properties found in

the S. cerevisiae and mammalian proteins. The finding that

mammalian Mtx1 and Mtx2 interact led to the suggestion that

Mtx2 is bound to the mitochondrial membrane by Mtx1 [39].

Similarly, one of the suggested roles of S. cerevisiae Tob37 is to

stabilize the Tob38 protein or the TOB complex in general

[33,34]. Our finding that Tob38 is greatly reduced in the Tob37

knockout, but Tob37 is only slightly reduced in the Tob38

knockout agrees with these suggestions. However, our results also

show that when N. crassa Tob37 levels are reduced to virtually

undetectable levels, about half of the Tob38 that associates with

mitochondria is still resistant to alkali extraction, suggesting that

the protein also binds tightly to other components of the outer

membrane, possibly by a specific interaction with Tob55 [28].

Our observation of the three Tob proteins in complexes with or

without Mdm10 is in agreement with findings in S. cerevisiae.

However, we also detected additional complexes that appear to

contain only Tob55. The physiological relevance and role of these

complexes remains to be determined.

Import of radiolabeled Tom40 precursor into DTob37 or

DTob38 mitochondria was reduced. Some accumulation into the

fully assembled complex was observed, but no precursor was

detected in an intermediate that would represent a lower

molecular weight version of the TOB complex that lacked a core

subunit. These results differ from those observed in previous

studies of Tob37 deficient mitochondria of S. cerevisiae where

accumulation of the Tom40 precursor was observed in a lower

molecular weight TOB complex lacking Tob37 with only very

small amounts of Tom40 reaching the final assembled state

[12,32,34]. On the other hand, our finding that some Tom40 does

reach the assembled complex is similar to a more recent study in S.

cerevisiae where substantial assembly was observed after 60 min of

import in mitochondria lacking Tob37 [70]. Our results for

Tom40 assembly into mitochondria deficient in Tob38 are similar

to one previous study in S. cerevisiae that used mitochondria with

reduced levels of Tob38. In that report, Tom40 precursor reached

the fully assembled TOM complex in a time-dependent manner,

in amounts similar to controls, with no accumulation at lower

molecular weight intermediates—though it was also shown that a

proportion of the protein was not properly assembled [9]. In the

present study we observed somewhat reduced levels of Tom40

reaching the assembled TOM complex. Alkali extraction and

protease susceptibility studies demonstrated that most, if not all, of

that protein was properly assembled into the membrane.

Curiously, compared to our findings and the aforementioned

Figure 7. Role of Tob37 predicted TMDs on the import of mitochondrial precursor proteins into mitochondria. Import and assembly
were analyzed as described in the legend to Figure 2 for the indicated precursors. (a) Import of F1b and AAC. (b) Assembly of Tom40. (c) Assembly of
porin. (d) Assembly of Tom22.
doi:10.1371/journal.pone.0025650.g007
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yeast work, others have reported quite different results for the

effects of Tob38 depletion in S. cerevisiae. In one study, virtually no

Tom40 precursor reached the final TOM complex and the

amount of the precursor accumulated at intermediate I was

reduced [11]. Similar results were seen using a temperature-

sensitive allele of Tob38 [10]. Whether these differences reflect

minor alterations in the mitochondria resulting from experimental

approaches, or differences between organisms or strains, remains

to be determined.

The assembly of porin was also reduced in mitochondria

deficient in Tob37 or Tob38. These results are similar to findings

with S. cerevisiae cells deficient in Tob37 [32,34] or Tob38

[9,10,11] though the effects in N. crassa appear to be more

dramatic. Mammalian mitochondria depleted of Mtx2 also show

decreased assembly of both porin and Tom40 [40]. Our assembly

assays for Tom40 or porin in Tob37 or Tob38 deficient

mitochondria show much reduced or undetectable levels of

precursors bound at the TOB complex. Two explanations for

similar observations have been given previously [34,35]. Deficien-

cy of the proteins may influence the efficiency of binding

precursors to the complex. Alternatively, delays in processing

precursor bound to the complex, might make them susceptible to

increased degradation. Interestingly, when DTob37 mitochondria

are used in our Tom40 assembly assays, there is accumulation of

labelled precursor in a smear at the position of the 100 kDa

intermediate II. In the DTob38 mitochondria there is virtually no

material seen in this region. This suggests that precursor may be

less efficiently integrated into the membrane when Tob38 is

absent. When Tob37 is deficient, the Tom40 precursor appears to

enter the membrane but may not be properly assembled with

other Tom subunits to give a discrete 100 kDa form. If true, this

observation would lend support to an earlier suggestion that

intermediate II may still be associated with the TOB complex

[33].

We observed a slight reduction in the import of the matrix

targeted F1b and the inner membrane protein AAC in

mitochondria deficient in Tob37 and Tob38. Various results have

been reported for the effects of deficiencies of Tob37, Tob38, or

metaxins on the import of matrix and inner membrane precursors

into mitochondria. In some studies the import of at least some of

these proteins is reduced [30,34,38,41], in others it is not

[9,10,11,32,33,40]. One explanation might be that different

strategies used to eliminate or reduce Tob37 and Tob38 levels

or activity result in variations of the steady state levels of other

proteins required for import of proteins to other subcompart-

ments. In fact, one study has shown that increasing TOM complex

stability by overexpressing Tom6 improved the import of matrix

precursor proteins in Tob37 deficient mitochondria [34].

The steady state levels of various proteins in DTob37 and

DTob38 mitochondria were reduced, most notably Tom5 and

Mdm10. Thus, it might be argued that the defects in b-barrel

assembly and the slightly decreased import of F1b and AAC

observed in our experiments and at least some other previous

studies, are due to reduced levels of other mitochondrial proteins

that are involved in import or assembly. However, for the b-barrel

precursors this seems unlikely for the following reasons. The non-

core TOB complex proteins most likely to have an effect on b-

barrel assembly would be TOM complex components, the small

Tim proteins, and Mdm10. The patterns of assembly for Tom40

and porin in DTob37 and DTob38 mitochondria do not resemble

those observed when the small Tim proteins [5] (Figure S1), the

small Tom proteins [71], or Mdm10 [16] are depleted. On the

other hand, the assembly patterns observed in the present study

are similar to those observed when Tob55 levels are depleted [27].

Furthermore, the phenotypes observed for Tom40 and porin

assembly are very similar in DTob37 mitochondria and DTMD1

mitochondria, which would argue that a similar process is affected

in both cases. In DTMD1 mitochondria import of F1b and AAC is

not affected and no changes in the steady state levels of other

mitochondrial proteins were observed, supporting the notion that

alterations in the Tob proteins are responsible for the effects on b-

barrel assembly.

Our studies on assembly of b-barrel proteins in mitochondria

bearing Tob37 proteins with C-terminal alterations have shown

that loss of the CHD has virtually no effect. However, the

accumulation of the precursors for both Tom40 and porin, at the

stage of interaction with the TOB complex, is severely reduced

when TMD1 is removed. Interestingly, simultaneous removal of

both of these domains has a different effect on the two b-barrel

precursors examined. For Tom40, removal of both domains

restores both the accumulation of the precursor with the TOB

complex and its assembly into the TOM complex to near wild type

levels. These data suggest that it is not the absence of TMD1 that

affects Tom40 assembly, but the predicted mislocalization of the

CHD. In a Tob37 protein lacking the tail-anchoring TMD1, the

CHD would be expected to be found on the outer surface of the

outer membrane, rather than in the intermembrane space

(Figure 5F). We speculate that the mislocalized CHD alters

interactions between TOB complex components such that binding

of the Tom40 precursor is affected. The more rapid assembly of

the precursor to the final complex suggests that when TMD1 alone

is absent, the precursor is released from the TOB complex more

quickly. This would be in keeping with a role for Tob37 in

precursor release as suggested in two recent studies of the S.

cerevisiae protein [33,34]. The more rapid release in the mutant

may suggest that binding at the precursor stage may represent a

Figure 8. Hypothetical model for effects of Tob37 alterations on the TOB complex. Tob55 is shown as a pore-containing light grey ring
embedded in the membrane. Tob37, is represented as in Fig. 5F with TMD1 and CHD in the outer membrane and intermembrane space, respectively.
Tob38 is shown in dark grey with a domain extending into the pore of Tob55. A. The normal TOB complex. B. CHD absent. Loss of CHD has no effect
on porin assembly and mild effects on Tom40 assembly. All members of the complex are shown in their normal configuration C. TMD1 and CHD
absent. This results in reduced accumulation of the porin precursor at the TOB complex. Effects on Tom40 are mild. A conformational change in
Tob55 is shown as one possible effect caused by loss of TMD1 resulting in porin assembly defects. D. Only TMD1 absent. This results in reduced
accumulation of both porin and Tom40 precursors at the TOB complex. The conformational change in Tob55 due to lack of TMD1 is shown as in C.
However, an additional change due to the suggested mislocalization of the CHD, is represented as an effect on Tob38.
doi:10.1371/journal.pone.0025650.g008
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quality control stage for Tom40 assembly, allowing it to achieve

proper conformation and/or combining with other subunits.

However, for the precursor of porin, removal of both domains

gives an assembly phenotype similar to missing only TMD1. This

suggests that the effects of CHD mislocalization do not have the

same effect on the porin precursor. Thus, individual b-barrel

precursors may associate with different features of the TOB

complex to achieve maximal productive interactions. Alternative-

ly, the nature of TOB complex/precursor interactions may

specifically affect downstream assembly steps that differ between

the precurors. One of many possible models to account for these

observations is given in Figure 8. Continued investigations will be

required to reach a fuller understanding of Tob37 topology and its

relationship to TOB complex structure and function.

Supporting Information

Figure S1 Controls for effect of damaged outer mem-
branes in isolated mitochondria from mutant strains on
mitochondrial protein import/assembly. Mitochondria

from control strain HP1 grown in the presence of histidine and

fpa were subjected to brief periods of vortexing in the presence of

swelling buffer to produce mitochondria with damaged outer

membranes as described previously [16]. These mitochondria

were then compared to undamaged control mitochondria and

mitochondria from strains DTob37 and DTob38 grown in the

presence of histidine and fpa to reduce levels of Tob37 and Tob38.

Import and assembly assays were as described in the legend to

Fig. 2. (A) Assembly of Tom40. (B) Assembly of porin. (C) Import

of F1b and AAC. (D) Assembly of Tom22.

(PDF)

Figure S2 Alignments of Neurospora crassa (Nc), Sac-
charomyces cerevisiae (Sc), and Homo sapiens (Hs)
Tob37 and Tob38 proteins. *, identical residues; :, conserved

substitutions; ., semi-conserved substitutions. For the Tob37

alignment, the yellow highlight shows TMD1 in the N. crassa

protein and the TMD of the H. sapiens protein, and the blue

highlight shows the CHD of the N. crassa protein.

(DOCX)
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