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Background
To facilitate the utilization of circular permutation (CP) as a protein engineering tech-
nique, we carried out this study. CP, a polypeptide backbone rearrangement, could be 
considered as if the native termini of a protein were linked and a new opening created 
elsewhere [1–3]. Studies on natural cases concluded that circular permutants (CPMs) 
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usually retain their native structures and functions, sometimes with increased func-
tional diversity or activity [1–3]. This property makes CP promising for bioengineering. 
By artificially creating CPMs, CP has been applied in various fields, such as studying 
the folding and function of proteins [4, 5], improving the stability, solubility, substrate 
affinity, substrate specificity, and activity of proteins [6–9]. It can be used to create bio-
sensors, molecular switches, and novel bifunctional proteins [10–12]. Recently, it is also 
utilized to create split inteins [13, 14].

Despite being powerful, the implementation of CP poses challenges. First, CP is much 
more difficult, expensive, and time-consuming than traditional mutagenesis. Second, 
not every position is permissive for CP [7, 15]. Third, when the termini of a protein are 
distant, a peptide linker should be designed to connect them, or the CPMs are unlikely 
viable [9]. Forth, conventional modeling algorithms are inadequate for predicting the 
structure of circularly permuted proteins. We have previously developed a viable CP 
cutting site predictor [16, 17]. Nevertheless, there is still a lack of a 3D structure pre-
dictor and linker design algorithm for CP. Because of the rearrangement nature, when 
modeling a CPM, even state-of-the-art comparative modeling systems like the SWISS-
MODEL [18], RaptorX [19], Robetta [20], and our work (PS)2 [21] usually generate a 
partially modeled structure. So far, uneconomic trials and errors are inevitable for CP 
bioengineering.

In this work, we have developed the first CP structure modeling and linker design 
method named CirPred (Circularly-permuted protein structure Predictor), which inte-
grates several algorithms of protein structural computation, machine learning, and 
molecular dynamics (MD) simulations in a “circularly-permuted” fashion (see Fig. 1 and 
“Methods” section). As tested with experimentally-verified CPMs of the dihydrofolate 
reductase (DHFR) [15], CirPred was the only comparative modeling method capable of 
producing complete models. Evaluated with ~ 1600 pairs of CPMs from literature and 
the Circular Permutation DataBase (CPDB) [22], the average alignment ratio and root-
mean-square distance (RMSD) between CirPred-modeled and actual structures were 
better than 90% and 2.5 Å, respectively, even for CPMs sharing ~ 20% sequence identi-
ties. On average, linkers designed by CirPred possessed 70.2% sequence similarities with 
native linkers. For proteins with amino (N)- and carboxyl (C)-termini closer than 10 Å, 
the linkers designed by CirPred achieved an accuracy of 0.26 Å. Interestingly, we found 
CirPred capable of detecting protein 3D domain swapping (DS) [23]. When CP and DS 
co-occurred, CirPred provided accurate predictions of the structure and orientation of 
domains.

To fulfill the aims of this work, we implemented the CirPred into a rapid web server. 
With the assistance of this effective structure predictor, we hope that the time and cost 
of CP implementation can be significantly decreased, letting this powerful technique 
open protein and enzyme engineering to new possibilities.

Results
Comparison of structural models generated by CirPred and conventional modeling 

methods

Since proteins related by CP have different start points of the polypeptide sequence, 
conventional structure modeling methods typically meet difficulties in finding 
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suitable templates when processing a circularly permuted target protein. Even if the 
native protein of the target is provided as the template, they may still fail to build a 
full-length model. It is commonly observed that, delimited by the CP site, a part of 
the model is missing or predicted as extended loops/coils. In other cases, the model 
is predicted to possess two well-folded domains, but the predicted orientation of 
domains is incorrect.

The entire polypeptide of the DHFR had been scanned by CP to identify viable CP 
sites [15]. According to those CP sites, we generated all the permutant sequences 
and submitted them to state-of-the-art comparative modeling systems, including 
SWISS-MODEL [18], RaptorX [19], and Robetta [20] (see Additional file  1). When 
CP occurred at positions close to the center of the polypeptide, the quality of models 

Fig. 1 Flowchart of the CirPred method. After obtaining the input data inclusive of a native template 
structure, a CP site, and a target sequence, seven major steps are performed. (1) The native template is 
processed to restore missing atoms and obtain the native amino acid sequence. (2) A pseudo‑CP template 
structure and sequence are created according to the CP site. (3) A linker design procedure is carried out when 
necessary. (4) Sequence alignment between the pseudo‑CP template and the target sequence is performed 
with native termini connected by the designed linker. (5) A coarse model is produced by comparative 
structure modeling. (6) The coarse model is refined by an algorithm that uses the CP site as a hinge to find 
the optimal orientation of domains (see “Methods” section). Each arrow represents a vector from the hinge 
to the center of mass of a domain. (7) Energy minimization and MD simulations are carried out to make 
the optimized model. In the web implementation, the linker design algorithm is activated only when the 
user does not provide the target sequence. In this situation, the target sequence is directly obtained from 
the template structure according to the CP site. The blue and red colors represent the N‑ and C‑terminal 
proportions of a protein, respectively. The solid and dotted underlines indicate sequence fragments 
corresponding to the N‑ and C‑terminal proportions of the native protein
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built by these methods was generally good. As the CP site moved close to the N- or 
C-terminus, the missing, coiled, or incorrect-orientation modeling problems became 
increasingly serious. If a modeled permutant and the native DHFR were structur-
ally aligned, the worst results (the lowest alignment ratio or highest RMSD) usually 
occurred when the CP site is situated around 1/4 or 3/4 of the sequence. The same 
permutant sequences were processed with the proposed CirPred method, and all the 
produced CPM models aligned well with the native protein. Take CP site residue 55 
for example, the CPM model built by CirPred retained the correct conformation of 
DHFR (compare Fig.  2a, b). As for the model constructed by SWISS-MODEL, the 
proportion corresponding to residues 1–55 of the native DHFR was missing (Fig. 2c). 
The same proportion was predicted as a long coil by RaptorX (Fig. 2d). Robetta suc-
cessfully modeled the two proportions delimited by the CP site, but the predicted ori-
entation was wrong (Fig. 2e).

CirPred was the only one capable of correctly modeling all viable DHFR CPMs among 
the assessed methods, demonstrating its specificity to circularly permuted proteins. 
Additionally, it is noteworthy that CirPred is applicable to conventional co-linear mod-
eling. By setting the CP site to be residue 1 of a protein, CirPred would create a co-lin-
ear model with comparable quality to models constructed by state-of-the-art modeling 

Fig. 2 Circularly‑permuted protein structure models constructed by CirPred and conventional modeling 
methods. The CPM55 of DHFR has been reported viable (CP site on the native DHFR: Pro55) [15]. Several 
comparative structure modeling methods were applied to construct the model of this CPM. Conventional 
methods failed to model part of the CPM (panel c and d) or produced incorrect domain orientations (panel 
e). The proposed CirPred method correctly constructed the full‑length model (panel b). Structures shown 
in this figure include a the native DHFR (PDB 1rx4A), and the model of CPM55 constructed by b CirPred c 
SWISS‑MODEL [18], d RaptorX [19], and e Robetta [20]. Structures are drawn in the same orientation and 
scale. The blue and red colors indicate the N‑ and C‑terminal proportions, respectively, of the protein. The 
α‑carbon atoms of termini residues are shown as spheres



Page 5 of 23Chen et al. BMC Bioinformatics          (2021) 22:494  

systems. See Additional file  2 for results of co-linear protein structure modeling per-
formed using CirPred.

Comparison of models generated by CirPred and conventional modeling methods 

for proteins requiring termini linkers

When the native termini of a protein for CP were close, short poly-glycine or glycine/
serine-rich linkers were frequently used [9]. However, longer linkers may be required 
for proteins with distant termini to be successfully engineered by CP [9]. We proposed a 
linker design protocol (see “Methods” section), which further differentiated the CirPred 
from traditional modeling systems. Here a linker redesign experiment was conducted to 
demonstrate how the proposed protocol could design a long peptide linker for proteins 
having distant termini.

The 1,3–1,4-β-glucanase from Bacillus with Protein Data Bank (PDB) entry 2ayhA 
(Fig.  3a) had been engineered by CP using Phe59 as the CP site, and the permuted 

Fig. 3 Circularly‑permuted models constructed by several modeling methods for proteins requiring a 
long termini linker. The CPM structure of a β‑glucanase has been determined [24]. In this experiment, the 
17 N‑terminal residues of the native β‑glucanase were removed to test the linker design capability of CirPred. 
The model constructed by CirPred was complete, and the designed linker was similar to the removed 
17‑residue fragment both in structure and sequence. Conventional modeling methods either twisted the 
structure to connect the native termini or failed to fill the gap in between. a Crystal structure of the native 
1,3–1,4‑β‑glucanase (PDB 2ayhA). The yellow fragment corresponds to the 17 N‑terminal residues for 
truncation. b The N‑terminus truncated β‑glucanase (denoted β‑glucanase∆1–17). c Crystal structure of the 
CPM59 of the β‑glucanase (PDB 1cpmA). The yellow fragment (and sequence) is equivalent to the truncated 
part of the native protein and was the target linker to be redesigned. d Model constructed by CirPred using 
b as the template. The yellow fragment is the redesigned linker, whose sequence similarity to the native 
linker is 70.6% (aligned by Stretcher [32]). e Model constructed by SWISS‑MODEL using b as the template. 
The C‑terminal proportion of the structure was missing. f Model constructed by SWISS‑MODEL using c as the 
template. The longest main‑frame β‑strand was twisted to connect the native termini. g Model constructed 
by RaptorX using c as the template. As the dotted line indicates, an unreasonable gap remained between the 
native termini. h Model constructed by Robetta using c as the template. The direct connection between the 
native termini twisted the longest main‑frame β‑strand
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structure had been determined (denoted as CPM59-β-glucanase; Fig.  3c) [24]. We 
deleted residues 1–17 from the native β-glucanase structure 2ayhA to create a new 
N-terminus 21.97 Å away from the C-terminus. The truncated β-glucanase (denoted 
as β-glucanase∆1–17; Fig.  3b) simulated a protein that possessed distant termini, and a 
long linker (17 residues) should be added for CP bioengineering. With β-glucanase∆1–17 
as the template, we constructed the model of CPM59-β-glucanase using several meth-
ods. If a method could properly design a linker for β-glucanase∆1–17, the designed linker 
should likely be similar to the fragment in the actual structure of CPM59-β-glucanase 
(the yellow part in Fig.  3c) that is corresponding to the deleted residues in the native 
β-glucanase (the yellow part in Fig.  3a). The result showed that CirPred successfully 
designed a linker similar to the deleted residues in structure and sequence (see Fig. 3d). 
The last 58 residues of CPM59-β-glucanase were missing in the model constructed by 
SWISS-MODEL (Fig. 3e). As for RaptorX and Robetta, the long-coil and incorrect-ori-
entation predictions exhibited in Fig. 2 persisted. We had then utilized the actual struc-
ture of CPM59-β-glucanase as the template to construct the model of CPM59 itself 
using SWISS-MODEL, RaptorX, and Robetta. These algorithms either directly con-
nected the native termini of β-glucanase by a twist (Fig. 3f, h) or simply formed a big gap 
between the termini (Fig. 3g). It should be noted that only CirPred was equipped with 
a linker design protocol; therefore, the above comparisons were not made to compete 
with conventional modeling methods for performance but only to indicate the novelty 
of CirPred. See “Performance of linker design” section for large-scale evaluations of the 
proposed linker design protocol.

Performance on engineered CPs

Artificially engineered circular permutations are suitable materials for assessing the 
performance of a CP structure predictor because their parent proteins, CP sites, and 
additional mutations were well defined. The engineered CPMs collected in [25] were 
used to assess CirPred. The sequence of each engineered CPM was the target, which 
was subjected to CirPred modeling with its parent protein used as the template. Since 
the structure of all applied CPMs had been known, the performance of CirPred could 
be evaluated by aligning the known structures with constructed models. As shown in 
Table 1, the structural alignment qualities were high. The average alignment ratio and 
RMSD were 99.2% and 1.59 Å, respectively.

Large‑scale assessments for various sequence identity levels

To examine how the modeling quality of CirPred would be influenced by the sequence 
identity between the target CPM and the template, we conducted an extensive test 
using CPDB, the largest dataset of manually-verified pairs of CPMs [22]. The 1568 CP 
pairs of CPDB with sequence identities ≥ 10% (Additional file  3) were grouped into 
subsets of decreasing identities. For each pair of CPMs, one was used as the tem-
plate for modeling the other. The results are listed in Table 2. The quality of models 
remained high until the identity was lower than 20%. For those CP pairs with identi-
ties ≥ 20%, the average alignment ratios between models and actual structures were 
all > 90%, and the average RMSDs were generally < 2.50 Å. Even for those with iden-
tities < 20%, the average alignment ratio and RMSD still reached 74.0% and 3.90 Å, 
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respectively. For instance (see Additional file 4), a RIM2  C2A-domain (PDB 2bwqA) 
and a calcium-phospholipid binding domain (PDB 1rlwA) shared only 19.5% identity. 
The model made based on 2bwqA as the template (CP site: residue 16) achieved a 
structural alignment ratio of 95.2% and RMSD 2.75 Å when aligned with the known 
structure of the target CPM, i.e., PDB 1rlwA. In summary, the performance of Cir-
Pred would decrease as the sequence identity between template and target lowers, 

Table 1 Structural alignment qualities between models constructed by CirPred and the actual 
structures of engineered CPMs

a Numbered according to the order of residues in the PDB file
b Sequence identity between the template protein and the target CPM (computed by the circularly-permuted structure 
alignment algorithm CPSARST [25])
c These were the structural alignment ratio and RMSD values between the model and the actual structure of target CPMs. 
The alignment ratio was defined as the number of aligned residues divided by the target’s size

Target: engineered 
CPM (size: residues)

Template: native 
protein (size: 
residues)

CP site on the 
 templatea

Identityb (%) Alignment 
 ratioc (%)

RMSDc (Å)

1ajkA (212) 2ayhA (214) 84 90.2 97.6 1.441

1ajoA (212) 2ayhA (214) 129 97.2 100.0 1.026

1cpmA (214) 2ayhA (214) 59 98.6 100.0 1.001

1cpnA (208) 2ayhA (214) 59 92.5 100.0 1.050

1alqA (259) 3blmA (257) 223 98.8 100.0 0.548

1fw8A (416) 3pgkA (416) 72 72.8 98.1 3.155

1n02A (102) 2ezmA (101) 50 90.1 100.0 1.316

1un2A (186) 1a2jA (188) 100 96.3 100.0 1.156

1bd7A (176) 1blbC (187) 98 85.6 94.9 6.501

1g2bA (62) 1shgA (57) 47 86.0 100.0 1.056

1tucA (61) 1shgA (57) 20 86.0 96.7 1.609

1tudA (60) 1shgA (57) 48 89.5 100.0 0.833

1swfA (116) 1stpA (121) 51 87.9 100.0 1.256

1swgA (112) 1stpA (121) 51 86.6 100.0 0.657

1p5cA (166) 1lw9A (164) 12 98.1 100.0 1.310

Table 2 Effects of sequence identity on the performance of CirPred

In this experiment, for each pair of circular permutants, one protein was utilized as the template to create the model of the 
other protein, i.e., the target
a Sequence identities between the template and target proteins
b Alignment ratio and RMSD values between the model and known structure of target proteins

Sequence  identitya (%) Alignment  ratiob (%) RMSDb (Å) Number of 
CP pairs

90–100 97.6 1.236 79

80–90 95.7 1.673 39

70–80 94.7 1.504 8

60–70 95.1 3.124 10

50–60 96.7 1.910 31

40–50 98.7 2.002 236

30–40 98.1 2.026 351

20–30 90.9 2.496 161

10–20 74.0 3.904 653
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but the quality of the constructed model remains high as long as the identity is not far 
below 20%.

In addition to sequence identity, we had examined to what extent the performance of 
CirPred would be influenced by protein size or the location of CP sites. Additional file 5: 
Tables S1 and S2 demonstrate that protein size exerted little influence on the modeling 
quality; however, the performance decreased slightly for proteins with CP sites close to 
the termini (see also Additional file 4 for examples of CirPred modeling for CPMs of dif-
ferent sizes).

Performance of linker design

Connecting the native termini of a protein is a formidable challenge for successful CP 
engineering [9]. A direct connection may be appropriate when the native termini are 
close in 3D space; otherwise, a well-designed peptide linker is required. There is still no 
general method for designing CP linkers in addition to short glycine/serine-rich pep-
tides [9]. In “Methods” section, a linker design protocol for CP is proposed. This subsec-
tion provides performance assessments of the proposed protocol.

Evaluation with known circular permutants

A CPDB linker dataset (Additional file 6) containing all non-redundant linkers of CPMs 
from the CP pair dataset was prepared to evaluate the linker design algorithm of CirPred 
by performing a strict 500-round independent test described in “Methods” section. Sta-
tistical analyses showed that 99.0% of the CPM structures with linkers designed by our 
algorithm exhibited equivalent or lower potential energy than their original structures. 
The average sequence similarity between the designed and the original linkers was 68.6% 
(see Additional file 7 for raw data and Additional file 8: Table S3 for statistics). Since all 
the original linkers were obtained from naturally occurring CPMs, these data indicated 
that the proposed algorithm could design linkers with structural stabilities and sequence 
compositions analogous to linkers that evolved naturally.

To dissect the influence of the distance between native termini on the performance 
of linker design, we further analyzed the sequence similarities and RMSDs between the 
designed and original linkers. As the distance between termini increased, the similarity 
lowered, and RMSD rose, indicating a decline in performance (see Additional file 8: Fig. 
S3 and Table S3). However, since the output of the CirPred linker design procedure for a 
given protein was a set of candidate linkers ordered by potential energy, retrieving more 
candidates helped find better results. Take proteins with a termini distance ≤ 10 Å for 
instance, if the top 5 candidates were retrieved, the average optimal sequence similarity 
between the designed and original linkers was 83.7%, and the RMSD was 0.32 Å; if the 
top 10 candidates were retrieved, those values became 90.7% and 0.26 Å, respectively. 
Before this work, the most accurate linker design method accomplished a 0.50 Å RMSD 
out of 6 candidates [26]. The CirPred has made a noticeable advance in the linker design 
for CP engineering.

Evaluation with in silico circular permutants

To perform a thorough assessment of the linker design algorithm, we prepared an 
in silico synthetic CPM dataset, namely, the Dataset S (Additional file  9), in which 
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every protein shared < 25% identity with any protein either from itself or from the 
CPDB linker dataset. There were 2141 CPMs in Dataset S, each with a known native 
protein and a predefined missing linker. After the machine-learning predictor of Cir-
Pred’s linker design module was trained with the CPDB linker dataset, every CPM 
in Dataset S was processed by CirPred modeling to redesign its missing linker. The 
potential energy of CirPred models was compared with that of the actual CPM struc-
tures. The results showed that 98.4% of the CPMs with linkers redesigned by CirPred 
had equivalent or lower potential energy than their original structures, and the aver-
age sequence similarity between the redesigned and original linkers was 71.7%. Since 
Dataset S was highly non-redundant and very different from the CPDB linker dataset 
(i.e., the training data for machine learning), this independent test demonstrated that 
the proposed linker design protocol was stable in performance.

Ability to model 3D domain‑swapped proteins induced by CP

As we evaluated the CirPred with engineered CP cases, a very interesting situation 
was recognized for the CPMs of βB2-crystallin with PDB entries 1bd7A and 1blbC. 
The crystallin 1bd7A was an artificial CPM of 1blbC with residue Glu87 as the CP site 
[27]. Crystallin 1blbC, before the CP, was a homo-tetramer composed of two dimers, 
each of which was still a dimer comprising two intertwined subunits with an open 
conformation. The CP converted the intermolecular pairing between subunits into 
intramolecular pairing and thus disentangled the intertwined subunits into two side-
by-side monomers with a closed conformation [27]. The conversion between inter-
twined dimeric “open-form” and disentangled “closed-form” is an example of 3D 
domain swapping (DS) [23].

DS-related homologs are difficult for sequence or structure alignment methods to 
identify because of the dramatic conformational difference [28]. The identification of 
CP is also not straightforward [25]. When CP and DS co-occurred, the situation would 
become too complicated for conventional modeling systems to construct a model of 
correct conformation, even if a proper native template was provided. One native βB2-
crystallin subunit (182 residues; PDB 1blbC) contains two homologous tandem-repeat 
domains. Since the CP site 87 (which created crystallin 1bd7A, or the CPM87-crystallin) 
was situated close to the middle of the subunit, it would be expectable that conventional 
modeling systems construct a model of CPM87-crystallin that is similar to the native 
crystallin. Indeed, as Fig.  4 demonstrated, when the CPM87-crystallin sequence was 
input as the target and the native crystallin (Fig. 4a) as the template, SWISS-MODEL 
[18] built a model very similar to the native structure (Fig. 4c). However, the truth was 
complicated. The actual structure of the CPM87-crystallin (PDB 1bd7A; Fig.  4b) had 
a very different domain orientation from the native crystallin. Thus, superimposition 
between the model built by SWISS-MODEL and the actual CPM87-crystallin structure 
showed a low alignment ratio (51.7%) and a large spatial displacement in the unaligned 
region (Fig.  4d). Contrarily, the CirPred model of CPM87-crystallin showed a very 
high alignment ratio (99.4%) and a small RMSD (3.61 Å) with the actual CPM struc-
ture (Fig. 4e, f ). The fact that CirPred could correctly model a 3D domain-swapped CPM 
implied that it has the potential of detecting the DS phenomenon induced by CP.
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Web server of CirPred

The CirPred algorithm has been implemented as a web server providing three work-
ing modes, (1) structure modeling for a primary CP, (2) structure modeling for a highly 
modified CPM, and (3) linker design. On the input page, the user will be asked to pro-
vide a structure of the native protein and a CP site. If the linker had been designed, using 
Mode 1 is appropriate. If there are other sequence modifications (substitutions, inser-
tions, and deletions) on the native protein in addition to the CP and the linker, Mode 2 

Fig. 4 Modeling of proteins with 3D domain swapping phenomenon induced by CP. The structures of a 
the native βB2‑crystallin (PDB 1blbC) and b the engineered CPM87 βB2‑crystallin (PDB 1bd7A; CP site on 
the native crystallin: Glu87) have both been solved by X‑ray crystallography. This pair of circular permutants 
is also an example of the 3D domain‑swapping phenomenon. Since this crystallin had a two‑fold rotational 
symmetric structure and the CP site was at the middle of the subunit, conventional comparative modeling 
methods might be able to construct the full model of the CPM by mimicking the template structure, such 
as c the model of CPM87 βB2‑crystallin constructed by SWISS‑MODEL using a as the template. However, the 
conformation of the models constructed by conventional methods was very different from that of the actual 
CPM structure, as shown by d the superimposition between b and c. Interestingly, e the model of CPM87 
βB2‑crystallin constructed by CirPred was highly similar to the actual CPM conformation, as shown by f the 
superimposition between b and e 
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can be a great help. If a linker is necessary and the user needs assistance in designing it, 
Mode 3 is applicable. CirPred will provide 30 candidate linkers with their CPM models 
ordered by the DOPE score. The final choice should depend on the user’s knowledge of 
the protein to be engineered. Distributed computation techniques [29] are applied to 
speed up the execution of CirPred algorithms. If the optional MD simulation step is not 
enabled, a typical query of any mode requires < 3 min.

Discussion
As a novel comparative modeling method, CirPred is fully capable of modeling circu-
larly permuted proteins, even if the permutant shared a low sequence identity with the 
native protein. When a polypeptide linker is required to connect the termini before CP, 
CirPred helps design the linker. Besides, it could be applied to the design of 3D domain-
swapped proteins by CP.

The novelty of CirPred was established on three bases. First, a pseudo-CP template 
was made before modeling. Second, CPDB [22] provided valuable data for establishing 
the machine learning predictor of the linker design protocol. Third, the CP-site-hinged 
model refinement procedure (Fig. 1 and “Methods” section) helped overcome the prob-
lems met by comparative modeling systems when dealing with circularly permuted 
proteins (e.g., incorrect domain orientation and expensive time cost). It also enabled Cir-
Pred to model domain-swapped CPMs.

On the performance for low identity circular permutants

The quality of sequence alignment between the target and template is crucial to the 
accuracy of comparative modeling, especially when their sequence identity is low. It has 
been reported that for cases with target-template identity < 40%, an error of ~ 4 Å would 
be introduced into the model by just a single-residue misalignment [30]. Using CirPred, 
even when the identity fell to 20–40%, the RMSDs between the constructed models and 
the known structures of target permutants were < 2.5 Å, and the proportions of structur-
ally well-aligned residues between them were > 90% (Table  2). CirPred performed well 
at low identity because it utilized three global sequence alignment methods [21, 31, 32] 
to find the optimal target-template alignment according to the produced sequence simi-
larity. Among those methods, (PS)2 [21] took the predicted secondary structure of the 
target and the known secondary structure of the template into consideration and was 
particularly suitable for making accurate target-template alignments. Notwithstand-
ing its high alignment quality, the current implementation of (PS)2 is dependent on a 
secondary structure predictor developed two decades ago and a traditional gap penalty 
scheme. If new secondary structure prediction strategies like [33–35] could be applied, 
or gaps could be dynamically suppressed within regions of regular secondary structure, 
buried core, or straight segments, the sequence alignment quality would be significantly 
improved and make CirPred more accurate for CPMs sharing < 20% sequence identities.

On the accuracy of linker design

We proposed a linker design algorithm to provide bioengineers with energetically-
favored choices in addition to glycine-rich linkers. The performance of this algorithm 
should be owed to its “predict-and-refine” strategy. Even if the accuracy of the initial 
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machine learning prediction of amino acid for each residue position of a linker was 
only 67.5%, the subsequent probability-guided random modeling and energy screening 
greatly increased the chance of finding suitable linker sequences. Nevertheless, if the 
absolute prediction accuracy could be improved, the quality of designed linkers might be 
enhanced. At least, the algorithm’s efficiency could be enhanced by reducing the number 
of random modeling (see Additional file 10 for advanced discussions).

On 3D domain‑swapped circular permutants

DS is a quaternary structural phenomenon defined as proteins exchanging equiva-
lent parts to form oligomers [23]. Understanding DS may help find new treatments for 
protein deposition diseases [36, 37] and develop bioengineering technology to modify 
enzyme activities or create auto-assembling biopolymers [38, 39]. Since DS enables 
homologous proteins to have dramatically different conformations (open versus closed) 
and CP changes the location of N-/C-termini, if they occurred concurrently, obtaining 
a reliable model by conventional modeling methods would be improbable. The CP-site-
hinge model refinement step of CirPred seemed to create a shortcut to overcome the 
difficulty in modeling DS-related proteins caused by CP. The combination of naturally 
occurring CP and DS has been reported [9, 40, 41], and the βB2-crystallin we met in this 
study was an engineered case. These interesting examples implied that it is possible to 
create “circularly-permuted domain swapping” proteins to accomplish novel functions 
like molecular switches and auto-assembling biomaterials. CirPred is supposed useful 
for this combined type of protein engineering (Additional file 10).

Other applications

Previously, we developed a protein viable CP site predictor abbreviated “CPred” [16], the 
machine learning model of which was constructed when CP (in)viability data were rare. 
In addition to reconstructing the model with the rapidly increasing data of recent years, 
integrating the proposed CirPred algorithm into the CPred pipeline may help improve 
the accuracy of CP site prediction. A preliminary test based on the CP viability data of 
[42] demonstrated that the energy scores computed according to CirPred models helped 
calibrate CPred predictions. Details of this preliminary test and discussions about future 
applications of CirPred in template identification, CP study, and complex structure mod-
eling are also available in Additional file 10.

Conclusions
We proposed a comparative modeling method for circularly permuted proteins to facil-
itate and broaden the application of CP in protein engineering. This CirPred method 
could accurately construct the model of a circular permutant at low sequence identity, 
indicating that it is promising for predicting the structure of a protein engineered by 
CP even if many other mutations are introduced. CirPred can design polypeptide link-
ers similar to the linkers of naturally occurring circular permutants. This ability helps 
ensure the viability of an engineered permutant that requires additional residues to con-
nect the native termini. The model refinement procedure not only accelerated the search 
for energetically stable conformation for the domains delimited by the CP site but ena-
bled CirPred to identify 3D domain swapping induced by CP. Thus, CirPred may assist 
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in engineering “CP + DS” proteins with different biological properties, fusion sites, and 
oligomeric states from native proteins. Regular mutagenesis has enabled researchers to 
manipulate enzymes, antibodies, signal transmitters, cellular structural proteins, etc., for 
various applications. Circular permutation has brought about many novel engineered 
proteins that were difficult to create by regular mutations. We believe that many more 
protein engineering possibilities will be achieved by combining circular permutation 
with regular mutagenesis. As the first computational method capable of circularly-per-
muted structure modeling with linker design and co-linear structure modeling, CirPred 
shall help move forward various fields requiring protein engineering. The CirPred web 
server is available at http:// 10. life. nctu. edu. tw/ CirPr ed/ (main server) and http:// lo. life. 
nctu. edu. tw/ CirPr ed/.

Methods
Software

In addition to the algorithms and software developed in our previous works, such as the 
CPSARST [25], (PS)2 [21], and an integrated machine learning and optimization server 
[16, 17], several third party software packages were applied in this study, inclusive of the 
sequence alignment program Stretcher (vEMBOSS:6.6.0.0) [32], the comparative mod-
eling software Modeller (v9.19) [43] and the molecular dynamics simulation package 
GROMACS (v2016.4) [44]. Many steps of the proposed CirPred method were computa-
tionally expensive. The distributed computation technique we developed for the iSARST 
protein structural similarity search server [29] was extensively used to speed up research 
progress and the CirPred web server. All protein structures shown in this report were 
rendered using PyMOL [45].

Datasets

The dataset of CP pairs from CPDB

Pairs of circular permutants sharing sequence identities ≥ 10% were downloaded from 
the CPDB [22]. Since the alignment data of CPMs provided by CPDB were computed 
by an old version of CPSARST [25], the structural alignment measures (e.g., alignment 
ratio and RMSD) and CP sites of these CP pairs were updated by the current CPSARST 
implemented in the iSARST server [29]. This dataset of 1568 CP pairs (Additional file 3) 
was used to perform large-scale evaluations of CirPred.

The CPDB linker dataset

CP-based structural alignments of CP pairs from CPDB were performed by CPSARST to 
establish this dataset. For each CP pair, as illustrated in Fig. 5, two linkers were obtained 
based on the algorithm stated below,

1. Let Q and S represent the two proteins of a CP pair.
2. Let xq represents the first residue of Q aligned with S, and xs represents the residue 

of S aligned with xq. Similarly, let yq be the last aligned residue of Q and its equivalent 
residue on S be ys.

3. The candidate linker for Q was computed as the residues between ys and xs on S 
(excluding ys and xs). Let l be the number of residues of this candidate linker.

http://10.life.nctu.edu.tw/CirPred/
http://lo.life.nctu.edu.tw/CirPred/
http://lo.life.nctu.edu.tw/CirPred/
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4. Let m be the number of unaligned residues on the N-terminus of Q in front of xq and 
n be the number of unaligned residues on the C-terminus of Q after yq.

(i) If m + n ≥ l, no linker was required to connect the native termini of Q.
 (ii) Otherwise, the linker for Q would be refined as the residues between ys + n and 

xs − m on S (excluding ys + n and xs − m).

5. Referring to Fig.  5a, let x, y, m, and n be replaced with u, v, i, and j, respectively. 
Repeat steps 2–4 to find out the linker for protein S.

The CPDB termini linker dataset is available in Additional file 6. If a protein has more 
than one permutant, it may have multiple linkers in this dataset.

Fig. 5 Determination of termini linkers and, in silico circular permutation. a Algorithm for determining 
the termini linkers for a pair of CPMs. In the implementation, the circularly‑permuted structure alignment 
between CPMs was performed by CPSARST [25]. b The in silico circular permutation. The circular permutation 
is, in essence, a sequence interchange between the N‑ and C‑terminal proportions
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Dataset S, a synthetic termini linker dataset

This dataset consisted of in silico circularly permuted proteins, each with a surface pol-
ypeptide fragment removed to serve as the known missing linker. The following steps 
were taken to establish this dataset.

1. Let the position of a residue be represented by its α-carbon (Cα).
2. Using the 100% sequence identity non-redundant subset of the PDB (snapshot date: 

Dec. 25th, 2016), calculate the average distance, denoted by d, between two consecu-
tive residues in a protein. The result was d = 3.36 (Å).

3. Compute the distance between the N- and C-terminal residues, denoted by D, for 
each protein in the above PDB subset (73,073 proteins) and filter out any protein 
with D > 3d. Only 3027 proteins remained in the dataset, in which every protein pos-
sessed a short distance between termini, i.e., within 3 residues on average.

4. Proteins sharing ≥ 25% sequence identity with any protein in the CPDB termini 
linker dataset (Additional file 6) were further discarded. The resultant dataset (1802 
proteins) was thus suitable, as an independent dataset, for assessing the machine 
learning predictor trained with the CPDB linker dataset.

5. For each protein remaining in this dataset, a CPM was created as stated below.

 (i) Since CP tends to occur at residues exposed to the solvent [17], each residue’s 
relative solvent accessible surface area (RSA) was computed.

 (ii) Consecutive residues with RSA > 20% were considered an exposed fragment 
on the surface of the protein. A protein might possess several exposed frag-
ments.

 (iii) Randomly select one exposed fragment, set the CP site at the carboxyl-end of 
the fragment.

 (iv) Since the native N- and C-termini of the protein were close, they were directly 
connected in silico. New termini were created at the selected CP site. This step 
was performed by renumbering residues in the PDB file in a way described in 
the next subsection.

 (v) Remove the selected exposed fragment from the PDB file.
 (vi) Refine the structure of this CPM by energy minimization using GROMACS 

[44].
The exposed peptide fragments removed in the above procedure were the known link-
ers for these in silico synthetic CPMs. A complete list of the PDB entries, CP sites, and 
linker sequences of this Dataset S is available in Additional file 9.

Generating the pseudo‑circularly‑permuted template

Because a CPM usually folded into a structure similar to the native structure [1, 9], the 
native structure would be a good template when modeling a CPM. However, since the 
termini of the CPM had changed, the native structure should be manipulated first. CP 
of a protein structure is actually an amino acid sequence rearrangement such that the N- 
and C-terminal proportions of the sequence were interchanged. As illustrated in Fig. 5b, 
making a circularly permuted protein in silico was equivalent to cutting the N-terminal 
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proportion and attaching it to the end of the C-terminal proportion. At the sequence 
level, this manipulation was a simple text string rearrangement. At the structure level 
with a PDB file, as described below, it was more complicated.

1. To ensure that the PDB file’s residues appeared in the same order in the template and 
model structures, starting with 1, assign serial numbers to the residues from the top 
of the file.

2. If the CP site was n, move n − 1 residues from the top of the file to the bottom.
3. Starting with 1, renumber all residues and atoms from the top of the file.
4. In case there were missing or structurally undetermined atoms in the PDB file, the 

reduce [46] and teLeap [47] programs were utilized to add/restore them.

Comparative structure modeling

The comparative modeling procedure of CirPred consisted of three major steps. First, 
the target CPM sequence was generated in the way stated above, unless provided by 
the user. For instance, Mode 2 of the CirPred web server required the user to input the 
sequence of CPM. Second, the global sequence alignment between the target CPM and 
template (the pseudo-CP template) was obtained using three methods: the algorithm 
combining amino acid sequence and secondary structure information that we devel-
oped for (PS)2 [21], the Smith-Waterman algorithm [31], and the Stretcher program [32]. 
Among the alignment results, the one with the largest number of aligned residues was 
selected. Third, comparative structure modeling was performed using the (PS)2 proce-
dure according to the sequence alignment. In addition to these three pipelined steps, 
according to the requirements of experiments or web users, the linker design proce-
dure might be integrated into the pipeline (Fig. 1); and, at the end of the pipeline, model 
refinement and MD simulation procedures might be activated.

Linker design

Overview of the linker design protocol

The linker design algorithm of CirPred utilized several machine learning and structural 
modeling methods. The basic idea was to coarsely determine the position of residues of 
a linker at first and then predict for each residue position the amino acid. The whole pro-
tocol is outlined as follows,

1. Determination of the coarse residue positions of a linker.

(i) Let l denote the number of residues of the linker.
(ii) Randomly make t temporary linkers according to amino acid propensities of known 

CPM linkers (Additional file 11).
(iii) Before making sequence alignment between the target CPM and the pseudo-CP 

template, insert each temporary linker into the target CPM.
(iv) Based on the sequence alignment with each temporary linker inserted, generate a 

coarse model of the target CPM using Modeller, which also computed its DOPE 
(discrete optimized protein energy) score [43].
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(v) Pick up t’ from the t coarse models with the lowest energy scores for the next step. 
In this study, t and t’ were set to be 200 and 20, respectively.

2. Prediction of the amino acid composition of the linker.

     (i) Take one coarse model of the target CPM, for each residue position of the linker, compute 
the feature values required to perform predictions.

 (ii) For each residue position, predict the occurrence probabilities of 20 amino acids 
by machine learning. See later subsections for algorithms of the feature set and 
machine learning techniques we applied.

3. Amino acid sequence assignments of the linker. According to the occurrence prob-
abilities of amino acids, randomly assign an amino acid to each residue position of 
the linker. For instance, if the probabilities of valine and leucine at position 1 were 
70% and 30%, respectively, the chance that position 1 was assigned with a valine was 
70%, while the chance of leucine was 30%. Repeat this step for k times, creating k 
candidate linker sequences (k = 10 in this study).

4. Generation of a candidate linker sequence pool. Repeat steps 2 and 3 until all coarse 
models were applied. There would be t’ × k candidate linker sequences generated to 
form the pool.

5. Computation of energy score for linkers in the pool.

 (i) Take one candidate linker, insert it into the target CPM sequence, and make a 
sequence alignment with the pseudo-CP template.

 (ii) Based on the alignment, generate m models of the target CPM, each with a 
DOPE score using Modeller [43] (m = 10 in this study).

 (iii) Select the model with the lowest DOPE to represent the quality of this candi-
date linker.

 (iv) Repeat (i) to (iii) until all candidate linkers in the pool were processed.
6. Selection of the final candidate linker(s). Find the candidate linker(s) with the lowest 

energy score(s) to be the final designed linker(s). For all experiments of this study, 
except the ones of Additional file 8, only one best-designed linker was taken. In our 
web implementation, several candidate linkers with low energy scores are reported 
to the user.

The feature set for prediction

We speculated that if the position of a residue of interest is known in a protein structure, 
information (or “features”) obtained from its surroundings could be utilized to predict what 
amino acid the residue is. For a known linker, its residue positions were readily available 
in the PDB file. For a linker to be designed, residue positions could be coarsely simulated 
as described above. Features obtained from known linkers were used to train the machine 
learning kernels for predicting the amino acid composition of a linker to be designed. The 
feature set used in this study comprised 20 features computed according to this equation,
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where i denotes the residue of interest, A represents the type of amino acid, FA(i) means 
the feature value of amino acid A for i, a stood for a residue of A surrounding i, and dia is 
the distance between residues i and a. The nA(i, dr) is the number of A residues located 
within the radius of dr (which was set as 20 Å in this work) from i. The position of a resi-
due is represented by its Cα.

For a given A, this feature describes how many and how close this type of amino acids 
appeared near the residue of interest. A high feature value means that many such amino 
acids are nearby, or the distances between them and the residue of interest are short. 
Because the sequence of a linker to be designed is unknown, there is no prior knowledge 
of the amino acids adjacent to each other. Therefore, when computing the feature values, 
no matter for a known linker or a linker to be designed, five adjacent residues before and 
five after the residue of interest are discarded.

Establishing the predictor by machine learning methods

For any residue in a known linker, in addition to feature values, the “answer” must be 
provided for machine learning. The answer in the case of linker design should be the 
residue’s amino acid, and thus there should be 20 candidate answers for learning and 
prediction. The computation loading of most machine learning algorithms would 
increase significantly as the number of candidate answers increases. Since 20 answers 
were beyond our hardware’s computation capacity, we classified 20 amino acids into 
three types (hydrophilic, hydrophobic, and neutral) and reduced the number of candi-
date answers to 3.

Previously as we studied viable CP sites, we developed an artificial intelligence system 
that integrated several machine learning, random sampling, and parameter optimization 
algorithms [16, 17]. This system was applied in this work, and the recruited algorithms 
included bootstrap sampling, decision tree, and artificial neural network. After obtaining 
the answers and feature values from a set of known linkers, 250 and 50 bootstrap sam-
ples were made to train minor predictors of decision tree and artificial neural network, 
respectively. The final predictor was then formed by collecting the minor ones, which 
made predictions by vote. With this procedure, the probabilities of candidate answers 
for a given case could be estimated as the proportions of votes the answers received.

For preliminarily assessing the performance of the feature set we designed, tenfold 
cross-validation was performed using the CPDB linker dataset. The average accuracy 
(rate of correct predictions) was 67.5%. In this preliminary test, for each testing case, 
only the best-voted candidate answer was considered. However, in the actual applica-
tion, the probabilities of candidate answers played a prominent role. This procedure con-
stituted just a part of the CirPred linker design protocol (see the previous subsection). A 
thorough assessment of the complete linker design protocol had been carried out, and 
the performance is stated in “Results” section.

(1)FA(i) =

nA(i,dr )∑

a=1

1

d
2
ia
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Tuning the probability estimate of amino acids in a designed linker

Since the 20 amino acids were reduced to 3 classes for machine learning, the predicted 
amino acid probability estimates were sketchy. Before these estimates could be used in 
the actual linker design protocol, they should be restored to 20 amino acids.

Linkers of the training dataset had been analyzed, such that for each class, proportions 
of amino acids were known. After the “class-level” prediction, the occurrence probabili-
ties of 20 amino acids at a given residue were finely estimated using the equation,

where pe() and p() stand for the probability estimate and proportion, respectively, and A 
and C denote amino acid and class. For example, if the probability estimate of the hydro-
philic class for a residue is 0.80 and the proportion of aspartic acid in this class is 0.25, 
the probability estimate of aspartic acid at this position is 0.80 × 0.25 = 0.20.

Length estimate of the linker

In our experiments, the length of a linker to be designed could be obtained from the 
alignment between CPMs. However, before using the CirPred server for linker design, 
the user might not know how many residues there should be in the linker. Hence, we 
proposed an algorithm to estimate the length of the linker to be designed. For a protein 
with a distance of N- and C-termini (represented by Cα atoms) < 20 Å, the length of the 
linker would be estimated using this equation,

where l and b denote the number of residues of the linker and the distance of termini, 
respectively. This equation was established according to CPDB. The 20 Å cutoff was 
determined based on the fact that the length of known linkers (l) and the distance of the 
termini they bridged (b) fit the equation within it and that for termini more distant than 
it, there seemed no rule between l and b (Additional file 12). For proteins with a long dis-
tance between the termini, we proposed the following algorithm to estimate the length 
of the linker,

1. Starting with l = 20 (residues), make t temporary linkers of length l based on the 
amino acid propensities of the CPDB linker dataset (Additional file 11).

2. Add each temporary linker to the target CPM; according to the sequence alignment 
between the target CPM and the pseudo-CP template, generate a model of the CPM 
and compute its energy score.

3. Among the t temporary linkers, find the one with the lowest energy score to repre-
sent linkers of length l.

4. Increase l by five residues and repeat steps 1–3 until l reaches a given maximum. We 
empirically suggest the maximum be 1/5 of the size of the target protein.

5. Find the value of l producing the lowest energy score. Scan the length range from l − 
4 to l + 4 and compute these lengths’ energy score by repeating steps 1–3.

6. The length of the linker to be designed is estimated as the length of temporary linkers 
achieving the lowest energy score.

(2)pe(A) = pe(C)× p(A|C)

(3)l = Round(21.8× ln(b)− 52.5); l ≥ 0
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For evaluating this algorithm, proteins of the CPDB linker dataset with linker 
length ≥ 20 residues were tested with the DOPE energy score. The average difference 
in length between the known and designed linkers was 20.3%. The performance of this 
algorithm was acceptable; it was very time-consuming, however. In the CirPred web 
server, Eq. (3) is applied by default unless the user changes it.

Evaluation of the linker design protocol by multiple rounds of independent test

Using the CPDB linker dataset (Additional file  6), we performed an independent test 
of 500 rounds to evaluate the proposed linker design protocol. This procedure was an 
improved tenfold cross-validation test. It ensured the independence between the train-
ing and testing data for each round and reduced the imprecision of evaluation. The 
training datasets, independent test datasets, and results of each round are available in 
Additional file 7. The procedure of this test is provided below,

1. Since one protein might have multiple CPMs in CPDB, all CPDB linkers were 
grouped according to their PDB entries.

2. Repeat the following steps 500 times,

 (i) Randomly divide the grouped linkers into a training Dataset T and an inde-
pendent test Dataset I possessing 90% and 10% of the proteins.

 (ii) For ensuring that Dataset I was highly different from Dataset T, any protein in 
Dataset I sharing ≥ 15% sequence identity with any protein from Dataset T was 
discarded.

 (iii) A machine-learning linker predictor was established using Dataset T as the 
training data based on the CirPred linker design protocol.

 (iv) For each case in Dataset I, remove the known linker from the protein, make 
a pseudo CPM, and then input this pseudo CPM to the CirPred system to 
redesign the linker using the machine-learning linker predictor established in 
the previous step. Sequence similarities and the difference of potential energy 
scores between the designed and known linkers were computed using the 
BLOSUM45 matrix [48] and GROMACS [44].

3. Statistically analyze the sequence similarity and energy data obtained from the 500 
rounds.

Refinement of the generated model

As shown in Fig. 1, a protein is virtually divided by the CP site (equivalent to the mid-
dle point of the linker of the native protein), i.e., the hinge, into two proportions. If the 
proportions have the same size, take the C-terminal proportion to be the small one. 
An axis r is formed between the hinge and the center of mass of the small proportion. 
Besides, a plane P is defined by these two points and the center of mass of the large 
proportion. Then, two kinds of movements are made to the small proportion. First, with 
the hinge fixed, rotate the small proportion on plane P with a pause per 20 degrees. Sec-
ond, at each pause, rotate it around axis r with a snapshot per 20 degrees. There are 162 
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snapshots in total (180°/20° × 360°/20°). Finally, compute the energy score of these snap-
shots and select the one with the lowest energy to be the refined model of the CPM.

Molecular dynamics simulations

Molecular dynamics simulations were applied as a final optimization of the model. 
The model was submerged in a box filled with water molecules. When necessary, a 
suitable amount of  Na+ or  Cl– ions were added into the box to neutralize the sys-
tem’s charge. The neutralized system was first energy minimized before the full MD 
simulations, in which two rounds of annealing, each with temperature points 298 K, 
320 K, and 298 K, were performed. Without applying the CP-site-hinge model refine-
ment described above, the number of steps made in MD was set as 5 million, and the 
step size was two femtoseconds (total simulation time = 10 ns). If the model refine-
ment was applied, we found that 0.5 million steps were enough to produce results 
with equivalent quality in terms of the alignment ratio and RMSD between the actual 
and modeled structures. In all modeling experiments performed in this study, both 
5 and 0.5 million time steps were tested, and the reported data were based on the 
0.5-million-step results. To reduce server machines’ loading, we set the default num-
ber of time steps as 0.1 million in the implemented CirPred server, and the user could 
change the setting.
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